For $alphain (0, 1)$, $f(z)=sum_{n=1}^{infty}frac{z^n}{(n!)^{alpha}}$ satisfies $|f(z)|leq...
up vote
2
down vote
favorite
Let $alpha in (0, 1)$. Then $f(z)=sum_{n=1}^{infty}frac{z^n}{(n!)^{alpha}} $ satisfies $vert f(z) vert leq A_{epsilon} e^{b_{epsilon} vert z vert^{frac{1}{alpha} + epsilon}} $ for any $epsilon>0$ for some constants $A_{epsilon}>0$ and $b_{epsilon}>0$.
I can show the result is true for $alpha geq 1$, but I don't know what to do for $alpha in (0, 1)$.
If $alpha geq 1$, then $vert f(z) vert leq sum_{n=1}^{infty} vertfrac{z^n}{(n!)^{alpha}}vert= sum_{n=1}^{infty} left(frac{ (vert z vert^{frac{1}{alpha}})^n}{n!}right)^{alpha}$ and $(frac{ (vert z vert^{frac{1}{alpha}})^n}{n!})^{alpha} leq frac{ (vert z vert^{frac{1}{alpha}})^n}{n!}$ for all except finitely many $n$.
Any hints or reference are appreciated.
complex-analysis analysis inequality power-series
add a comment |
up vote
2
down vote
favorite
Let $alpha in (0, 1)$. Then $f(z)=sum_{n=1}^{infty}frac{z^n}{(n!)^{alpha}} $ satisfies $vert f(z) vert leq A_{epsilon} e^{b_{epsilon} vert z vert^{frac{1}{alpha} + epsilon}} $ for any $epsilon>0$ for some constants $A_{epsilon}>0$ and $b_{epsilon}>0$.
I can show the result is true for $alpha geq 1$, but I don't know what to do for $alpha in (0, 1)$.
If $alpha geq 1$, then $vert f(z) vert leq sum_{n=1}^{infty} vertfrac{z^n}{(n!)^{alpha}}vert= sum_{n=1}^{infty} left(frac{ (vert z vert^{frac{1}{alpha}})^n}{n!}right)^{alpha}$ and $(frac{ (vert z vert^{frac{1}{alpha}})^n}{n!})^{alpha} leq frac{ (vert z vert^{frac{1}{alpha}})^n}{n!}$ for all except finitely many $n$.
Any hints or reference are appreciated.
complex-analysis analysis inequality power-series
Did you try using Stirling's Formula?
– Kavi Rama Murthy
Nov 26 at 7:53
add a comment |
up vote
2
down vote
favorite
up vote
2
down vote
favorite
Let $alpha in (0, 1)$. Then $f(z)=sum_{n=1}^{infty}frac{z^n}{(n!)^{alpha}} $ satisfies $vert f(z) vert leq A_{epsilon} e^{b_{epsilon} vert z vert^{frac{1}{alpha} + epsilon}} $ for any $epsilon>0$ for some constants $A_{epsilon}>0$ and $b_{epsilon}>0$.
I can show the result is true for $alpha geq 1$, but I don't know what to do for $alpha in (0, 1)$.
If $alpha geq 1$, then $vert f(z) vert leq sum_{n=1}^{infty} vertfrac{z^n}{(n!)^{alpha}}vert= sum_{n=1}^{infty} left(frac{ (vert z vert^{frac{1}{alpha}})^n}{n!}right)^{alpha}$ and $(frac{ (vert z vert^{frac{1}{alpha}})^n}{n!})^{alpha} leq frac{ (vert z vert^{frac{1}{alpha}})^n}{n!}$ for all except finitely many $n$.
Any hints or reference are appreciated.
complex-analysis analysis inequality power-series
Let $alpha in (0, 1)$. Then $f(z)=sum_{n=1}^{infty}frac{z^n}{(n!)^{alpha}} $ satisfies $vert f(z) vert leq A_{epsilon} e^{b_{epsilon} vert z vert^{frac{1}{alpha} + epsilon}} $ for any $epsilon>0$ for some constants $A_{epsilon}>0$ and $b_{epsilon}>0$.
I can show the result is true for $alpha geq 1$, but I don't know what to do for $alpha in (0, 1)$.
If $alpha geq 1$, then $vert f(z) vert leq sum_{n=1}^{infty} vertfrac{z^n}{(n!)^{alpha}}vert= sum_{n=1}^{infty} left(frac{ (vert z vert^{frac{1}{alpha}})^n}{n!}right)^{alpha}$ and $(frac{ (vert z vert^{frac{1}{alpha}})^n}{n!})^{alpha} leq frac{ (vert z vert^{frac{1}{alpha}})^n}{n!}$ for all except finitely many $n$.
Any hints or reference are appreciated.
complex-analysis analysis inequality power-series
complex-analysis analysis inequality power-series
edited Nov 26 at 15:37
Davide Giraudo
124k16150258
124k16150258
asked Nov 26 at 4:49
GouldBach
41418
41418
Did you try using Stirling's Formula?
– Kavi Rama Murthy
Nov 26 at 7:53
add a comment |
Did you try using Stirling's Formula?
– Kavi Rama Murthy
Nov 26 at 7:53
Did you try using Stirling's Formula?
– Kavi Rama Murthy
Nov 26 at 7:53
Did you try using Stirling's Formula?
– Kavi Rama Murthy
Nov 26 at 7:53
add a comment |
1 Answer
1
active
oldest
votes
up vote
1
down vote
accepted
For $alphain (0,1)$, I suggest Cauchy-Schwarz.
Let $g(r) = max_{|z|=r} |f(z)|$.
Fix $delta in (0,alpha)$. Let $1/p = alpha-delta$ and $1/q = 1- (alpha-delta)$. Then $p$ and $q$ are Holder conjugates.
Let's crank the CS machine:
begin{align*} g(r^{alpha-delta} ) &le sum left(frac{ r^{n}}{n!}right)^{alpha-delta}times frac{1}{n!^delta}\
& le left(sum frac{ r^{n}}{n!}right)^{alpha-delta}underset{=c_delta}{underbrace{left (sum frac{1}{n!^{frac{delta}{1-alpha+delta} }} right)^{1-alpha+delta}}}\
& = e^{(alpha-delta) r} c_delta,end{align*}
and the result follows.
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
For $alphain (0,1)$, I suggest Cauchy-Schwarz.
Let $g(r) = max_{|z|=r} |f(z)|$.
Fix $delta in (0,alpha)$. Let $1/p = alpha-delta$ and $1/q = 1- (alpha-delta)$. Then $p$ and $q$ are Holder conjugates.
Let's crank the CS machine:
begin{align*} g(r^{alpha-delta} ) &le sum left(frac{ r^{n}}{n!}right)^{alpha-delta}times frac{1}{n!^delta}\
& le left(sum frac{ r^{n}}{n!}right)^{alpha-delta}underset{=c_delta}{underbrace{left (sum frac{1}{n!^{frac{delta}{1-alpha+delta} }} right)^{1-alpha+delta}}}\
& = e^{(alpha-delta) r} c_delta,end{align*}
and the result follows.
add a comment |
up vote
1
down vote
accepted
For $alphain (0,1)$, I suggest Cauchy-Schwarz.
Let $g(r) = max_{|z|=r} |f(z)|$.
Fix $delta in (0,alpha)$. Let $1/p = alpha-delta$ and $1/q = 1- (alpha-delta)$. Then $p$ and $q$ are Holder conjugates.
Let's crank the CS machine:
begin{align*} g(r^{alpha-delta} ) &le sum left(frac{ r^{n}}{n!}right)^{alpha-delta}times frac{1}{n!^delta}\
& le left(sum frac{ r^{n}}{n!}right)^{alpha-delta}underset{=c_delta}{underbrace{left (sum frac{1}{n!^{frac{delta}{1-alpha+delta} }} right)^{1-alpha+delta}}}\
& = e^{(alpha-delta) r} c_delta,end{align*}
and the result follows.
add a comment |
up vote
1
down vote
accepted
up vote
1
down vote
accepted
For $alphain (0,1)$, I suggest Cauchy-Schwarz.
Let $g(r) = max_{|z|=r} |f(z)|$.
Fix $delta in (0,alpha)$. Let $1/p = alpha-delta$ and $1/q = 1- (alpha-delta)$. Then $p$ and $q$ are Holder conjugates.
Let's crank the CS machine:
begin{align*} g(r^{alpha-delta} ) &le sum left(frac{ r^{n}}{n!}right)^{alpha-delta}times frac{1}{n!^delta}\
& le left(sum frac{ r^{n}}{n!}right)^{alpha-delta}underset{=c_delta}{underbrace{left (sum frac{1}{n!^{frac{delta}{1-alpha+delta} }} right)^{1-alpha+delta}}}\
& = e^{(alpha-delta) r} c_delta,end{align*}
and the result follows.
For $alphain (0,1)$, I suggest Cauchy-Schwarz.
Let $g(r) = max_{|z|=r} |f(z)|$.
Fix $delta in (0,alpha)$. Let $1/p = alpha-delta$ and $1/q = 1- (alpha-delta)$. Then $p$ and $q$ are Holder conjugates.
Let's crank the CS machine:
begin{align*} g(r^{alpha-delta} ) &le sum left(frac{ r^{n}}{n!}right)^{alpha-delta}times frac{1}{n!^delta}\
& le left(sum frac{ r^{n}}{n!}right)^{alpha-delta}underset{=c_delta}{underbrace{left (sum frac{1}{n!^{frac{delta}{1-alpha+delta} }} right)^{1-alpha+delta}}}\
& = e^{(alpha-delta) r} c_delta,end{align*}
and the result follows.
answered Nov 26 at 16:07
Fnacool
4,966511
4,966511
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3013862%2ffor-alpha-in-0-1-fz-sum-n-1-infty-fracznn-alpha-sat%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Did you try using Stirling's Formula?
– Kavi Rama Murthy
Nov 26 at 7:53