For $alphain (0, 1)$, $f(z)=sum_{n=1}^{infty}frac{z^n}{(n!)^{alpha}}$ satisfies $|f(z)|leq...











up vote
2
down vote

favorite
1












Let $alpha in (0, 1)$. Then $f(z)=sum_{n=1}^{infty}frac{z^n}{(n!)^{alpha}} $ satisfies $vert f(z) vert leq A_{epsilon} e^{b_{epsilon} vert z vert^{frac{1}{alpha} + epsilon}} $ for any $epsilon>0$ for some constants $A_{epsilon}>0$ and $b_{epsilon}>0$.
I can show the result is true for $alpha geq 1$, but I don't know what to do for $alpha in (0, 1)$.



If $alpha geq 1$, then $vert f(z) vert leq sum_{n=1}^{infty} vertfrac{z^n}{(n!)^{alpha}}vert= sum_{n=1}^{infty} left(frac{ (vert z vert^{frac{1}{alpha}})^n}{n!}right)^{alpha}$ and $(frac{ (vert z vert^{frac{1}{alpha}})^n}{n!})^{alpha} leq frac{ (vert z vert^{frac{1}{alpha}})^n}{n!}$ for all except finitely many $n$.

Any hints or reference are appreciated.










share|cite|improve this question
























  • Did you try using Stirling's Formula?
    – Kavi Rama Murthy
    Nov 26 at 7:53















up vote
2
down vote

favorite
1












Let $alpha in (0, 1)$. Then $f(z)=sum_{n=1}^{infty}frac{z^n}{(n!)^{alpha}} $ satisfies $vert f(z) vert leq A_{epsilon} e^{b_{epsilon} vert z vert^{frac{1}{alpha} + epsilon}} $ for any $epsilon>0$ for some constants $A_{epsilon}>0$ and $b_{epsilon}>0$.
I can show the result is true for $alpha geq 1$, but I don't know what to do for $alpha in (0, 1)$.



If $alpha geq 1$, then $vert f(z) vert leq sum_{n=1}^{infty} vertfrac{z^n}{(n!)^{alpha}}vert= sum_{n=1}^{infty} left(frac{ (vert z vert^{frac{1}{alpha}})^n}{n!}right)^{alpha}$ and $(frac{ (vert z vert^{frac{1}{alpha}})^n}{n!})^{alpha} leq frac{ (vert z vert^{frac{1}{alpha}})^n}{n!}$ for all except finitely many $n$.

Any hints or reference are appreciated.










share|cite|improve this question
























  • Did you try using Stirling's Formula?
    – Kavi Rama Murthy
    Nov 26 at 7:53













up vote
2
down vote

favorite
1









up vote
2
down vote

favorite
1






1





Let $alpha in (0, 1)$. Then $f(z)=sum_{n=1}^{infty}frac{z^n}{(n!)^{alpha}} $ satisfies $vert f(z) vert leq A_{epsilon} e^{b_{epsilon} vert z vert^{frac{1}{alpha} + epsilon}} $ for any $epsilon>0$ for some constants $A_{epsilon}>0$ and $b_{epsilon}>0$.
I can show the result is true for $alpha geq 1$, but I don't know what to do for $alpha in (0, 1)$.



If $alpha geq 1$, then $vert f(z) vert leq sum_{n=1}^{infty} vertfrac{z^n}{(n!)^{alpha}}vert= sum_{n=1}^{infty} left(frac{ (vert z vert^{frac{1}{alpha}})^n}{n!}right)^{alpha}$ and $(frac{ (vert z vert^{frac{1}{alpha}})^n}{n!})^{alpha} leq frac{ (vert z vert^{frac{1}{alpha}})^n}{n!}$ for all except finitely many $n$.

Any hints or reference are appreciated.










share|cite|improve this question















Let $alpha in (0, 1)$. Then $f(z)=sum_{n=1}^{infty}frac{z^n}{(n!)^{alpha}} $ satisfies $vert f(z) vert leq A_{epsilon} e^{b_{epsilon} vert z vert^{frac{1}{alpha} + epsilon}} $ for any $epsilon>0$ for some constants $A_{epsilon}>0$ and $b_{epsilon}>0$.
I can show the result is true for $alpha geq 1$, but I don't know what to do for $alpha in (0, 1)$.



If $alpha geq 1$, then $vert f(z) vert leq sum_{n=1}^{infty} vertfrac{z^n}{(n!)^{alpha}}vert= sum_{n=1}^{infty} left(frac{ (vert z vert^{frac{1}{alpha}})^n}{n!}right)^{alpha}$ and $(frac{ (vert z vert^{frac{1}{alpha}})^n}{n!})^{alpha} leq frac{ (vert z vert^{frac{1}{alpha}})^n}{n!}$ for all except finitely many $n$.

Any hints or reference are appreciated.







complex-analysis analysis inequality power-series






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 26 at 15:37









Davide Giraudo

124k16150258




124k16150258










asked Nov 26 at 4:49









GouldBach

41418




41418












  • Did you try using Stirling's Formula?
    – Kavi Rama Murthy
    Nov 26 at 7:53


















  • Did you try using Stirling's Formula?
    – Kavi Rama Murthy
    Nov 26 at 7:53
















Did you try using Stirling's Formula?
– Kavi Rama Murthy
Nov 26 at 7:53




Did you try using Stirling's Formula?
– Kavi Rama Murthy
Nov 26 at 7:53










1 Answer
1






active

oldest

votes

















up vote
1
down vote



accepted










For $alphain (0,1)$, I suggest Cauchy-Schwarz.



Let $g(r) = max_{|z|=r} |f(z)|$.



Fix $delta in (0,alpha)$. Let $1/p = alpha-delta$ and $1/q = 1- (alpha-delta)$. Then $p$ and $q$ are Holder conjugates.



Let's crank the CS machine:



begin{align*} g(r^{alpha-delta} ) &le sum left(frac{ r^{n}}{n!}right)^{alpha-delta}times frac{1}{n!^delta}\
& le left(sum frac{ r^{n}}{n!}right)^{alpha-delta}underset{=c_delta}{underbrace{left (sum frac{1}{n!^{frac{delta}{1-alpha+delta} }} right)^{1-alpha+delta}}}\
& = e^{(alpha-delta) r} c_delta,end{align*}



and the result follows.






share|cite|improve this answer





















    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3013862%2ffor-alpha-in-0-1-fz-sum-n-1-infty-fracznn-alpha-sat%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    1
    down vote



    accepted










    For $alphain (0,1)$, I suggest Cauchy-Schwarz.



    Let $g(r) = max_{|z|=r} |f(z)|$.



    Fix $delta in (0,alpha)$. Let $1/p = alpha-delta$ and $1/q = 1- (alpha-delta)$. Then $p$ and $q$ are Holder conjugates.



    Let's crank the CS machine:



    begin{align*} g(r^{alpha-delta} ) &le sum left(frac{ r^{n}}{n!}right)^{alpha-delta}times frac{1}{n!^delta}\
    & le left(sum frac{ r^{n}}{n!}right)^{alpha-delta}underset{=c_delta}{underbrace{left (sum frac{1}{n!^{frac{delta}{1-alpha+delta} }} right)^{1-alpha+delta}}}\
    & = e^{(alpha-delta) r} c_delta,end{align*}



    and the result follows.






    share|cite|improve this answer

























      up vote
      1
      down vote



      accepted










      For $alphain (0,1)$, I suggest Cauchy-Schwarz.



      Let $g(r) = max_{|z|=r} |f(z)|$.



      Fix $delta in (0,alpha)$. Let $1/p = alpha-delta$ and $1/q = 1- (alpha-delta)$. Then $p$ and $q$ are Holder conjugates.



      Let's crank the CS machine:



      begin{align*} g(r^{alpha-delta} ) &le sum left(frac{ r^{n}}{n!}right)^{alpha-delta}times frac{1}{n!^delta}\
      & le left(sum frac{ r^{n}}{n!}right)^{alpha-delta}underset{=c_delta}{underbrace{left (sum frac{1}{n!^{frac{delta}{1-alpha+delta} }} right)^{1-alpha+delta}}}\
      & = e^{(alpha-delta) r} c_delta,end{align*}



      and the result follows.






      share|cite|improve this answer























        up vote
        1
        down vote



        accepted







        up vote
        1
        down vote



        accepted






        For $alphain (0,1)$, I suggest Cauchy-Schwarz.



        Let $g(r) = max_{|z|=r} |f(z)|$.



        Fix $delta in (0,alpha)$. Let $1/p = alpha-delta$ and $1/q = 1- (alpha-delta)$. Then $p$ and $q$ are Holder conjugates.



        Let's crank the CS machine:



        begin{align*} g(r^{alpha-delta} ) &le sum left(frac{ r^{n}}{n!}right)^{alpha-delta}times frac{1}{n!^delta}\
        & le left(sum frac{ r^{n}}{n!}right)^{alpha-delta}underset{=c_delta}{underbrace{left (sum frac{1}{n!^{frac{delta}{1-alpha+delta} }} right)^{1-alpha+delta}}}\
        & = e^{(alpha-delta) r} c_delta,end{align*}



        and the result follows.






        share|cite|improve this answer












        For $alphain (0,1)$, I suggest Cauchy-Schwarz.



        Let $g(r) = max_{|z|=r} |f(z)|$.



        Fix $delta in (0,alpha)$. Let $1/p = alpha-delta$ and $1/q = 1- (alpha-delta)$. Then $p$ and $q$ are Holder conjugates.



        Let's crank the CS machine:



        begin{align*} g(r^{alpha-delta} ) &le sum left(frac{ r^{n}}{n!}right)^{alpha-delta}times frac{1}{n!^delta}\
        & le left(sum frac{ r^{n}}{n!}right)^{alpha-delta}underset{=c_delta}{underbrace{left (sum frac{1}{n!^{frac{delta}{1-alpha+delta} }} right)^{1-alpha+delta}}}\
        & = e^{(alpha-delta) r} c_delta,end{align*}



        and the result follows.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Nov 26 at 16:07









        Fnacool

        4,966511




        4,966511






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3013862%2ffor-alpha-in-0-1-fz-sum-n-1-infty-fracznn-alpha-sat%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Berounka

            Different font size/position of beamer's navigation symbols template's content depending on regular/plain...

            Sphinx de Gizeh