Existence part of Iteration theorem
up vote
0
down vote
favorite
Iteration theorem: Consider any Peano system $(P, S, 0)$. Let $W$ be an arbitrary set. Let $c$ be a fixed element of $W$ and $g$ be a singular operation on $W$. Then there is a unique function $F: P → W$ such that $F(0) = c$ and $F(S(x)) = g(F(x))$ for all $x$ in $P$.
Why is there a need to prove the existence of F?
Doesn't the phrase "such that $F(0) = c$ and $F(S(x)) = g(F(x))$ for all $x$ in $P$" already define $F$?
natural-numbers
add a comment |
up vote
0
down vote
favorite
Iteration theorem: Consider any Peano system $(P, S, 0)$. Let $W$ be an arbitrary set. Let $c$ be a fixed element of $W$ and $g$ be a singular operation on $W$. Then there is a unique function $F: P → W$ such that $F(0) = c$ and $F(S(x)) = g(F(x))$ for all $x$ in $P$.
Why is there a need to prove the existence of F?
Doesn't the phrase "such that $F(0) = c$ and $F(S(x)) = g(F(x))$ for all $x$ in $P$" already define $F$?
natural-numbers
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Iteration theorem: Consider any Peano system $(P, S, 0)$. Let $W$ be an arbitrary set. Let $c$ be a fixed element of $W$ and $g$ be a singular operation on $W$. Then there is a unique function $F: P → W$ such that $F(0) = c$ and $F(S(x)) = g(F(x))$ for all $x$ in $P$.
Why is there a need to prove the existence of F?
Doesn't the phrase "such that $F(0) = c$ and $F(S(x)) = g(F(x))$ for all $x$ in $P$" already define $F$?
natural-numbers
Iteration theorem: Consider any Peano system $(P, S, 0)$. Let $W$ be an arbitrary set. Let $c$ be a fixed element of $W$ and $g$ be a singular operation on $W$. Then there is a unique function $F: P → W$ such that $F(0) = c$ and $F(S(x)) = g(F(x))$ for all $x$ in $P$.
Why is there a need to prove the existence of F?
Doesn't the phrase "such that $F(0) = c$ and $F(S(x)) = g(F(x))$ for all $x$ in $P$" already define $F$?
natural-numbers
natural-numbers
asked Nov 24 at 20:37
Little Rookie
625523
625523
add a comment |
add a comment |
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3012045%2fexistence-part-of-iteration-theorem%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown