How can we show that $C_c^infty(mathbb R)$ strongly separates points?











up vote
1
down vote

favorite












Let $C_b(mathbb R)$ denote the set of bounded continuous function from $mathbb R$ to $mathbb R$. We say that $Msubseteq C_b(mathbb R)$





  1. separates points $:Leftrightarrow$ $$forall x,yinmathbb R:xne yRightarrowexists fin M:f(x)ne f(y)tag1$$


  2. strongly separates points $:Leftrightarrow$ $$forall xinmathbb R,delta>0:exists kinmathbb N,left{f_1,ldots,f_kright}subseteq M:inf_{y:::d(x,y):ge:delta}max_{1le ile k}|f_i(x)-f_i(y)|>0tag2$$



How can we show that $C_c^infty(mathbb R)$ strongly separates points?




It's clear that $C_c^infty(mathbb R)$ separates points.










share|cite|improve this question
























  • Do you mean $C_b^infty$ in the places you've written $C_c^infty$?
    – Trevor Gunn
    Nov 28 at 16:53










  • Do you mean $f_i$ instead of $h_i$?
    – Paul Frost
    Nov 28 at 16:55










  • @PaulFrost Sorry, fixed that.
    – 0xbadf00d
    Nov 28 at 16:56










  • @TrevorGunn No, I mean $C_c^infty$.
    – 0xbadf00d
    Nov 28 at 16:56






  • 2




    Cant you just take a single $fin C^infty_c(mathbb R)$ with $f(x)=1$, $mathrm{supp}(f)subset B(x,delta)$? Then you would have $f(x)-f(y)=1$ for $d(x,y)geqdelta$.
    – Federico
    Nov 28 at 16:58

















up vote
1
down vote

favorite












Let $C_b(mathbb R)$ denote the set of bounded continuous function from $mathbb R$ to $mathbb R$. We say that $Msubseteq C_b(mathbb R)$





  1. separates points $:Leftrightarrow$ $$forall x,yinmathbb R:xne yRightarrowexists fin M:f(x)ne f(y)tag1$$


  2. strongly separates points $:Leftrightarrow$ $$forall xinmathbb R,delta>0:exists kinmathbb N,left{f_1,ldots,f_kright}subseteq M:inf_{y:::d(x,y):ge:delta}max_{1le ile k}|f_i(x)-f_i(y)|>0tag2$$



How can we show that $C_c^infty(mathbb R)$ strongly separates points?




It's clear that $C_c^infty(mathbb R)$ separates points.










share|cite|improve this question
























  • Do you mean $C_b^infty$ in the places you've written $C_c^infty$?
    – Trevor Gunn
    Nov 28 at 16:53










  • Do you mean $f_i$ instead of $h_i$?
    – Paul Frost
    Nov 28 at 16:55










  • @PaulFrost Sorry, fixed that.
    – 0xbadf00d
    Nov 28 at 16:56










  • @TrevorGunn No, I mean $C_c^infty$.
    – 0xbadf00d
    Nov 28 at 16:56






  • 2




    Cant you just take a single $fin C^infty_c(mathbb R)$ with $f(x)=1$, $mathrm{supp}(f)subset B(x,delta)$? Then you would have $f(x)-f(y)=1$ for $d(x,y)geqdelta$.
    – Federico
    Nov 28 at 16:58















up vote
1
down vote

favorite









up vote
1
down vote

favorite











Let $C_b(mathbb R)$ denote the set of bounded continuous function from $mathbb R$ to $mathbb R$. We say that $Msubseteq C_b(mathbb R)$





  1. separates points $:Leftrightarrow$ $$forall x,yinmathbb R:xne yRightarrowexists fin M:f(x)ne f(y)tag1$$


  2. strongly separates points $:Leftrightarrow$ $$forall xinmathbb R,delta>0:exists kinmathbb N,left{f_1,ldots,f_kright}subseteq M:inf_{y:::d(x,y):ge:delta}max_{1le ile k}|f_i(x)-f_i(y)|>0tag2$$



How can we show that $C_c^infty(mathbb R)$ strongly separates points?




It's clear that $C_c^infty(mathbb R)$ separates points.










share|cite|improve this question















Let $C_b(mathbb R)$ denote the set of bounded continuous function from $mathbb R$ to $mathbb R$. We say that $Msubseteq C_b(mathbb R)$





  1. separates points $:Leftrightarrow$ $$forall x,yinmathbb R:xne yRightarrowexists fin M:f(x)ne f(y)tag1$$


  2. strongly separates points $:Leftrightarrow$ $$forall xinmathbb R,delta>0:exists kinmathbb N,left{f_1,ldots,f_kright}subseteq M:inf_{y:::d(x,y):ge:delta}max_{1le ile k}|f_i(x)-f_i(y)|>0tag2$$



How can we show that $C_c^infty(mathbb R)$ strongly separates points?




It's clear that $C_c^infty(mathbb R)$ separates points.







general-topology functional-analysis analysis






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 28 at 16:56

























asked Nov 28 at 16:48









0xbadf00d

1,70241429




1,70241429












  • Do you mean $C_b^infty$ in the places you've written $C_c^infty$?
    – Trevor Gunn
    Nov 28 at 16:53










  • Do you mean $f_i$ instead of $h_i$?
    – Paul Frost
    Nov 28 at 16:55










  • @PaulFrost Sorry, fixed that.
    – 0xbadf00d
    Nov 28 at 16:56










  • @TrevorGunn No, I mean $C_c^infty$.
    – 0xbadf00d
    Nov 28 at 16:56






  • 2




    Cant you just take a single $fin C^infty_c(mathbb R)$ with $f(x)=1$, $mathrm{supp}(f)subset B(x,delta)$? Then you would have $f(x)-f(y)=1$ for $d(x,y)geqdelta$.
    – Federico
    Nov 28 at 16:58




















  • Do you mean $C_b^infty$ in the places you've written $C_c^infty$?
    – Trevor Gunn
    Nov 28 at 16:53










  • Do you mean $f_i$ instead of $h_i$?
    – Paul Frost
    Nov 28 at 16:55










  • @PaulFrost Sorry, fixed that.
    – 0xbadf00d
    Nov 28 at 16:56










  • @TrevorGunn No, I mean $C_c^infty$.
    – 0xbadf00d
    Nov 28 at 16:56






  • 2




    Cant you just take a single $fin C^infty_c(mathbb R)$ with $f(x)=1$, $mathrm{supp}(f)subset B(x,delta)$? Then you would have $f(x)-f(y)=1$ for $d(x,y)geqdelta$.
    – Federico
    Nov 28 at 16:58


















Do you mean $C_b^infty$ in the places you've written $C_c^infty$?
– Trevor Gunn
Nov 28 at 16:53




Do you mean $C_b^infty$ in the places you've written $C_c^infty$?
– Trevor Gunn
Nov 28 at 16:53












Do you mean $f_i$ instead of $h_i$?
– Paul Frost
Nov 28 at 16:55




Do you mean $f_i$ instead of $h_i$?
– Paul Frost
Nov 28 at 16:55












@PaulFrost Sorry, fixed that.
– 0xbadf00d
Nov 28 at 16:56




@PaulFrost Sorry, fixed that.
– 0xbadf00d
Nov 28 at 16:56












@TrevorGunn No, I mean $C_c^infty$.
– 0xbadf00d
Nov 28 at 16:56




@TrevorGunn No, I mean $C_c^infty$.
– 0xbadf00d
Nov 28 at 16:56




2




2




Cant you just take a single $fin C^infty_c(mathbb R)$ with $f(x)=1$, $mathrm{supp}(f)subset B(x,delta)$? Then you would have $f(x)-f(y)=1$ for $d(x,y)geqdelta$.
– Federico
Nov 28 at 16:58






Cant you just take a single $fin C^infty_c(mathbb R)$ with $f(x)=1$, $mathrm{supp}(f)subset B(x,delta)$? Then you would have $f(x)-f(y)=1$ for $d(x,y)geqdelta$.
– Federico
Nov 28 at 16:58












1 Answer
1






active

oldest

votes

















up vote
2
down vote



accepted










Given $xinmathbb R$ and $delta>0$, take a single function $fin C^infty_c(mathbb R)$ with $f(x)=1$ and $mathrm{supp}(f)subset B(x,delta)$.



Then $f(x)-f(y)=1$ for $d(x,y)geqdelta$.






share|cite|improve this answer





















  • Oops, way to simple.
    – 0xbadf00d
    Nov 28 at 17:10










  • Ah those lucky days when we can actually solve something! So satisfying... :-)
    – Federico
    Nov 28 at 17:11











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3017367%2fhow-can-we-show-that-c-c-infty-mathbb-r-strongly-separates-points%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes








up vote
2
down vote



accepted










Given $xinmathbb R$ and $delta>0$, take a single function $fin C^infty_c(mathbb R)$ with $f(x)=1$ and $mathrm{supp}(f)subset B(x,delta)$.



Then $f(x)-f(y)=1$ for $d(x,y)geqdelta$.






share|cite|improve this answer





















  • Oops, way to simple.
    – 0xbadf00d
    Nov 28 at 17:10










  • Ah those lucky days when we can actually solve something! So satisfying... :-)
    – Federico
    Nov 28 at 17:11















up vote
2
down vote



accepted










Given $xinmathbb R$ and $delta>0$, take a single function $fin C^infty_c(mathbb R)$ with $f(x)=1$ and $mathrm{supp}(f)subset B(x,delta)$.



Then $f(x)-f(y)=1$ for $d(x,y)geqdelta$.






share|cite|improve this answer





















  • Oops, way to simple.
    – 0xbadf00d
    Nov 28 at 17:10










  • Ah those lucky days when we can actually solve something! So satisfying... :-)
    – Federico
    Nov 28 at 17:11













up vote
2
down vote



accepted







up vote
2
down vote



accepted






Given $xinmathbb R$ and $delta>0$, take a single function $fin C^infty_c(mathbb R)$ with $f(x)=1$ and $mathrm{supp}(f)subset B(x,delta)$.



Then $f(x)-f(y)=1$ for $d(x,y)geqdelta$.






share|cite|improve this answer












Given $xinmathbb R$ and $delta>0$, take a single function $fin C^infty_c(mathbb R)$ with $f(x)=1$ and $mathrm{supp}(f)subset B(x,delta)$.



Then $f(x)-f(y)=1$ for $d(x,y)geqdelta$.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Nov 28 at 17:01









Federico

4,272512




4,272512












  • Oops, way to simple.
    – 0xbadf00d
    Nov 28 at 17:10










  • Ah those lucky days when we can actually solve something! So satisfying... :-)
    – Federico
    Nov 28 at 17:11


















  • Oops, way to simple.
    – 0xbadf00d
    Nov 28 at 17:10










  • Ah those lucky days when we can actually solve something! So satisfying... :-)
    – Federico
    Nov 28 at 17:11
















Oops, way to simple.
– 0xbadf00d
Nov 28 at 17:10




Oops, way to simple.
– 0xbadf00d
Nov 28 at 17:10












Ah those lucky days when we can actually solve something! So satisfying... :-)
– Federico
Nov 28 at 17:11




Ah those lucky days when we can actually solve something! So satisfying... :-)
– Federico
Nov 28 at 17:11


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.





Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


Please pay close attention to the following guidance:


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3017367%2fhow-can-we-show-that-c-c-infty-mathbb-r-strongly-separates-points%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Different font size/position of beamer's navigation symbols template's content depending on regular/plain...

Berounka

I want to find a topological embedding $f : X rightarrow Y$ and $g: Y rightarrow X$, yet $X$ is not...