Helicoid is developable surface












0














Please help me to prove that helicoid whose parametric equation is given by
$$x=ucos v, y= usin v, z=pu$$
is developable, where $p$ is a constant and $u,v$ are the curvelinear coordinates of the surface.
Thank you.










share|cite|improve this question



























    0














    Please help me to prove that helicoid whose parametric equation is given by
    $$x=ucos v, y= usin v, z=pu$$
    is developable, where $p$ is a constant and $u,v$ are the curvelinear coordinates of the surface.
    Thank you.










    share|cite|improve this question

























      0












      0








      0







      Please help me to prove that helicoid whose parametric equation is given by
      $$x=ucos v, y= usin v, z=pu$$
      is developable, where $p$ is a constant and $u,v$ are the curvelinear coordinates of the surface.
      Thank you.










      share|cite|improve this question













      Please help me to prove that helicoid whose parametric equation is given by
      $$x=ucos v, y= usin v, z=pu$$
      is developable, where $p$ is a constant and $u,v$ are the curvelinear coordinates of the surface.
      Thank you.







      differential-geometry surfaces






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 4 '18 at 17:05









      chandan mondal

      1758




      1758






















          1 Answer
          1






          active

          oldest

          votes


















          0














          I'm afraid I cannot do that, as it is false.



          According to this, the helicoid is ruled, but non-developable.



          Here you can find a formula for the non-zero Gaussian curvature.






          share|cite|improve this answer





















            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3025834%2fhelicoid-is-developable-surface%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0














            I'm afraid I cannot do that, as it is false.



            According to this, the helicoid is ruled, but non-developable.



            Here you can find a formula for the non-zero Gaussian curvature.






            share|cite|improve this answer


























              0














              I'm afraid I cannot do that, as it is false.



              According to this, the helicoid is ruled, but non-developable.



              Here you can find a formula for the non-zero Gaussian curvature.






              share|cite|improve this answer
























                0












                0








                0






                I'm afraid I cannot do that, as it is false.



                According to this, the helicoid is ruled, but non-developable.



                Here you can find a formula for the non-zero Gaussian curvature.






                share|cite|improve this answer












                I'm afraid I cannot do that, as it is false.



                According to this, the helicoid is ruled, but non-developable.



                Here you can find a formula for the non-zero Gaussian curvature.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Dec 4 '18 at 17:16









                Federico

                4,799514




                4,799514






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.





                    Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                    Please pay close attention to the following guidance:


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3025834%2fhelicoid-is-developable-surface%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Berounka

                    Sphinx de Gizeh

                    Different font size/position of beamer's navigation symbols template's content depending on regular/plain...