If $frac{x}{y^frac{n-1}{n}}$ is constant, how do I prove $frac{dx}{x}=frac{n-1}{n}frac{dy}{y}$?
From:
$frac{x}{y^frac{n-1}{n}}=constant$
To:
$frac{dx}{x}=frac{n-1}{n}frac{dy}{y}$
It's from a turbomachinery lecture. The text I'm studying says that binomial expansion is used, but I don't get it.
calculus derivatives
add a comment |
From:
$frac{x}{y^frac{n-1}{n}}=constant$
To:
$frac{dx}{x}=frac{n-1}{n}frac{dy}{y}$
It's from a turbomachinery lecture. The text I'm studying says that binomial expansion is used, but I don't get it.
calculus derivatives
3
Take logarithms first and differentiate both sides.
– Claude Leibovici
Dec 1 at 18:06
add a comment |
From:
$frac{x}{y^frac{n-1}{n}}=constant$
To:
$frac{dx}{x}=frac{n-1}{n}frac{dy}{y}$
It's from a turbomachinery lecture. The text I'm studying says that binomial expansion is used, but I don't get it.
calculus derivatives
From:
$frac{x}{y^frac{n-1}{n}}=constant$
To:
$frac{dx}{x}=frac{n-1}{n}frac{dy}{y}$
It's from a turbomachinery lecture. The text I'm studying says that binomial expansion is used, but I don't get it.
calculus derivatives
calculus derivatives
edited Dec 1 at 18:56
Jam
4,94811431
4,94811431
asked Dec 1 at 17:59
user2235427
1083
1083
3
Take logarithms first and differentiate both sides.
– Claude Leibovici
Dec 1 at 18:06
add a comment |
3
Take logarithms first and differentiate both sides.
– Claude Leibovici
Dec 1 at 18:06
3
3
Take logarithms first and differentiate both sides.
– Claude Leibovici
Dec 1 at 18:06
Take logarithms first and differentiate both sides.
– Claude Leibovici
Dec 1 at 18:06
add a comment |
2 Answers
2
active
oldest
votes
Let $x=ccdot y^frac{n-1}{n}$. Then
begin{align}
frac{dx}{dy}&=frac{n-1}{n}ccdot y^frac{-1}{n}\
&=frac{n-1}{n}ccdot y^frac{-1}{n} cdot frac{y}{y}\
&=frac{n-1}{n}ccdot y^frac{n-1}{n} cdot frac{1}{y}\
&=frac{n-1}{n} frac{x}{y}\
end{align}
add a comment |
We want
$dfrac{dy}{dx} = dfrac{n}{n - 1} dfrac{y}{x}; tag 0$
from
$dfrac{x}{y^{frac{n - 1}{n}}} = alpha = text{constant}, tag 1$
assuming of course $x$, $y$, and $n$ are all in range sufficient to legitimize our operations, we have:
$x = alpha y^{frac{n - 1}{n}}; tag 2$
$x^n = alpha^n y^{n - 1}; tag 3$
$nx^{n - 1} = alpha^n (n - 1)y^{n - 2} dfrac{dy}{dx}; tag 4$
$alpha^n dfrac{dy}{dx} = dfrac{n}{n - 1} dfrac{x^{n - 1}}{y^{n - 2}}; tag 5$
from (3),
$alpha^n = dfrac{x^n}{y^{n - 1}}; tag 6$
thus, dividing (5) by (6),
$dfrac{dy}{dx} = dfrac{n}{n - 1} dfrac{x^{n - 1}}{y^{n - 2}} dfrac{y^{n - 1}}{x^n} = dfrac{n}{n - 1} dfrac{y}{x}, tag 7$
which we may write in differential form to obtain
$dfrac{dx}{x} = dfrac{n - 1}{n} dfrac{dy}{y}; tag 8$
as per request. $OEDelta$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3021627%2fif-fracxy-fracn-1n-is-constant-how-do-i-prove-fracdxx-fracn%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
Let $x=ccdot y^frac{n-1}{n}$. Then
begin{align}
frac{dx}{dy}&=frac{n-1}{n}ccdot y^frac{-1}{n}\
&=frac{n-1}{n}ccdot y^frac{-1}{n} cdot frac{y}{y}\
&=frac{n-1}{n}ccdot y^frac{n-1}{n} cdot frac{1}{y}\
&=frac{n-1}{n} frac{x}{y}\
end{align}
add a comment |
Let $x=ccdot y^frac{n-1}{n}$. Then
begin{align}
frac{dx}{dy}&=frac{n-1}{n}ccdot y^frac{-1}{n}\
&=frac{n-1}{n}ccdot y^frac{-1}{n} cdot frac{y}{y}\
&=frac{n-1}{n}ccdot y^frac{n-1}{n} cdot frac{1}{y}\
&=frac{n-1}{n} frac{x}{y}\
end{align}
add a comment |
Let $x=ccdot y^frac{n-1}{n}$. Then
begin{align}
frac{dx}{dy}&=frac{n-1}{n}ccdot y^frac{-1}{n}\
&=frac{n-1}{n}ccdot y^frac{-1}{n} cdot frac{y}{y}\
&=frac{n-1}{n}ccdot y^frac{n-1}{n} cdot frac{1}{y}\
&=frac{n-1}{n} frac{x}{y}\
end{align}
Let $x=ccdot y^frac{n-1}{n}$. Then
begin{align}
frac{dx}{dy}&=frac{n-1}{n}ccdot y^frac{-1}{n}\
&=frac{n-1}{n}ccdot y^frac{-1}{n} cdot frac{y}{y}\
&=frac{n-1}{n}ccdot y^frac{n-1}{n} cdot frac{1}{y}\
&=frac{n-1}{n} frac{x}{y}\
end{align}
answered Dec 1 at 18:12
Thomas Shelby
1,342216
1,342216
add a comment |
add a comment |
We want
$dfrac{dy}{dx} = dfrac{n}{n - 1} dfrac{y}{x}; tag 0$
from
$dfrac{x}{y^{frac{n - 1}{n}}} = alpha = text{constant}, tag 1$
assuming of course $x$, $y$, and $n$ are all in range sufficient to legitimize our operations, we have:
$x = alpha y^{frac{n - 1}{n}}; tag 2$
$x^n = alpha^n y^{n - 1}; tag 3$
$nx^{n - 1} = alpha^n (n - 1)y^{n - 2} dfrac{dy}{dx}; tag 4$
$alpha^n dfrac{dy}{dx} = dfrac{n}{n - 1} dfrac{x^{n - 1}}{y^{n - 2}}; tag 5$
from (3),
$alpha^n = dfrac{x^n}{y^{n - 1}}; tag 6$
thus, dividing (5) by (6),
$dfrac{dy}{dx} = dfrac{n}{n - 1} dfrac{x^{n - 1}}{y^{n - 2}} dfrac{y^{n - 1}}{x^n} = dfrac{n}{n - 1} dfrac{y}{x}, tag 7$
which we may write in differential form to obtain
$dfrac{dx}{x} = dfrac{n - 1}{n} dfrac{dy}{y}; tag 8$
as per request. $OEDelta$
add a comment |
We want
$dfrac{dy}{dx} = dfrac{n}{n - 1} dfrac{y}{x}; tag 0$
from
$dfrac{x}{y^{frac{n - 1}{n}}} = alpha = text{constant}, tag 1$
assuming of course $x$, $y$, and $n$ are all in range sufficient to legitimize our operations, we have:
$x = alpha y^{frac{n - 1}{n}}; tag 2$
$x^n = alpha^n y^{n - 1}; tag 3$
$nx^{n - 1} = alpha^n (n - 1)y^{n - 2} dfrac{dy}{dx}; tag 4$
$alpha^n dfrac{dy}{dx} = dfrac{n}{n - 1} dfrac{x^{n - 1}}{y^{n - 2}}; tag 5$
from (3),
$alpha^n = dfrac{x^n}{y^{n - 1}}; tag 6$
thus, dividing (5) by (6),
$dfrac{dy}{dx} = dfrac{n}{n - 1} dfrac{x^{n - 1}}{y^{n - 2}} dfrac{y^{n - 1}}{x^n} = dfrac{n}{n - 1} dfrac{y}{x}, tag 7$
which we may write in differential form to obtain
$dfrac{dx}{x} = dfrac{n - 1}{n} dfrac{dy}{y}; tag 8$
as per request. $OEDelta$
add a comment |
We want
$dfrac{dy}{dx} = dfrac{n}{n - 1} dfrac{y}{x}; tag 0$
from
$dfrac{x}{y^{frac{n - 1}{n}}} = alpha = text{constant}, tag 1$
assuming of course $x$, $y$, and $n$ are all in range sufficient to legitimize our operations, we have:
$x = alpha y^{frac{n - 1}{n}}; tag 2$
$x^n = alpha^n y^{n - 1}; tag 3$
$nx^{n - 1} = alpha^n (n - 1)y^{n - 2} dfrac{dy}{dx}; tag 4$
$alpha^n dfrac{dy}{dx} = dfrac{n}{n - 1} dfrac{x^{n - 1}}{y^{n - 2}}; tag 5$
from (3),
$alpha^n = dfrac{x^n}{y^{n - 1}}; tag 6$
thus, dividing (5) by (6),
$dfrac{dy}{dx} = dfrac{n}{n - 1} dfrac{x^{n - 1}}{y^{n - 2}} dfrac{y^{n - 1}}{x^n} = dfrac{n}{n - 1} dfrac{y}{x}, tag 7$
which we may write in differential form to obtain
$dfrac{dx}{x} = dfrac{n - 1}{n} dfrac{dy}{y}; tag 8$
as per request. $OEDelta$
We want
$dfrac{dy}{dx} = dfrac{n}{n - 1} dfrac{y}{x}; tag 0$
from
$dfrac{x}{y^{frac{n - 1}{n}}} = alpha = text{constant}, tag 1$
assuming of course $x$, $y$, and $n$ are all in range sufficient to legitimize our operations, we have:
$x = alpha y^{frac{n - 1}{n}}; tag 2$
$x^n = alpha^n y^{n - 1}; tag 3$
$nx^{n - 1} = alpha^n (n - 1)y^{n - 2} dfrac{dy}{dx}; tag 4$
$alpha^n dfrac{dy}{dx} = dfrac{n}{n - 1} dfrac{x^{n - 1}}{y^{n - 2}}; tag 5$
from (3),
$alpha^n = dfrac{x^n}{y^{n - 1}}; tag 6$
thus, dividing (5) by (6),
$dfrac{dy}{dx} = dfrac{n}{n - 1} dfrac{x^{n - 1}}{y^{n - 2}} dfrac{y^{n - 1}}{x^n} = dfrac{n}{n - 1} dfrac{y}{x}, tag 7$
which we may write in differential form to obtain
$dfrac{dx}{x} = dfrac{n - 1}{n} dfrac{dy}{y}; tag 8$
as per request. $OEDelta$
answered Dec 1 at 19:16
Robert Lewis
43.5k22863
43.5k22863
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3021627%2fif-fracxy-fracn-1n-is-constant-how-do-i-prove-fracdxx-fracn%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
3
Take logarithms first and differentiate both sides.
– Claude Leibovici
Dec 1 at 18:06