If $frac{x}{y^frac{n-1}{n}}$ is constant, how do I prove $frac{dx}{x}=frac{n-1}{n}frac{dy}{y}$?












1














From:



$frac{x}{y^frac{n-1}{n}}=constant$



To:



$frac{dx}{x}=frac{n-1}{n}frac{dy}{y}$



It's from a turbomachinery lecture. The text I'm studying says that binomial expansion is used, but I don't get it.










share|cite|improve this question




















  • 3




    Take logarithms first and differentiate both sides.
    – Claude Leibovici
    Dec 1 at 18:06
















1














From:



$frac{x}{y^frac{n-1}{n}}=constant$



To:



$frac{dx}{x}=frac{n-1}{n}frac{dy}{y}$



It's from a turbomachinery lecture. The text I'm studying says that binomial expansion is used, but I don't get it.










share|cite|improve this question




















  • 3




    Take logarithms first and differentiate both sides.
    – Claude Leibovici
    Dec 1 at 18:06














1












1








1


1





From:



$frac{x}{y^frac{n-1}{n}}=constant$



To:



$frac{dx}{x}=frac{n-1}{n}frac{dy}{y}$



It's from a turbomachinery lecture. The text I'm studying says that binomial expansion is used, but I don't get it.










share|cite|improve this question















From:



$frac{x}{y^frac{n-1}{n}}=constant$



To:



$frac{dx}{x}=frac{n-1}{n}frac{dy}{y}$



It's from a turbomachinery lecture. The text I'm studying says that binomial expansion is used, but I don't get it.







calculus derivatives






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 1 at 18:56









Jam

4,94811431




4,94811431










asked Dec 1 at 17:59









user2235427

1083




1083








  • 3




    Take logarithms first and differentiate both sides.
    – Claude Leibovici
    Dec 1 at 18:06














  • 3




    Take logarithms first and differentiate both sides.
    – Claude Leibovici
    Dec 1 at 18:06








3




3




Take logarithms first and differentiate both sides.
– Claude Leibovici
Dec 1 at 18:06




Take logarithms first and differentiate both sides.
– Claude Leibovici
Dec 1 at 18:06










2 Answers
2






active

oldest

votes


















4














Let $x=ccdot y^frac{n-1}{n}$. Then
begin{align}
frac{dx}{dy}&=frac{n-1}{n}ccdot y^frac{-1}{n}\
&=frac{n-1}{n}ccdot y^frac{-1}{n} cdot frac{y}{y}\
&=frac{n-1}{n}ccdot y^frac{n-1}{n} cdot frac{1}{y}\
&=frac{n-1}{n} frac{x}{y}\
end{align}






share|cite|improve this answer





























    1














    We want



    $dfrac{dy}{dx} = dfrac{n}{n - 1} dfrac{y}{x}; tag 0$



    from



    $dfrac{x}{y^{frac{n - 1}{n}}} = alpha = text{constant}, tag 1$



    assuming of course $x$, $y$, and $n$ are all in range sufficient to legitimize our operations, we have:



    $x = alpha y^{frac{n - 1}{n}}; tag 2$



    $x^n = alpha^n y^{n - 1}; tag 3$



    $nx^{n - 1} = alpha^n (n - 1)y^{n - 2} dfrac{dy}{dx}; tag 4$



    $alpha^n dfrac{dy}{dx} = dfrac{n}{n - 1} dfrac{x^{n - 1}}{y^{n - 2}}; tag 5$



    from (3),



    $alpha^n = dfrac{x^n}{y^{n - 1}}; tag 6$



    thus, dividing (5) by (6),



    $dfrac{dy}{dx} = dfrac{n}{n - 1} dfrac{x^{n - 1}}{y^{n - 2}} dfrac{y^{n - 1}}{x^n} = dfrac{n}{n - 1} dfrac{y}{x}, tag 7$



    which we may write in differential form to obtain



    $dfrac{dx}{x} = dfrac{n - 1}{n} dfrac{dy}{y}; tag 8$



    as per request. $OEDelta$






    share|cite|improve this answer





















      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3021627%2fif-fracxy-fracn-1n-is-constant-how-do-i-prove-fracdxx-fracn%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      4














      Let $x=ccdot y^frac{n-1}{n}$. Then
      begin{align}
      frac{dx}{dy}&=frac{n-1}{n}ccdot y^frac{-1}{n}\
      &=frac{n-1}{n}ccdot y^frac{-1}{n} cdot frac{y}{y}\
      &=frac{n-1}{n}ccdot y^frac{n-1}{n} cdot frac{1}{y}\
      &=frac{n-1}{n} frac{x}{y}\
      end{align}






      share|cite|improve this answer


























        4














        Let $x=ccdot y^frac{n-1}{n}$. Then
        begin{align}
        frac{dx}{dy}&=frac{n-1}{n}ccdot y^frac{-1}{n}\
        &=frac{n-1}{n}ccdot y^frac{-1}{n} cdot frac{y}{y}\
        &=frac{n-1}{n}ccdot y^frac{n-1}{n} cdot frac{1}{y}\
        &=frac{n-1}{n} frac{x}{y}\
        end{align}






        share|cite|improve this answer
























          4












          4








          4






          Let $x=ccdot y^frac{n-1}{n}$. Then
          begin{align}
          frac{dx}{dy}&=frac{n-1}{n}ccdot y^frac{-1}{n}\
          &=frac{n-1}{n}ccdot y^frac{-1}{n} cdot frac{y}{y}\
          &=frac{n-1}{n}ccdot y^frac{n-1}{n} cdot frac{1}{y}\
          &=frac{n-1}{n} frac{x}{y}\
          end{align}






          share|cite|improve this answer












          Let $x=ccdot y^frac{n-1}{n}$. Then
          begin{align}
          frac{dx}{dy}&=frac{n-1}{n}ccdot y^frac{-1}{n}\
          &=frac{n-1}{n}ccdot y^frac{-1}{n} cdot frac{y}{y}\
          &=frac{n-1}{n}ccdot y^frac{n-1}{n} cdot frac{1}{y}\
          &=frac{n-1}{n} frac{x}{y}\
          end{align}







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 1 at 18:12









          Thomas Shelby

          1,342216




          1,342216























              1














              We want



              $dfrac{dy}{dx} = dfrac{n}{n - 1} dfrac{y}{x}; tag 0$



              from



              $dfrac{x}{y^{frac{n - 1}{n}}} = alpha = text{constant}, tag 1$



              assuming of course $x$, $y$, and $n$ are all in range sufficient to legitimize our operations, we have:



              $x = alpha y^{frac{n - 1}{n}}; tag 2$



              $x^n = alpha^n y^{n - 1}; tag 3$



              $nx^{n - 1} = alpha^n (n - 1)y^{n - 2} dfrac{dy}{dx}; tag 4$



              $alpha^n dfrac{dy}{dx} = dfrac{n}{n - 1} dfrac{x^{n - 1}}{y^{n - 2}}; tag 5$



              from (3),



              $alpha^n = dfrac{x^n}{y^{n - 1}}; tag 6$



              thus, dividing (5) by (6),



              $dfrac{dy}{dx} = dfrac{n}{n - 1} dfrac{x^{n - 1}}{y^{n - 2}} dfrac{y^{n - 1}}{x^n} = dfrac{n}{n - 1} dfrac{y}{x}, tag 7$



              which we may write in differential form to obtain



              $dfrac{dx}{x} = dfrac{n - 1}{n} dfrac{dy}{y}; tag 8$



              as per request. $OEDelta$






              share|cite|improve this answer


























                1














                We want



                $dfrac{dy}{dx} = dfrac{n}{n - 1} dfrac{y}{x}; tag 0$



                from



                $dfrac{x}{y^{frac{n - 1}{n}}} = alpha = text{constant}, tag 1$



                assuming of course $x$, $y$, and $n$ are all in range sufficient to legitimize our operations, we have:



                $x = alpha y^{frac{n - 1}{n}}; tag 2$



                $x^n = alpha^n y^{n - 1}; tag 3$



                $nx^{n - 1} = alpha^n (n - 1)y^{n - 2} dfrac{dy}{dx}; tag 4$



                $alpha^n dfrac{dy}{dx} = dfrac{n}{n - 1} dfrac{x^{n - 1}}{y^{n - 2}}; tag 5$



                from (3),



                $alpha^n = dfrac{x^n}{y^{n - 1}}; tag 6$



                thus, dividing (5) by (6),



                $dfrac{dy}{dx} = dfrac{n}{n - 1} dfrac{x^{n - 1}}{y^{n - 2}} dfrac{y^{n - 1}}{x^n} = dfrac{n}{n - 1} dfrac{y}{x}, tag 7$



                which we may write in differential form to obtain



                $dfrac{dx}{x} = dfrac{n - 1}{n} dfrac{dy}{y}; tag 8$



                as per request. $OEDelta$






                share|cite|improve this answer
























                  1












                  1








                  1






                  We want



                  $dfrac{dy}{dx} = dfrac{n}{n - 1} dfrac{y}{x}; tag 0$



                  from



                  $dfrac{x}{y^{frac{n - 1}{n}}} = alpha = text{constant}, tag 1$



                  assuming of course $x$, $y$, and $n$ are all in range sufficient to legitimize our operations, we have:



                  $x = alpha y^{frac{n - 1}{n}}; tag 2$



                  $x^n = alpha^n y^{n - 1}; tag 3$



                  $nx^{n - 1} = alpha^n (n - 1)y^{n - 2} dfrac{dy}{dx}; tag 4$



                  $alpha^n dfrac{dy}{dx} = dfrac{n}{n - 1} dfrac{x^{n - 1}}{y^{n - 2}}; tag 5$



                  from (3),



                  $alpha^n = dfrac{x^n}{y^{n - 1}}; tag 6$



                  thus, dividing (5) by (6),



                  $dfrac{dy}{dx} = dfrac{n}{n - 1} dfrac{x^{n - 1}}{y^{n - 2}} dfrac{y^{n - 1}}{x^n} = dfrac{n}{n - 1} dfrac{y}{x}, tag 7$



                  which we may write in differential form to obtain



                  $dfrac{dx}{x} = dfrac{n - 1}{n} dfrac{dy}{y}; tag 8$



                  as per request. $OEDelta$






                  share|cite|improve this answer












                  We want



                  $dfrac{dy}{dx} = dfrac{n}{n - 1} dfrac{y}{x}; tag 0$



                  from



                  $dfrac{x}{y^{frac{n - 1}{n}}} = alpha = text{constant}, tag 1$



                  assuming of course $x$, $y$, and $n$ are all in range sufficient to legitimize our operations, we have:



                  $x = alpha y^{frac{n - 1}{n}}; tag 2$



                  $x^n = alpha^n y^{n - 1}; tag 3$



                  $nx^{n - 1} = alpha^n (n - 1)y^{n - 2} dfrac{dy}{dx}; tag 4$



                  $alpha^n dfrac{dy}{dx} = dfrac{n}{n - 1} dfrac{x^{n - 1}}{y^{n - 2}}; tag 5$



                  from (3),



                  $alpha^n = dfrac{x^n}{y^{n - 1}}; tag 6$



                  thus, dividing (5) by (6),



                  $dfrac{dy}{dx} = dfrac{n}{n - 1} dfrac{x^{n - 1}}{y^{n - 2}} dfrac{y^{n - 1}}{x^n} = dfrac{n}{n - 1} dfrac{y}{x}, tag 7$



                  which we may write in differential form to obtain



                  $dfrac{dx}{x} = dfrac{n - 1}{n} dfrac{dy}{y}; tag 8$



                  as per request. $OEDelta$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Dec 1 at 19:16









                  Robert Lewis

                  43.5k22863




                  43.5k22863






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.





                      Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                      Please pay close attention to the following guidance:


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3021627%2fif-fracxy-fracn-1n-is-constant-how-do-i-prove-fracdxx-fracn%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Berounka

                      Sphinx de Gizeh

                      Different font size/position of beamer's navigation symbols template's content depending on regular/plain...