Other representation of Gamma Incomplete function











up vote
1
down vote

favorite
3












I have a question regarding Gamma Incomplete function:



In the "Table of Integrals, Series, and Products, Seventh Edition" equation $8.353.3$ page $900$, there is a defenition for the incomplete gamma function in the case $a < 1$ and $x > 0$



$$ Gamma(a,x)=frac{rho^{-x}x^{a}}{Gamma(1-a)} int_0^infty frac{e^{-t} t^{-a}}{x+t} dt$$



what is $ rho $ in the above equation? I thought this might be a but I tried to derive the above formula but I don't got the same result.










share|cite|improve this question




























    up vote
    1
    down vote

    favorite
    3












    I have a question regarding Gamma Incomplete function:



    In the "Table of Integrals, Series, and Products, Seventh Edition" equation $8.353.3$ page $900$, there is a defenition for the incomplete gamma function in the case $a < 1$ and $x > 0$



    $$ Gamma(a,x)=frac{rho^{-x}x^{a}}{Gamma(1-a)} int_0^infty frac{e^{-t} t^{-a}}{x+t} dt$$



    what is $ rho $ in the above equation? I thought this might be a but I tried to derive the above formula but I don't got the same result.










    share|cite|improve this question


























      up vote
      1
      down vote

      favorite
      3









      up vote
      1
      down vote

      favorite
      3






      3





      I have a question regarding Gamma Incomplete function:



      In the "Table of Integrals, Series, and Products, Seventh Edition" equation $8.353.3$ page $900$, there is a defenition for the incomplete gamma function in the case $a < 1$ and $x > 0$



      $$ Gamma(a,x)=frac{rho^{-x}x^{a}}{Gamma(1-a)} int_0^infty frac{e^{-t} t^{-a}}{x+t} dt$$



      what is $ rho $ in the above equation? I thought this might be a but I tried to derive the above formula but I don't got the same result.










      share|cite|improve this question















      I have a question regarding Gamma Incomplete function:



      In the "Table of Integrals, Series, and Products, Seventh Edition" equation $8.353.3$ page $900$, there is a defenition for the incomplete gamma function in the case $a < 1$ and $x > 0$



      $$ Gamma(a,x)=frac{rho^{-x}x^{a}}{Gamma(1-a)} int_0^infty frac{e^{-t} t^{-a}}{x+t} dt$$



      what is $ rho $ in the above equation? I thought this might be a but I tried to derive the above formula but I don't got the same result.







      gamma-function






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 24 at 19:15









      mrtaurho

      2,6591827




      2,6591827










      asked Feb 23 '14 at 20:47









      sky-light

      3001618




      3001618






















          2 Answers
          2






          active

          oldest

          votes

















          up vote
          5
          down vote



          accepted










          $newcommand{+}{^{dagger}}%
          newcommand{angles}[1]{leftlangle #1 rightrangle}%
          newcommand{braces}[1]{leftlbrace #1 rightrbrace}%
          newcommand{bracks}[1]{leftlbrack #1 rightrbrack}%
          newcommand{ceil}[1]{,leftlceil #1 rightrceil,}%
          newcommand{dd}{{rm d}}%
          newcommand{down}{downarrow}%
          newcommand{ds}[1]{displaystyle{#1}}%
          newcommand{equalby}[1]{{#1 atop {= atop vphantom{huge A}}}}%
          newcommand{expo}[1]{,{rm e}^{#1},}%
          newcommand{fermi}{,{rm f}}%
          newcommand{floor}[1]{,leftlfloor #1 rightrfloor,}%
          newcommand{half}{{1 over 2}}%
          newcommand{ic}{{rm i}}%
          newcommand{iff}{Longleftrightarrow}
          newcommand{imp}{Longrightarrow}%
          newcommand{isdiv}{,left.rightvert,}%
          newcommand{ket}[1]{leftvert #1rightrangle}%
          newcommand{ol}[1]{overline{#1}}%
          newcommand{pars}[1]{left( #1 right)}%
          newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
          newcommand{pp}{{cal P}}%
          newcommand{root}[2]{,sqrt[#1]{,#2,},}%
          newcommand{sech}{,{rm sech}}%
          newcommand{sgn}{,{rm sgn}}%
          newcommand{totald}[3]{frac{{rm d}^{#1} #2}{{rm d} #3^{#1}}}
          newcommand{ul}[1]{underline{#1}}%
          newcommand{verts}[1]{leftvert, #1 ,rightvert}$
          $ds{Gammapars{a,x} = {expo{-x}x^{a} over Gammapars{1 - a}}
          int_{0}^{infty}{expo{-t}t^{-a} over x + t},dd t: {Large ?}}$




          begin{align}
          &color{#f00}{Gammapars{a,x}Gammapars{1 - a}}=
          int_{x}^{infty}dd t,t^{a - 1}expo{-t}int_{0}^{infty}dd t',
          t'^{pars{1 - a} - 1}expo{-t'}
          \[3mm]&=int_{x^{1/2}}^{infty}dd t,pars{2t}t^{2a - 2}expo{-t^{2}}
          int_{0}^{infty}dd t',pars{2t'}t'^{-2a}expo{-t'^{2}}
          \[3mm]&=4int_{0}^{infty}int_{0}^{infty}Thetapars{t - x^{1/2}}t^{2a - 1}
          t'^{1 - 2a}expo{-pars{t^{2} + t'^{2}}},dd t,dd t'
          \[3mm]&=4int_{0}^{pi/2}ddthetaint_{0}^{infty}dd r,r,
          Thetapars{rcospars{theta} - x^{1/2}}r^{2a - 1}cos^{2a - 1pars{theta}}
          r^{1 - 2a}sin^{1 - 2a}pars{theta}expo{-r^{2}}
          \[3mm]&=4int_{0}^{infty}dd r,rexpo{-r^{2}}int_{0}^{pi/2}ddtheta,
          Thetapars{cospars{theta} - {x^{1/2} over r}}cos^{2a -1}pars{theta}
          sin^{1 - 2a}pars{theta}
          \[3mm]&=2int_{0}^{infty}dd t,expo{-t}int_{0}^{pi/2}ddtheta,
          Thetapars{cospars{theta} - bracks{x over t}^{1/2}}cos^{2a -1}pars{theta}
          sin^{1 - 2a}pars{theta}
          \[3mm]&=2int_{0}^{infty}dd t,expo{-t}int_{0}^{1}dd t',
          Thetapars{t' - bracks{x over t}^{1/2}}t'^{2a - 1}pars{1 - t'^{2}}^{-a}
          \[3mm]&=2int_{0}^{infty}dd t,expo{-t}int_{0}^{1}dd t',half,t'^{-1/2}
          Thetapars{t' - {x over t}}t'^{a - 1/2}pars{1 - t'}^{-a}
          \[3mm]&=int_{0}^{infty}dd t,expo{-t}int_{0}^{1}dd t',
          Thetapars{tt' - x}t'^{a - 1}pars{1 - t'}^{-a}
          =int_{0}^{1}dd t',t'^{a - 1}pars{1 - t'}^{-a}int_{x/t'}^{infty}dd t,expo{-t}
          \[3mm]&=int_{0}^{1}dd t',t'^{a - 1}pars{1 - t'}^{-a}expo{-x/t'}
          =int_{infty}^{1}t^{1 - a}pars{1 - {1 over t}}^{-a}expo{-xt},
          pars{-,{dd t over t^{2}}}
          \[3mm]&=int_{1}^{infty}t^{-1}pars{t - 1}^{-a}expo{-xt},dd t
          =int_{0}^{infty}{t^{-a} over t + 1}expo{-xpars{t + 1}},dd t
          =expo{-x}int_{0}^{infty}{expo{-xt}t^{-a} over t + 1},dd t
          \[3mm]&=
          color{#f00}{expo{-x}x^{a}int_{0}^{infty}{expo{-t}t^{-a} over t + x},dd t}
          end{align}




          Then
          $$color{#00f}{large%
          Gammapars{a,x} = {expo{-x}x^{a} over Gammapars{1 - a}}
          int_{0}^{infty}{expo{-t}t^{-a} over x + t},dd t}
          $$






          share|cite|improve this answer





















          • Wow, that must have been painful!
            – JPi
            Feb 23 '14 at 23:55










          • @JPi Yes. I went back and forth before I saw the right road. Thanks.
            – Felix Marin
            Feb 23 '14 at 23:56










          • @FelixMarin Thanks a lot.
            – sky-light
            Feb 24 '14 at 9:38


















          up vote
          0
          down vote













          It should be $e$. See the Handbook of Mathematical Functions, 8.6.4.






          share|cite|improve this answer





















          • Do you mean "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables 1970" By Milton Abramowitz, Irene A. Stegun? Page 334 equation 8.6.4 is it related to my case?
            – sky-light
            Feb 23 '14 at 22:09








          • 1




            No, the NIST Handbook of Mathematical Functions by Olver et al.. It is identical to your case except that $rho$ in your formula is $e$ in theirs.
            – JPi
            Feb 23 '14 at 23:48











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f687605%2fother-representation-of-gamma-incomplete-function%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          5
          down vote



          accepted










          $newcommand{+}{^{dagger}}%
          newcommand{angles}[1]{leftlangle #1 rightrangle}%
          newcommand{braces}[1]{leftlbrace #1 rightrbrace}%
          newcommand{bracks}[1]{leftlbrack #1 rightrbrack}%
          newcommand{ceil}[1]{,leftlceil #1 rightrceil,}%
          newcommand{dd}{{rm d}}%
          newcommand{down}{downarrow}%
          newcommand{ds}[1]{displaystyle{#1}}%
          newcommand{equalby}[1]{{#1 atop {= atop vphantom{huge A}}}}%
          newcommand{expo}[1]{,{rm e}^{#1},}%
          newcommand{fermi}{,{rm f}}%
          newcommand{floor}[1]{,leftlfloor #1 rightrfloor,}%
          newcommand{half}{{1 over 2}}%
          newcommand{ic}{{rm i}}%
          newcommand{iff}{Longleftrightarrow}
          newcommand{imp}{Longrightarrow}%
          newcommand{isdiv}{,left.rightvert,}%
          newcommand{ket}[1]{leftvert #1rightrangle}%
          newcommand{ol}[1]{overline{#1}}%
          newcommand{pars}[1]{left( #1 right)}%
          newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
          newcommand{pp}{{cal P}}%
          newcommand{root}[2]{,sqrt[#1]{,#2,},}%
          newcommand{sech}{,{rm sech}}%
          newcommand{sgn}{,{rm sgn}}%
          newcommand{totald}[3]{frac{{rm d}^{#1} #2}{{rm d} #3^{#1}}}
          newcommand{ul}[1]{underline{#1}}%
          newcommand{verts}[1]{leftvert, #1 ,rightvert}$
          $ds{Gammapars{a,x} = {expo{-x}x^{a} over Gammapars{1 - a}}
          int_{0}^{infty}{expo{-t}t^{-a} over x + t},dd t: {Large ?}}$




          begin{align}
          &color{#f00}{Gammapars{a,x}Gammapars{1 - a}}=
          int_{x}^{infty}dd t,t^{a - 1}expo{-t}int_{0}^{infty}dd t',
          t'^{pars{1 - a} - 1}expo{-t'}
          \[3mm]&=int_{x^{1/2}}^{infty}dd t,pars{2t}t^{2a - 2}expo{-t^{2}}
          int_{0}^{infty}dd t',pars{2t'}t'^{-2a}expo{-t'^{2}}
          \[3mm]&=4int_{0}^{infty}int_{0}^{infty}Thetapars{t - x^{1/2}}t^{2a - 1}
          t'^{1 - 2a}expo{-pars{t^{2} + t'^{2}}},dd t,dd t'
          \[3mm]&=4int_{0}^{pi/2}ddthetaint_{0}^{infty}dd r,r,
          Thetapars{rcospars{theta} - x^{1/2}}r^{2a - 1}cos^{2a - 1pars{theta}}
          r^{1 - 2a}sin^{1 - 2a}pars{theta}expo{-r^{2}}
          \[3mm]&=4int_{0}^{infty}dd r,rexpo{-r^{2}}int_{0}^{pi/2}ddtheta,
          Thetapars{cospars{theta} - {x^{1/2} over r}}cos^{2a -1}pars{theta}
          sin^{1 - 2a}pars{theta}
          \[3mm]&=2int_{0}^{infty}dd t,expo{-t}int_{0}^{pi/2}ddtheta,
          Thetapars{cospars{theta} - bracks{x over t}^{1/2}}cos^{2a -1}pars{theta}
          sin^{1 - 2a}pars{theta}
          \[3mm]&=2int_{0}^{infty}dd t,expo{-t}int_{0}^{1}dd t',
          Thetapars{t' - bracks{x over t}^{1/2}}t'^{2a - 1}pars{1 - t'^{2}}^{-a}
          \[3mm]&=2int_{0}^{infty}dd t,expo{-t}int_{0}^{1}dd t',half,t'^{-1/2}
          Thetapars{t' - {x over t}}t'^{a - 1/2}pars{1 - t'}^{-a}
          \[3mm]&=int_{0}^{infty}dd t,expo{-t}int_{0}^{1}dd t',
          Thetapars{tt' - x}t'^{a - 1}pars{1 - t'}^{-a}
          =int_{0}^{1}dd t',t'^{a - 1}pars{1 - t'}^{-a}int_{x/t'}^{infty}dd t,expo{-t}
          \[3mm]&=int_{0}^{1}dd t',t'^{a - 1}pars{1 - t'}^{-a}expo{-x/t'}
          =int_{infty}^{1}t^{1 - a}pars{1 - {1 over t}}^{-a}expo{-xt},
          pars{-,{dd t over t^{2}}}
          \[3mm]&=int_{1}^{infty}t^{-1}pars{t - 1}^{-a}expo{-xt},dd t
          =int_{0}^{infty}{t^{-a} over t + 1}expo{-xpars{t + 1}},dd t
          =expo{-x}int_{0}^{infty}{expo{-xt}t^{-a} over t + 1},dd t
          \[3mm]&=
          color{#f00}{expo{-x}x^{a}int_{0}^{infty}{expo{-t}t^{-a} over t + x},dd t}
          end{align}




          Then
          $$color{#00f}{large%
          Gammapars{a,x} = {expo{-x}x^{a} over Gammapars{1 - a}}
          int_{0}^{infty}{expo{-t}t^{-a} over x + t},dd t}
          $$






          share|cite|improve this answer





















          • Wow, that must have been painful!
            – JPi
            Feb 23 '14 at 23:55










          • @JPi Yes. I went back and forth before I saw the right road. Thanks.
            – Felix Marin
            Feb 23 '14 at 23:56










          • @FelixMarin Thanks a lot.
            – sky-light
            Feb 24 '14 at 9:38















          up vote
          5
          down vote



          accepted










          $newcommand{+}{^{dagger}}%
          newcommand{angles}[1]{leftlangle #1 rightrangle}%
          newcommand{braces}[1]{leftlbrace #1 rightrbrace}%
          newcommand{bracks}[1]{leftlbrack #1 rightrbrack}%
          newcommand{ceil}[1]{,leftlceil #1 rightrceil,}%
          newcommand{dd}{{rm d}}%
          newcommand{down}{downarrow}%
          newcommand{ds}[1]{displaystyle{#1}}%
          newcommand{equalby}[1]{{#1 atop {= atop vphantom{huge A}}}}%
          newcommand{expo}[1]{,{rm e}^{#1},}%
          newcommand{fermi}{,{rm f}}%
          newcommand{floor}[1]{,leftlfloor #1 rightrfloor,}%
          newcommand{half}{{1 over 2}}%
          newcommand{ic}{{rm i}}%
          newcommand{iff}{Longleftrightarrow}
          newcommand{imp}{Longrightarrow}%
          newcommand{isdiv}{,left.rightvert,}%
          newcommand{ket}[1]{leftvert #1rightrangle}%
          newcommand{ol}[1]{overline{#1}}%
          newcommand{pars}[1]{left( #1 right)}%
          newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
          newcommand{pp}{{cal P}}%
          newcommand{root}[2]{,sqrt[#1]{,#2,},}%
          newcommand{sech}{,{rm sech}}%
          newcommand{sgn}{,{rm sgn}}%
          newcommand{totald}[3]{frac{{rm d}^{#1} #2}{{rm d} #3^{#1}}}
          newcommand{ul}[1]{underline{#1}}%
          newcommand{verts}[1]{leftvert, #1 ,rightvert}$
          $ds{Gammapars{a,x} = {expo{-x}x^{a} over Gammapars{1 - a}}
          int_{0}^{infty}{expo{-t}t^{-a} over x + t},dd t: {Large ?}}$




          begin{align}
          &color{#f00}{Gammapars{a,x}Gammapars{1 - a}}=
          int_{x}^{infty}dd t,t^{a - 1}expo{-t}int_{0}^{infty}dd t',
          t'^{pars{1 - a} - 1}expo{-t'}
          \[3mm]&=int_{x^{1/2}}^{infty}dd t,pars{2t}t^{2a - 2}expo{-t^{2}}
          int_{0}^{infty}dd t',pars{2t'}t'^{-2a}expo{-t'^{2}}
          \[3mm]&=4int_{0}^{infty}int_{0}^{infty}Thetapars{t - x^{1/2}}t^{2a - 1}
          t'^{1 - 2a}expo{-pars{t^{2} + t'^{2}}},dd t,dd t'
          \[3mm]&=4int_{0}^{pi/2}ddthetaint_{0}^{infty}dd r,r,
          Thetapars{rcospars{theta} - x^{1/2}}r^{2a - 1}cos^{2a - 1pars{theta}}
          r^{1 - 2a}sin^{1 - 2a}pars{theta}expo{-r^{2}}
          \[3mm]&=4int_{0}^{infty}dd r,rexpo{-r^{2}}int_{0}^{pi/2}ddtheta,
          Thetapars{cospars{theta} - {x^{1/2} over r}}cos^{2a -1}pars{theta}
          sin^{1 - 2a}pars{theta}
          \[3mm]&=2int_{0}^{infty}dd t,expo{-t}int_{0}^{pi/2}ddtheta,
          Thetapars{cospars{theta} - bracks{x over t}^{1/2}}cos^{2a -1}pars{theta}
          sin^{1 - 2a}pars{theta}
          \[3mm]&=2int_{0}^{infty}dd t,expo{-t}int_{0}^{1}dd t',
          Thetapars{t' - bracks{x over t}^{1/2}}t'^{2a - 1}pars{1 - t'^{2}}^{-a}
          \[3mm]&=2int_{0}^{infty}dd t,expo{-t}int_{0}^{1}dd t',half,t'^{-1/2}
          Thetapars{t' - {x over t}}t'^{a - 1/2}pars{1 - t'}^{-a}
          \[3mm]&=int_{0}^{infty}dd t,expo{-t}int_{0}^{1}dd t',
          Thetapars{tt' - x}t'^{a - 1}pars{1 - t'}^{-a}
          =int_{0}^{1}dd t',t'^{a - 1}pars{1 - t'}^{-a}int_{x/t'}^{infty}dd t,expo{-t}
          \[3mm]&=int_{0}^{1}dd t',t'^{a - 1}pars{1 - t'}^{-a}expo{-x/t'}
          =int_{infty}^{1}t^{1 - a}pars{1 - {1 over t}}^{-a}expo{-xt},
          pars{-,{dd t over t^{2}}}
          \[3mm]&=int_{1}^{infty}t^{-1}pars{t - 1}^{-a}expo{-xt},dd t
          =int_{0}^{infty}{t^{-a} over t + 1}expo{-xpars{t + 1}},dd t
          =expo{-x}int_{0}^{infty}{expo{-xt}t^{-a} over t + 1},dd t
          \[3mm]&=
          color{#f00}{expo{-x}x^{a}int_{0}^{infty}{expo{-t}t^{-a} over t + x},dd t}
          end{align}




          Then
          $$color{#00f}{large%
          Gammapars{a,x} = {expo{-x}x^{a} over Gammapars{1 - a}}
          int_{0}^{infty}{expo{-t}t^{-a} over x + t},dd t}
          $$






          share|cite|improve this answer





















          • Wow, that must have been painful!
            – JPi
            Feb 23 '14 at 23:55










          • @JPi Yes. I went back and forth before I saw the right road. Thanks.
            – Felix Marin
            Feb 23 '14 at 23:56










          • @FelixMarin Thanks a lot.
            – sky-light
            Feb 24 '14 at 9:38













          up vote
          5
          down vote



          accepted







          up vote
          5
          down vote



          accepted






          $newcommand{+}{^{dagger}}%
          newcommand{angles}[1]{leftlangle #1 rightrangle}%
          newcommand{braces}[1]{leftlbrace #1 rightrbrace}%
          newcommand{bracks}[1]{leftlbrack #1 rightrbrack}%
          newcommand{ceil}[1]{,leftlceil #1 rightrceil,}%
          newcommand{dd}{{rm d}}%
          newcommand{down}{downarrow}%
          newcommand{ds}[1]{displaystyle{#1}}%
          newcommand{equalby}[1]{{#1 atop {= atop vphantom{huge A}}}}%
          newcommand{expo}[1]{,{rm e}^{#1},}%
          newcommand{fermi}{,{rm f}}%
          newcommand{floor}[1]{,leftlfloor #1 rightrfloor,}%
          newcommand{half}{{1 over 2}}%
          newcommand{ic}{{rm i}}%
          newcommand{iff}{Longleftrightarrow}
          newcommand{imp}{Longrightarrow}%
          newcommand{isdiv}{,left.rightvert,}%
          newcommand{ket}[1]{leftvert #1rightrangle}%
          newcommand{ol}[1]{overline{#1}}%
          newcommand{pars}[1]{left( #1 right)}%
          newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
          newcommand{pp}{{cal P}}%
          newcommand{root}[2]{,sqrt[#1]{,#2,},}%
          newcommand{sech}{,{rm sech}}%
          newcommand{sgn}{,{rm sgn}}%
          newcommand{totald}[3]{frac{{rm d}^{#1} #2}{{rm d} #3^{#1}}}
          newcommand{ul}[1]{underline{#1}}%
          newcommand{verts}[1]{leftvert, #1 ,rightvert}$
          $ds{Gammapars{a,x} = {expo{-x}x^{a} over Gammapars{1 - a}}
          int_{0}^{infty}{expo{-t}t^{-a} over x + t},dd t: {Large ?}}$




          begin{align}
          &color{#f00}{Gammapars{a,x}Gammapars{1 - a}}=
          int_{x}^{infty}dd t,t^{a - 1}expo{-t}int_{0}^{infty}dd t',
          t'^{pars{1 - a} - 1}expo{-t'}
          \[3mm]&=int_{x^{1/2}}^{infty}dd t,pars{2t}t^{2a - 2}expo{-t^{2}}
          int_{0}^{infty}dd t',pars{2t'}t'^{-2a}expo{-t'^{2}}
          \[3mm]&=4int_{0}^{infty}int_{0}^{infty}Thetapars{t - x^{1/2}}t^{2a - 1}
          t'^{1 - 2a}expo{-pars{t^{2} + t'^{2}}},dd t,dd t'
          \[3mm]&=4int_{0}^{pi/2}ddthetaint_{0}^{infty}dd r,r,
          Thetapars{rcospars{theta} - x^{1/2}}r^{2a - 1}cos^{2a - 1pars{theta}}
          r^{1 - 2a}sin^{1 - 2a}pars{theta}expo{-r^{2}}
          \[3mm]&=4int_{0}^{infty}dd r,rexpo{-r^{2}}int_{0}^{pi/2}ddtheta,
          Thetapars{cospars{theta} - {x^{1/2} over r}}cos^{2a -1}pars{theta}
          sin^{1 - 2a}pars{theta}
          \[3mm]&=2int_{0}^{infty}dd t,expo{-t}int_{0}^{pi/2}ddtheta,
          Thetapars{cospars{theta} - bracks{x over t}^{1/2}}cos^{2a -1}pars{theta}
          sin^{1 - 2a}pars{theta}
          \[3mm]&=2int_{0}^{infty}dd t,expo{-t}int_{0}^{1}dd t',
          Thetapars{t' - bracks{x over t}^{1/2}}t'^{2a - 1}pars{1 - t'^{2}}^{-a}
          \[3mm]&=2int_{0}^{infty}dd t,expo{-t}int_{0}^{1}dd t',half,t'^{-1/2}
          Thetapars{t' - {x over t}}t'^{a - 1/2}pars{1 - t'}^{-a}
          \[3mm]&=int_{0}^{infty}dd t,expo{-t}int_{0}^{1}dd t',
          Thetapars{tt' - x}t'^{a - 1}pars{1 - t'}^{-a}
          =int_{0}^{1}dd t',t'^{a - 1}pars{1 - t'}^{-a}int_{x/t'}^{infty}dd t,expo{-t}
          \[3mm]&=int_{0}^{1}dd t',t'^{a - 1}pars{1 - t'}^{-a}expo{-x/t'}
          =int_{infty}^{1}t^{1 - a}pars{1 - {1 over t}}^{-a}expo{-xt},
          pars{-,{dd t over t^{2}}}
          \[3mm]&=int_{1}^{infty}t^{-1}pars{t - 1}^{-a}expo{-xt},dd t
          =int_{0}^{infty}{t^{-a} over t + 1}expo{-xpars{t + 1}},dd t
          =expo{-x}int_{0}^{infty}{expo{-xt}t^{-a} over t + 1},dd t
          \[3mm]&=
          color{#f00}{expo{-x}x^{a}int_{0}^{infty}{expo{-t}t^{-a} over t + x},dd t}
          end{align}




          Then
          $$color{#00f}{large%
          Gammapars{a,x} = {expo{-x}x^{a} over Gammapars{1 - a}}
          int_{0}^{infty}{expo{-t}t^{-a} over x + t},dd t}
          $$






          share|cite|improve this answer












          $newcommand{+}{^{dagger}}%
          newcommand{angles}[1]{leftlangle #1 rightrangle}%
          newcommand{braces}[1]{leftlbrace #1 rightrbrace}%
          newcommand{bracks}[1]{leftlbrack #1 rightrbrack}%
          newcommand{ceil}[1]{,leftlceil #1 rightrceil,}%
          newcommand{dd}{{rm d}}%
          newcommand{down}{downarrow}%
          newcommand{ds}[1]{displaystyle{#1}}%
          newcommand{equalby}[1]{{#1 atop {= atop vphantom{huge A}}}}%
          newcommand{expo}[1]{,{rm e}^{#1},}%
          newcommand{fermi}{,{rm f}}%
          newcommand{floor}[1]{,leftlfloor #1 rightrfloor,}%
          newcommand{half}{{1 over 2}}%
          newcommand{ic}{{rm i}}%
          newcommand{iff}{Longleftrightarrow}
          newcommand{imp}{Longrightarrow}%
          newcommand{isdiv}{,left.rightvert,}%
          newcommand{ket}[1]{leftvert #1rightrangle}%
          newcommand{ol}[1]{overline{#1}}%
          newcommand{pars}[1]{left( #1 right)}%
          newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
          newcommand{pp}{{cal P}}%
          newcommand{root}[2]{,sqrt[#1]{,#2,},}%
          newcommand{sech}{,{rm sech}}%
          newcommand{sgn}{,{rm sgn}}%
          newcommand{totald}[3]{frac{{rm d}^{#1} #2}{{rm d} #3^{#1}}}
          newcommand{ul}[1]{underline{#1}}%
          newcommand{verts}[1]{leftvert, #1 ,rightvert}$
          $ds{Gammapars{a,x} = {expo{-x}x^{a} over Gammapars{1 - a}}
          int_{0}^{infty}{expo{-t}t^{-a} over x + t},dd t: {Large ?}}$




          begin{align}
          &color{#f00}{Gammapars{a,x}Gammapars{1 - a}}=
          int_{x}^{infty}dd t,t^{a - 1}expo{-t}int_{0}^{infty}dd t',
          t'^{pars{1 - a} - 1}expo{-t'}
          \[3mm]&=int_{x^{1/2}}^{infty}dd t,pars{2t}t^{2a - 2}expo{-t^{2}}
          int_{0}^{infty}dd t',pars{2t'}t'^{-2a}expo{-t'^{2}}
          \[3mm]&=4int_{0}^{infty}int_{0}^{infty}Thetapars{t - x^{1/2}}t^{2a - 1}
          t'^{1 - 2a}expo{-pars{t^{2} + t'^{2}}},dd t,dd t'
          \[3mm]&=4int_{0}^{pi/2}ddthetaint_{0}^{infty}dd r,r,
          Thetapars{rcospars{theta} - x^{1/2}}r^{2a - 1}cos^{2a - 1pars{theta}}
          r^{1 - 2a}sin^{1 - 2a}pars{theta}expo{-r^{2}}
          \[3mm]&=4int_{0}^{infty}dd r,rexpo{-r^{2}}int_{0}^{pi/2}ddtheta,
          Thetapars{cospars{theta} - {x^{1/2} over r}}cos^{2a -1}pars{theta}
          sin^{1 - 2a}pars{theta}
          \[3mm]&=2int_{0}^{infty}dd t,expo{-t}int_{0}^{pi/2}ddtheta,
          Thetapars{cospars{theta} - bracks{x over t}^{1/2}}cos^{2a -1}pars{theta}
          sin^{1 - 2a}pars{theta}
          \[3mm]&=2int_{0}^{infty}dd t,expo{-t}int_{0}^{1}dd t',
          Thetapars{t' - bracks{x over t}^{1/2}}t'^{2a - 1}pars{1 - t'^{2}}^{-a}
          \[3mm]&=2int_{0}^{infty}dd t,expo{-t}int_{0}^{1}dd t',half,t'^{-1/2}
          Thetapars{t' - {x over t}}t'^{a - 1/2}pars{1 - t'}^{-a}
          \[3mm]&=int_{0}^{infty}dd t,expo{-t}int_{0}^{1}dd t',
          Thetapars{tt' - x}t'^{a - 1}pars{1 - t'}^{-a}
          =int_{0}^{1}dd t',t'^{a - 1}pars{1 - t'}^{-a}int_{x/t'}^{infty}dd t,expo{-t}
          \[3mm]&=int_{0}^{1}dd t',t'^{a - 1}pars{1 - t'}^{-a}expo{-x/t'}
          =int_{infty}^{1}t^{1 - a}pars{1 - {1 over t}}^{-a}expo{-xt},
          pars{-,{dd t over t^{2}}}
          \[3mm]&=int_{1}^{infty}t^{-1}pars{t - 1}^{-a}expo{-xt},dd t
          =int_{0}^{infty}{t^{-a} over t + 1}expo{-xpars{t + 1}},dd t
          =expo{-x}int_{0}^{infty}{expo{-xt}t^{-a} over t + 1},dd t
          \[3mm]&=
          color{#f00}{expo{-x}x^{a}int_{0}^{infty}{expo{-t}t^{-a} over t + x},dd t}
          end{align}




          Then
          $$color{#00f}{large%
          Gammapars{a,x} = {expo{-x}x^{a} over Gammapars{1 - a}}
          int_{0}^{infty}{expo{-t}t^{-a} over x + t},dd t}
          $$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Feb 23 '14 at 22:34









          Felix Marin

          66.2k7107139




          66.2k7107139












          • Wow, that must have been painful!
            – JPi
            Feb 23 '14 at 23:55










          • @JPi Yes. I went back and forth before I saw the right road. Thanks.
            – Felix Marin
            Feb 23 '14 at 23:56










          • @FelixMarin Thanks a lot.
            – sky-light
            Feb 24 '14 at 9:38


















          • Wow, that must have been painful!
            – JPi
            Feb 23 '14 at 23:55










          • @JPi Yes. I went back and forth before I saw the right road. Thanks.
            – Felix Marin
            Feb 23 '14 at 23:56










          • @FelixMarin Thanks a lot.
            – sky-light
            Feb 24 '14 at 9:38
















          Wow, that must have been painful!
          – JPi
          Feb 23 '14 at 23:55




          Wow, that must have been painful!
          – JPi
          Feb 23 '14 at 23:55












          @JPi Yes. I went back and forth before I saw the right road. Thanks.
          – Felix Marin
          Feb 23 '14 at 23:56




          @JPi Yes. I went back and forth before I saw the right road. Thanks.
          – Felix Marin
          Feb 23 '14 at 23:56












          @FelixMarin Thanks a lot.
          – sky-light
          Feb 24 '14 at 9:38




          @FelixMarin Thanks a lot.
          – sky-light
          Feb 24 '14 at 9:38










          up vote
          0
          down vote













          It should be $e$. See the Handbook of Mathematical Functions, 8.6.4.






          share|cite|improve this answer





















          • Do you mean "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables 1970" By Milton Abramowitz, Irene A. Stegun? Page 334 equation 8.6.4 is it related to my case?
            – sky-light
            Feb 23 '14 at 22:09








          • 1




            No, the NIST Handbook of Mathematical Functions by Olver et al.. It is identical to your case except that $rho$ in your formula is $e$ in theirs.
            – JPi
            Feb 23 '14 at 23:48















          up vote
          0
          down vote













          It should be $e$. See the Handbook of Mathematical Functions, 8.6.4.






          share|cite|improve this answer





















          • Do you mean "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables 1970" By Milton Abramowitz, Irene A. Stegun? Page 334 equation 8.6.4 is it related to my case?
            – sky-light
            Feb 23 '14 at 22:09








          • 1




            No, the NIST Handbook of Mathematical Functions by Olver et al.. It is identical to your case except that $rho$ in your formula is $e$ in theirs.
            – JPi
            Feb 23 '14 at 23:48













          up vote
          0
          down vote










          up vote
          0
          down vote









          It should be $e$. See the Handbook of Mathematical Functions, 8.6.4.






          share|cite|improve this answer












          It should be $e$. See the Handbook of Mathematical Functions, 8.6.4.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Feb 23 '14 at 21:05









          JPi

          3,872519




          3,872519












          • Do you mean "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables 1970" By Milton Abramowitz, Irene A. Stegun? Page 334 equation 8.6.4 is it related to my case?
            – sky-light
            Feb 23 '14 at 22:09








          • 1




            No, the NIST Handbook of Mathematical Functions by Olver et al.. It is identical to your case except that $rho$ in your formula is $e$ in theirs.
            – JPi
            Feb 23 '14 at 23:48


















          • Do you mean "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables 1970" By Milton Abramowitz, Irene A. Stegun? Page 334 equation 8.6.4 is it related to my case?
            – sky-light
            Feb 23 '14 at 22:09








          • 1




            No, the NIST Handbook of Mathematical Functions by Olver et al.. It is identical to your case except that $rho$ in your formula is $e$ in theirs.
            – JPi
            Feb 23 '14 at 23:48
















          Do you mean "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables 1970" By Milton Abramowitz, Irene A. Stegun? Page 334 equation 8.6.4 is it related to my case?
          – sky-light
          Feb 23 '14 at 22:09






          Do you mean "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables 1970" By Milton Abramowitz, Irene A. Stegun? Page 334 equation 8.6.4 is it related to my case?
          – sky-light
          Feb 23 '14 at 22:09






          1




          1




          No, the NIST Handbook of Mathematical Functions by Olver et al.. It is identical to your case except that $rho$ in your formula is $e$ in theirs.
          – JPi
          Feb 23 '14 at 23:48




          No, the NIST Handbook of Mathematical Functions by Olver et al.. It is identical to your case except that $rho$ in your formula is $e$ in theirs.
          – JPi
          Feb 23 '14 at 23:48


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f687605%2fother-representation-of-gamma-incomplete-function%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Berounka

          Different font size/position of beamer's navigation symbols template's content depending on regular/plain...

          Sphinx de Gizeh