Other representation of Gamma Incomplete function
up vote
1
down vote
favorite
I have a question regarding Gamma Incomplete function:
In the "Table of Integrals, Series, and Products, Seventh Edition" equation $8.353.3$ page $900$, there is a defenition for the incomplete gamma function in the case $a < 1$ and $x > 0$
$$ Gamma(a,x)=frac{rho^{-x}x^{a}}{Gamma(1-a)} int_0^infty frac{e^{-t} t^{-a}}{x+t} dt$$
what is $ rho $ in the above equation? I thought this might be a but I tried to derive the above formula but I don't got the same result.
gamma-function
add a comment |
up vote
1
down vote
favorite
I have a question regarding Gamma Incomplete function:
In the "Table of Integrals, Series, and Products, Seventh Edition" equation $8.353.3$ page $900$, there is a defenition for the incomplete gamma function in the case $a < 1$ and $x > 0$
$$ Gamma(a,x)=frac{rho^{-x}x^{a}}{Gamma(1-a)} int_0^infty frac{e^{-t} t^{-a}}{x+t} dt$$
what is $ rho $ in the above equation? I thought this might be a but I tried to derive the above formula but I don't got the same result.
gamma-function
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
I have a question regarding Gamma Incomplete function:
In the "Table of Integrals, Series, and Products, Seventh Edition" equation $8.353.3$ page $900$, there is a defenition for the incomplete gamma function in the case $a < 1$ and $x > 0$
$$ Gamma(a,x)=frac{rho^{-x}x^{a}}{Gamma(1-a)} int_0^infty frac{e^{-t} t^{-a}}{x+t} dt$$
what is $ rho $ in the above equation? I thought this might be a but I tried to derive the above formula but I don't got the same result.
gamma-function
I have a question regarding Gamma Incomplete function:
In the "Table of Integrals, Series, and Products, Seventh Edition" equation $8.353.3$ page $900$, there is a defenition for the incomplete gamma function in the case $a < 1$ and $x > 0$
$$ Gamma(a,x)=frac{rho^{-x}x^{a}}{Gamma(1-a)} int_0^infty frac{e^{-t} t^{-a}}{x+t} dt$$
what is $ rho $ in the above equation? I thought this might be a but I tried to derive the above formula but I don't got the same result.
gamma-function
gamma-function
edited Nov 24 at 19:15
mrtaurho
2,6591827
2,6591827
asked Feb 23 '14 at 20:47
sky-light
3001618
3001618
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
up vote
5
down vote
accepted
$newcommand{+}{^{dagger}}%
newcommand{angles}[1]{leftlangle #1 rightrangle}%
newcommand{braces}[1]{leftlbrace #1 rightrbrace}%
newcommand{bracks}[1]{leftlbrack #1 rightrbrack}%
newcommand{ceil}[1]{,leftlceil #1 rightrceil,}%
newcommand{dd}{{rm d}}%
newcommand{down}{downarrow}%
newcommand{ds}[1]{displaystyle{#1}}%
newcommand{equalby}[1]{{#1 atop {= atop vphantom{huge A}}}}%
newcommand{expo}[1]{,{rm e}^{#1},}%
newcommand{fermi}{,{rm f}}%
newcommand{floor}[1]{,leftlfloor #1 rightrfloor,}%
newcommand{half}{{1 over 2}}%
newcommand{ic}{{rm i}}%
newcommand{iff}{Longleftrightarrow}
newcommand{imp}{Longrightarrow}%
newcommand{isdiv}{,left.rightvert,}%
newcommand{ket}[1]{leftvert #1rightrangle}%
newcommand{ol}[1]{overline{#1}}%
newcommand{pars}[1]{left( #1 right)}%
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{pp}{{cal P}}%
newcommand{root}[2]{,sqrt[#1]{,#2,},}%
newcommand{sech}{,{rm sech}}%
newcommand{sgn}{,{rm sgn}}%
newcommand{totald}[3]{frac{{rm d}^{#1} #2}{{rm d} #3^{#1}}}
newcommand{ul}[1]{underline{#1}}%
newcommand{verts}[1]{leftvert, #1 ,rightvert}$
$ds{Gammapars{a,x} = {expo{-x}x^{a} over Gammapars{1 - a}}
int_{0}^{infty}{expo{-t}t^{-a} over x + t},dd t: {Large ?}}$
begin{align}
&color{#f00}{Gammapars{a,x}Gammapars{1 - a}}=
int_{x}^{infty}dd t,t^{a - 1}expo{-t}int_{0}^{infty}dd t',
t'^{pars{1 - a} - 1}expo{-t'}
\[3mm]&=int_{x^{1/2}}^{infty}dd t,pars{2t}t^{2a - 2}expo{-t^{2}}
int_{0}^{infty}dd t',pars{2t'}t'^{-2a}expo{-t'^{2}}
\[3mm]&=4int_{0}^{infty}int_{0}^{infty}Thetapars{t - x^{1/2}}t^{2a - 1}
t'^{1 - 2a}expo{-pars{t^{2} + t'^{2}}},dd t,dd t'
\[3mm]&=4int_{0}^{pi/2}ddthetaint_{0}^{infty}dd r,r,
Thetapars{rcospars{theta} - x^{1/2}}r^{2a - 1}cos^{2a - 1pars{theta}}
r^{1 - 2a}sin^{1 - 2a}pars{theta}expo{-r^{2}}
\[3mm]&=4int_{0}^{infty}dd r,rexpo{-r^{2}}int_{0}^{pi/2}ddtheta,
Thetapars{cospars{theta} - {x^{1/2} over r}}cos^{2a -1}pars{theta}
sin^{1 - 2a}pars{theta}
\[3mm]&=2int_{0}^{infty}dd t,expo{-t}int_{0}^{pi/2}ddtheta,
Thetapars{cospars{theta} - bracks{x over t}^{1/2}}cos^{2a -1}pars{theta}
sin^{1 - 2a}pars{theta}
\[3mm]&=2int_{0}^{infty}dd t,expo{-t}int_{0}^{1}dd t',
Thetapars{t' - bracks{x over t}^{1/2}}t'^{2a - 1}pars{1 - t'^{2}}^{-a}
\[3mm]&=2int_{0}^{infty}dd t,expo{-t}int_{0}^{1}dd t',half,t'^{-1/2}
Thetapars{t' - {x over t}}t'^{a - 1/2}pars{1 - t'}^{-a}
\[3mm]&=int_{0}^{infty}dd t,expo{-t}int_{0}^{1}dd t',
Thetapars{tt' - x}t'^{a - 1}pars{1 - t'}^{-a}
=int_{0}^{1}dd t',t'^{a - 1}pars{1 - t'}^{-a}int_{x/t'}^{infty}dd t,expo{-t}
\[3mm]&=int_{0}^{1}dd t',t'^{a - 1}pars{1 - t'}^{-a}expo{-x/t'}
=int_{infty}^{1}t^{1 - a}pars{1 - {1 over t}}^{-a}expo{-xt},
pars{-,{dd t over t^{2}}}
\[3mm]&=int_{1}^{infty}t^{-1}pars{t - 1}^{-a}expo{-xt},dd t
=int_{0}^{infty}{t^{-a} over t + 1}expo{-xpars{t + 1}},dd t
=expo{-x}int_{0}^{infty}{expo{-xt}t^{-a} over t + 1},dd t
\[3mm]&=
color{#f00}{expo{-x}x^{a}int_{0}^{infty}{expo{-t}t^{-a} over t + x},dd t}
end{align}
Then
$$color{#00f}{large%
Gammapars{a,x} = {expo{-x}x^{a} over Gammapars{1 - a}}
int_{0}^{infty}{expo{-t}t^{-a} over x + t},dd t}
$$
Wow, that must have been painful!
– JPi
Feb 23 '14 at 23:55
@JPi Yes. I went back and forth before I saw the right road. Thanks.
– Felix Marin
Feb 23 '14 at 23:56
@FelixMarin Thanks a lot.
– sky-light
Feb 24 '14 at 9:38
add a comment |
up vote
0
down vote
It should be $e$. See the Handbook of Mathematical Functions, 8.6.4.
Do you mean "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables 1970" By Milton Abramowitz, Irene A. Stegun? Page 334 equation 8.6.4 is it related to my case?
– sky-light
Feb 23 '14 at 22:09
1
No, the NIST Handbook of Mathematical Functions by Olver et al.. It is identical to your case except that $rho$ in your formula is $e$ in theirs.
– JPi
Feb 23 '14 at 23:48
add a comment |
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
5
down vote
accepted
$newcommand{+}{^{dagger}}%
newcommand{angles}[1]{leftlangle #1 rightrangle}%
newcommand{braces}[1]{leftlbrace #1 rightrbrace}%
newcommand{bracks}[1]{leftlbrack #1 rightrbrack}%
newcommand{ceil}[1]{,leftlceil #1 rightrceil,}%
newcommand{dd}{{rm d}}%
newcommand{down}{downarrow}%
newcommand{ds}[1]{displaystyle{#1}}%
newcommand{equalby}[1]{{#1 atop {= atop vphantom{huge A}}}}%
newcommand{expo}[1]{,{rm e}^{#1},}%
newcommand{fermi}{,{rm f}}%
newcommand{floor}[1]{,leftlfloor #1 rightrfloor,}%
newcommand{half}{{1 over 2}}%
newcommand{ic}{{rm i}}%
newcommand{iff}{Longleftrightarrow}
newcommand{imp}{Longrightarrow}%
newcommand{isdiv}{,left.rightvert,}%
newcommand{ket}[1]{leftvert #1rightrangle}%
newcommand{ol}[1]{overline{#1}}%
newcommand{pars}[1]{left( #1 right)}%
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{pp}{{cal P}}%
newcommand{root}[2]{,sqrt[#1]{,#2,},}%
newcommand{sech}{,{rm sech}}%
newcommand{sgn}{,{rm sgn}}%
newcommand{totald}[3]{frac{{rm d}^{#1} #2}{{rm d} #3^{#1}}}
newcommand{ul}[1]{underline{#1}}%
newcommand{verts}[1]{leftvert, #1 ,rightvert}$
$ds{Gammapars{a,x} = {expo{-x}x^{a} over Gammapars{1 - a}}
int_{0}^{infty}{expo{-t}t^{-a} over x + t},dd t: {Large ?}}$
begin{align}
&color{#f00}{Gammapars{a,x}Gammapars{1 - a}}=
int_{x}^{infty}dd t,t^{a - 1}expo{-t}int_{0}^{infty}dd t',
t'^{pars{1 - a} - 1}expo{-t'}
\[3mm]&=int_{x^{1/2}}^{infty}dd t,pars{2t}t^{2a - 2}expo{-t^{2}}
int_{0}^{infty}dd t',pars{2t'}t'^{-2a}expo{-t'^{2}}
\[3mm]&=4int_{0}^{infty}int_{0}^{infty}Thetapars{t - x^{1/2}}t^{2a - 1}
t'^{1 - 2a}expo{-pars{t^{2} + t'^{2}}},dd t,dd t'
\[3mm]&=4int_{0}^{pi/2}ddthetaint_{0}^{infty}dd r,r,
Thetapars{rcospars{theta} - x^{1/2}}r^{2a - 1}cos^{2a - 1pars{theta}}
r^{1 - 2a}sin^{1 - 2a}pars{theta}expo{-r^{2}}
\[3mm]&=4int_{0}^{infty}dd r,rexpo{-r^{2}}int_{0}^{pi/2}ddtheta,
Thetapars{cospars{theta} - {x^{1/2} over r}}cos^{2a -1}pars{theta}
sin^{1 - 2a}pars{theta}
\[3mm]&=2int_{0}^{infty}dd t,expo{-t}int_{0}^{pi/2}ddtheta,
Thetapars{cospars{theta} - bracks{x over t}^{1/2}}cos^{2a -1}pars{theta}
sin^{1 - 2a}pars{theta}
\[3mm]&=2int_{0}^{infty}dd t,expo{-t}int_{0}^{1}dd t',
Thetapars{t' - bracks{x over t}^{1/2}}t'^{2a - 1}pars{1 - t'^{2}}^{-a}
\[3mm]&=2int_{0}^{infty}dd t,expo{-t}int_{0}^{1}dd t',half,t'^{-1/2}
Thetapars{t' - {x over t}}t'^{a - 1/2}pars{1 - t'}^{-a}
\[3mm]&=int_{0}^{infty}dd t,expo{-t}int_{0}^{1}dd t',
Thetapars{tt' - x}t'^{a - 1}pars{1 - t'}^{-a}
=int_{0}^{1}dd t',t'^{a - 1}pars{1 - t'}^{-a}int_{x/t'}^{infty}dd t,expo{-t}
\[3mm]&=int_{0}^{1}dd t',t'^{a - 1}pars{1 - t'}^{-a}expo{-x/t'}
=int_{infty}^{1}t^{1 - a}pars{1 - {1 over t}}^{-a}expo{-xt},
pars{-,{dd t over t^{2}}}
\[3mm]&=int_{1}^{infty}t^{-1}pars{t - 1}^{-a}expo{-xt},dd t
=int_{0}^{infty}{t^{-a} over t + 1}expo{-xpars{t + 1}},dd t
=expo{-x}int_{0}^{infty}{expo{-xt}t^{-a} over t + 1},dd t
\[3mm]&=
color{#f00}{expo{-x}x^{a}int_{0}^{infty}{expo{-t}t^{-a} over t + x},dd t}
end{align}
Then
$$color{#00f}{large%
Gammapars{a,x} = {expo{-x}x^{a} over Gammapars{1 - a}}
int_{0}^{infty}{expo{-t}t^{-a} over x + t},dd t}
$$
Wow, that must have been painful!
– JPi
Feb 23 '14 at 23:55
@JPi Yes. I went back and forth before I saw the right road. Thanks.
– Felix Marin
Feb 23 '14 at 23:56
@FelixMarin Thanks a lot.
– sky-light
Feb 24 '14 at 9:38
add a comment |
up vote
5
down vote
accepted
$newcommand{+}{^{dagger}}%
newcommand{angles}[1]{leftlangle #1 rightrangle}%
newcommand{braces}[1]{leftlbrace #1 rightrbrace}%
newcommand{bracks}[1]{leftlbrack #1 rightrbrack}%
newcommand{ceil}[1]{,leftlceil #1 rightrceil,}%
newcommand{dd}{{rm d}}%
newcommand{down}{downarrow}%
newcommand{ds}[1]{displaystyle{#1}}%
newcommand{equalby}[1]{{#1 atop {= atop vphantom{huge A}}}}%
newcommand{expo}[1]{,{rm e}^{#1},}%
newcommand{fermi}{,{rm f}}%
newcommand{floor}[1]{,leftlfloor #1 rightrfloor,}%
newcommand{half}{{1 over 2}}%
newcommand{ic}{{rm i}}%
newcommand{iff}{Longleftrightarrow}
newcommand{imp}{Longrightarrow}%
newcommand{isdiv}{,left.rightvert,}%
newcommand{ket}[1]{leftvert #1rightrangle}%
newcommand{ol}[1]{overline{#1}}%
newcommand{pars}[1]{left( #1 right)}%
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{pp}{{cal P}}%
newcommand{root}[2]{,sqrt[#1]{,#2,},}%
newcommand{sech}{,{rm sech}}%
newcommand{sgn}{,{rm sgn}}%
newcommand{totald}[3]{frac{{rm d}^{#1} #2}{{rm d} #3^{#1}}}
newcommand{ul}[1]{underline{#1}}%
newcommand{verts}[1]{leftvert, #1 ,rightvert}$
$ds{Gammapars{a,x} = {expo{-x}x^{a} over Gammapars{1 - a}}
int_{0}^{infty}{expo{-t}t^{-a} over x + t},dd t: {Large ?}}$
begin{align}
&color{#f00}{Gammapars{a,x}Gammapars{1 - a}}=
int_{x}^{infty}dd t,t^{a - 1}expo{-t}int_{0}^{infty}dd t',
t'^{pars{1 - a} - 1}expo{-t'}
\[3mm]&=int_{x^{1/2}}^{infty}dd t,pars{2t}t^{2a - 2}expo{-t^{2}}
int_{0}^{infty}dd t',pars{2t'}t'^{-2a}expo{-t'^{2}}
\[3mm]&=4int_{0}^{infty}int_{0}^{infty}Thetapars{t - x^{1/2}}t^{2a - 1}
t'^{1 - 2a}expo{-pars{t^{2} + t'^{2}}},dd t,dd t'
\[3mm]&=4int_{0}^{pi/2}ddthetaint_{0}^{infty}dd r,r,
Thetapars{rcospars{theta} - x^{1/2}}r^{2a - 1}cos^{2a - 1pars{theta}}
r^{1 - 2a}sin^{1 - 2a}pars{theta}expo{-r^{2}}
\[3mm]&=4int_{0}^{infty}dd r,rexpo{-r^{2}}int_{0}^{pi/2}ddtheta,
Thetapars{cospars{theta} - {x^{1/2} over r}}cos^{2a -1}pars{theta}
sin^{1 - 2a}pars{theta}
\[3mm]&=2int_{0}^{infty}dd t,expo{-t}int_{0}^{pi/2}ddtheta,
Thetapars{cospars{theta} - bracks{x over t}^{1/2}}cos^{2a -1}pars{theta}
sin^{1 - 2a}pars{theta}
\[3mm]&=2int_{0}^{infty}dd t,expo{-t}int_{0}^{1}dd t',
Thetapars{t' - bracks{x over t}^{1/2}}t'^{2a - 1}pars{1 - t'^{2}}^{-a}
\[3mm]&=2int_{0}^{infty}dd t,expo{-t}int_{0}^{1}dd t',half,t'^{-1/2}
Thetapars{t' - {x over t}}t'^{a - 1/2}pars{1 - t'}^{-a}
\[3mm]&=int_{0}^{infty}dd t,expo{-t}int_{0}^{1}dd t',
Thetapars{tt' - x}t'^{a - 1}pars{1 - t'}^{-a}
=int_{0}^{1}dd t',t'^{a - 1}pars{1 - t'}^{-a}int_{x/t'}^{infty}dd t,expo{-t}
\[3mm]&=int_{0}^{1}dd t',t'^{a - 1}pars{1 - t'}^{-a}expo{-x/t'}
=int_{infty}^{1}t^{1 - a}pars{1 - {1 over t}}^{-a}expo{-xt},
pars{-,{dd t over t^{2}}}
\[3mm]&=int_{1}^{infty}t^{-1}pars{t - 1}^{-a}expo{-xt},dd t
=int_{0}^{infty}{t^{-a} over t + 1}expo{-xpars{t + 1}},dd t
=expo{-x}int_{0}^{infty}{expo{-xt}t^{-a} over t + 1},dd t
\[3mm]&=
color{#f00}{expo{-x}x^{a}int_{0}^{infty}{expo{-t}t^{-a} over t + x},dd t}
end{align}
Then
$$color{#00f}{large%
Gammapars{a,x} = {expo{-x}x^{a} over Gammapars{1 - a}}
int_{0}^{infty}{expo{-t}t^{-a} over x + t},dd t}
$$
Wow, that must have been painful!
– JPi
Feb 23 '14 at 23:55
@JPi Yes. I went back and forth before I saw the right road. Thanks.
– Felix Marin
Feb 23 '14 at 23:56
@FelixMarin Thanks a lot.
– sky-light
Feb 24 '14 at 9:38
add a comment |
up vote
5
down vote
accepted
up vote
5
down vote
accepted
$newcommand{+}{^{dagger}}%
newcommand{angles}[1]{leftlangle #1 rightrangle}%
newcommand{braces}[1]{leftlbrace #1 rightrbrace}%
newcommand{bracks}[1]{leftlbrack #1 rightrbrack}%
newcommand{ceil}[1]{,leftlceil #1 rightrceil,}%
newcommand{dd}{{rm d}}%
newcommand{down}{downarrow}%
newcommand{ds}[1]{displaystyle{#1}}%
newcommand{equalby}[1]{{#1 atop {= atop vphantom{huge A}}}}%
newcommand{expo}[1]{,{rm e}^{#1},}%
newcommand{fermi}{,{rm f}}%
newcommand{floor}[1]{,leftlfloor #1 rightrfloor,}%
newcommand{half}{{1 over 2}}%
newcommand{ic}{{rm i}}%
newcommand{iff}{Longleftrightarrow}
newcommand{imp}{Longrightarrow}%
newcommand{isdiv}{,left.rightvert,}%
newcommand{ket}[1]{leftvert #1rightrangle}%
newcommand{ol}[1]{overline{#1}}%
newcommand{pars}[1]{left( #1 right)}%
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{pp}{{cal P}}%
newcommand{root}[2]{,sqrt[#1]{,#2,},}%
newcommand{sech}{,{rm sech}}%
newcommand{sgn}{,{rm sgn}}%
newcommand{totald}[3]{frac{{rm d}^{#1} #2}{{rm d} #3^{#1}}}
newcommand{ul}[1]{underline{#1}}%
newcommand{verts}[1]{leftvert, #1 ,rightvert}$
$ds{Gammapars{a,x} = {expo{-x}x^{a} over Gammapars{1 - a}}
int_{0}^{infty}{expo{-t}t^{-a} over x + t},dd t: {Large ?}}$
begin{align}
&color{#f00}{Gammapars{a,x}Gammapars{1 - a}}=
int_{x}^{infty}dd t,t^{a - 1}expo{-t}int_{0}^{infty}dd t',
t'^{pars{1 - a} - 1}expo{-t'}
\[3mm]&=int_{x^{1/2}}^{infty}dd t,pars{2t}t^{2a - 2}expo{-t^{2}}
int_{0}^{infty}dd t',pars{2t'}t'^{-2a}expo{-t'^{2}}
\[3mm]&=4int_{0}^{infty}int_{0}^{infty}Thetapars{t - x^{1/2}}t^{2a - 1}
t'^{1 - 2a}expo{-pars{t^{2} + t'^{2}}},dd t,dd t'
\[3mm]&=4int_{0}^{pi/2}ddthetaint_{0}^{infty}dd r,r,
Thetapars{rcospars{theta} - x^{1/2}}r^{2a - 1}cos^{2a - 1pars{theta}}
r^{1 - 2a}sin^{1 - 2a}pars{theta}expo{-r^{2}}
\[3mm]&=4int_{0}^{infty}dd r,rexpo{-r^{2}}int_{0}^{pi/2}ddtheta,
Thetapars{cospars{theta} - {x^{1/2} over r}}cos^{2a -1}pars{theta}
sin^{1 - 2a}pars{theta}
\[3mm]&=2int_{0}^{infty}dd t,expo{-t}int_{0}^{pi/2}ddtheta,
Thetapars{cospars{theta} - bracks{x over t}^{1/2}}cos^{2a -1}pars{theta}
sin^{1 - 2a}pars{theta}
\[3mm]&=2int_{0}^{infty}dd t,expo{-t}int_{0}^{1}dd t',
Thetapars{t' - bracks{x over t}^{1/2}}t'^{2a - 1}pars{1 - t'^{2}}^{-a}
\[3mm]&=2int_{0}^{infty}dd t,expo{-t}int_{0}^{1}dd t',half,t'^{-1/2}
Thetapars{t' - {x over t}}t'^{a - 1/2}pars{1 - t'}^{-a}
\[3mm]&=int_{0}^{infty}dd t,expo{-t}int_{0}^{1}dd t',
Thetapars{tt' - x}t'^{a - 1}pars{1 - t'}^{-a}
=int_{0}^{1}dd t',t'^{a - 1}pars{1 - t'}^{-a}int_{x/t'}^{infty}dd t,expo{-t}
\[3mm]&=int_{0}^{1}dd t',t'^{a - 1}pars{1 - t'}^{-a}expo{-x/t'}
=int_{infty}^{1}t^{1 - a}pars{1 - {1 over t}}^{-a}expo{-xt},
pars{-,{dd t over t^{2}}}
\[3mm]&=int_{1}^{infty}t^{-1}pars{t - 1}^{-a}expo{-xt},dd t
=int_{0}^{infty}{t^{-a} over t + 1}expo{-xpars{t + 1}},dd t
=expo{-x}int_{0}^{infty}{expo{-xt}t^{-a} over t + 1},dd t
\[3mm]&=
color{#f00}{expo{-x}x^{a}int_{0}^{infty}{expo{-t}t^{-a} over t + x},dd t}
end{align}
Then
$$color{#00f}{large%
Gammapars{a,x} = {expo{-x}x^{a} over Gammapars{1 - a}}
int_{0}^{infty}{expo{-t}t^{-a} over x + t},dd t}
$$
$newcommand{+}{^{dagger}}%
newcommand{angles}[1]{leftlangle #1 rightrangle}%
newcommand{braces}[1]{leftlbrace #1 rightrbrace}%
newcommand{bracks}[1]{leftlbrack #1 rightrbrack}%
newcommand{ceil}[1]{,leftlceil #1 rightrceil,}%
newcommand{dd}{{rm d}}%
newcommand{down}{downarrow}%
newcommand{ds}[1]{displaystyle{#1}}%
newcommand{equalby}[1]{{#1 atop {= atop vphantom{huge A}}}}%
newcommand{expo}[1]{,{rm e}^{#1},}%
newcommand{fermi}{,{rm f}}%
newcommand{floor}[1]{,leftlfloor #1 rightrfloor,}%
newcommand{half}{{1 over 2}}%
newcommand{ic}{{rm i}}%
newcommand{iff}{Longleftrightarrow}
newcommand{imp}{Longrightarrow}%
newcommand{isdiv}{,left.rightvert,}%
newcommand{ket}[1]{leftvert #1rightrangle}%
newcommand{ol}[1]{overline{#1}}%
newcommand{pars}[1]{left( #1 right)}%
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{pp}{{cal P}}%
newcommand{root}[2]{,sqrt[#1]{,#2,},}%
newcommand{sech}{,{rm sech}}%
newcommand{sgn}{,{rm sgn}}%
newcommand{totald}[3]{frac{{rm d}^{#1} #2}{{rm d} #3^{#1}}}
newcommand{ul}[1]{underline{#1}}%
newcommand{verts}[1]{leftvert, #1 ,rightvert}$
$ds{Gammapars{a,x} = {expo{-x}x^{a} over Gammapars{1 - a}}
int_{0}^{infty}{expo{-t}t^{-a} over x + t},dd t: {Large ?}}$
begin{align}
&color{#f00}{Gammapars{a,x}Gammapars{1 - a}}=
int_{x}^{infty}dd t,t^{a - 1}expo{-t}int_{0}^{infty}dd t',
t'^{pars{1 - a} - 1}expo{-t'}
\[3mm]&=int_{x^{1/2}}^{infty}dd t,pars{2t}t^{2a - 2}expo{-t^{2}}
int_{0}^{infty}dd t',pars{2t'}t'^{-2a}expo{-t'^{2}}
\[3mm]&=4int_{0}^{infty}int_{0}^{infty}Thetapars{t - x^{1/2}}t^{2a - 1}
t'^{1 - 2a}expo{-pars{t^{2} + t'^{2}}},dd t,dd t'
\[3mm]&=4int_{0}^{pi/2}ddthetaint_{0}^{infty}dd r,r,
Thetapars{rcospars{theta} - x^{1/2}}r^{2a - 1}cos^{2a - 1pars{theta}}
r^{1 - 2a}sin^{1 - 2a}pars{theta}expo{-r^{2}}
\[3mm]&=4int_{0}^{infty}dd r,rexpo{-r^{2}}int_{0}^{pi/2}ddtheta,
Thetapars{cospars{theta} - {x^{1/2} over r}}cos^{2a -1}pars{theta}
sin^{1 - 2a}pars{theta}
\[3mm]&=2int_{0}^{infty}dd t,expo{-t}int_{0}^{pi/2}ddtheta,
Thetapars{cospars{theta} - bracks{x over t}^{1/2}}cos^{2a -1}pars{theta}
sin^{1 - 2a}pars{theta}
\[3mm]&=2int_{0}^{infty}dd t,expo{-t}int_{0}^{1}dd t',
Thetapars{t' - bracks{x over t}^{1/2}}t'^{2a - 1}pars{1 - t'^{2}}^{-a}
\[3mm]&=2int_{0}^{infty}dd t,expo{-t}int_{0}^{1}dd t',half,t'^{-1/2}
Thetapars{t' - {x over t}}t'^{a - 1/2}pars{1 - t'}^{-a}
\[3mm]&=int_{0}^{infty}dd t,expo{-t}int_{0}^{1}dd t',
Thetapars{tt' - x}t'^{a - 1}pars{1 - t'}^{-a}
=int_{0}^{1}dd t',t'^{a - 1}pars{1 - t'}^{-a}int_{x/t'}^{infty}dd t,expo{-t}
\[3mm]&=int_{0}^{1}dd t',t'^{a - 1}pars{1 - t'}^{-a}expo{-x/t'}
=int_{infty}^{1}t^{1 - a}pars{1 - {1 over t}}^{-a}expo{-xt},
pars{-,{dd t over t^{2}}}
\[3mm]&=int_{1}^{infty}t^{-1}pars{t - 1}^{-a}expo{-xt},dd t
=int_{0}^{infty}{t^{-a} over t + 1}expo{-xpars{t + 1}},dd t
=expo{-x}int_{0}^{infty}{expo{-xt}t^{-a} over t + 1},dd t
\[3mm]&=
color{#f00}{expo{-x}x^{a}int_{0}^{infty}{expo{-t}t^{-a} over t + x},dd t}
end{align}
Then
$$color{#00f}{large%
Gammapars{a,x} = {expo{-x}x^{a} over Gammapars{1 - a}}
int_{0}^{infty}{expo{-t}t^{-a} over x + t},dd t}
$$
answered Feb 23 '14 at 22:34
Felix Marin
66.2k7107139
66.2k7107139
Wow, that must have been painful!
– JPi
Feb 23 '14 at 23:55
@JPi Yes. I went back and forth before I saw the right road. Thanks.
– Felix Marin
Feb 23 '14 at 23:56
@FelixMarin Thanks a lot.
– sky-light
Feb 24 '14 at 9:38
add a comment |
Wow, that must have been painful!
– JPi
Feb 23 '14 at 23:55
@JPi Yes. I went back and forth before I saw the right road. Thanks.
– Felix Marin
Feb 23 '14 at 23:56
@FelixMarin Thanks a lot.
– sky-light
Feb 24 '14 at 9:38
Wow, that must have been painful!
– JPi
Feb 23 '14 at 23:55
Wow, that must have been painful!
– JPi
Feb 23 '14 at 23:55
@JPi Yes. I went back and forth before I saw the right road. Thanks.
– Felix Marin
Feb 23 '14 at 23:56
@JPi Yes. I went back and forth before I saw the right road. Thanks.
– Felix Marin
Feb 23 '14 at 23:56
@FelixMarin Thanks a lot.
– sky-light
Feb 24 '14 at 9:38
@FelixMarin Thanks a lot.
– sky-light
Feb 24 '14 at 9:38
add a comment |
up vote
0
down vote
It should be $e$. See the Handbook of Mathematical Functions, 8.6.4.
Do you mean "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables 1970" By Milton Abramowitz, Irene A. Stegun? Page 334 equation 8.6.4 is it related to my case?
– sky-light
Feb 23 '14 at 22:09
1
No, the NIST Handbook of Mathematical Functions by Olver et al.. It is identical to your case except that $rho$ in your formula is $e$ in theirs.
– JPi
Feb 23 '14 at 23:48
add a comment |
up vote
0
down vote
It should be $e$. See the Handbook of Mathematical Functions, 8.6.4.
Do you mean "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables 1970" By Milton Abramowitz, Irene A. Stegun? Page 334 equation 8.6.4 is it related to my case?
– sky-light
Feb 23 '14 at 22:09
1
No, the NIST Handbook of Mathematical Functions by Olver et al.. It is identical to your case except that $rho$ in your formula is $e$ in theirs.
– JPi
Feb 23 '14 at 23:48
add a comment |
up vote
0
down vote
up vote
0
down vote
It should be $e$. See the Handbook of Mathematical Functions, 8.6.4.
It should be $e$. See the Handbook of Mathematical Functions, 8.6.4.
answered Feb 23 '14 at 21:05
JPi
3,872519
3,872519
Do you mean "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables 1970" By Milton Abramowitz, Irene A. Stegun? Page 334 equation 8.6.4 is it related to my case?
– sky-light
Feb 23 '14 at 22:09
1
No, the NIST Handbook of Mathematical Functions by Olver et al.. It is identical to your case except that $rho$ in your formula is $e$ in theirs.
– JPi
Feb 23 '14 at 23:48
add a comment |
Do you mean "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables 1970" By Milton Abramowitz, Irene A. Stegun? Page 334 equation 8.6.4 is it related to my case?
– sky-light
Feb 23 '14 at 22:09
1
No, the NIST Handbook of Mathematical Functions by Olver et al.. It is identical to your case except that $rho$ in your formula is $e$ in theirs.
– JPi
Feb 23 '14 at 23:48
Do you mean "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables 1970" By Milton Abramowitz, Irene A. Stegun? Page 334 equation 8.6.4 is it related to my case?
– sky-light
Feb 23 '14 at 22:09
Do you mean "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables 1970" By Milton Abramowitz, Irene A. Stegun? Page 334 equation 8.6.4 is it related to my case?
– sky-light
Feb 23 '14 at 22:09
1
1
No, the NIST Handbook of Mathematical Functions by Olver et al.. It is identical to your case except that $rho$ in your formula is $e$ in theirs.
– JPi
Feb 23 '14 at 23:48
No, the NIST Handbook of Mathematical Functions by Olver et al.. It is identical to your case except that $rho$ in your formula is $e$ in theirs.
– JPi
Feb 23 '14 at 23:48
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f687605%2fother-representation-of-gamma-incomplete-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown