Increasing sequence of events and the probability of their limit
If $A_1subset A_2subset A_3subsetcdots$ is an increasing sequence of events with limit $A=bigcup_{i=1}^infty A_i$. Prove that $$lim_{nrightarrowinfty} P(A_n)=P(A)$$
My attempt so far:
Since $A_1subset A_2subset A_3subsetcdots$ is increasing and $$bigcup_{i=1}^infty A_i=lim_{nrightarrowinfty} A_n wedge A=bigcup_{i=1}^infty A_i$$ then $lim_{nrightarrowinfty}A_n=A$. I have that $$Pleft(lim_{nrightarrowinfty}A_nright)=P(A)Rightarrow lim_{nrightarrowinfty}P(A_n)=P(A)$$
probability probability-theory
add a comment |
If $A_1subset A_2subset A_3subsetcdots$ is an increasing sequence of events with limit $A=bigcup_{i=1}^infty A_i$. Prove that $$lim_{nrightarrowinfty} P(A_n)=P(A)$$
My attempt so far:
Since $A_1subset A_2subset A_3subsetcdots$ is increasing and $$bigcup_{i=1}^infty A_i=lim_{nrightarrowinfty} A_n wedge A=bigcup_{i=1}^infty A_i$$ then $lim_{nrightarrowinfty}A_n=A$. I have that $$Pleft(lim_{nrightarrowinfty}A_nright)=P(A)Rightarrow lim_{nrightarrowinfty}P(A_n)=P(A)$$
probability probability-theory
add a comment |
If $A_1subset A_2subset A_3subsetcdots$ is an increasing sequence of events with limit $A=bigcup_{i=1}^infty A_i$. Prove that $$lim_{nrightarrowinfty} P(A_n)=P(A)$$
My attempt so far:
Since $A_1subset A_2subset A_3subsetcdots$ is increasing and $$bigcup_{i=1}^infty A_i=lim_{nrightarrowinfty} A_n wedge A=bigcup_{i=1}^infty A_i$$ then $lim_{nrightarrowinfty}A_n=A$. I have that $$Pleft(lim_{nrightarrowinfty}A_nright)=P(A)Rightarrow lim_{nrightarrowinfty}P(A_n)=P(A)$$
probability probability-theory
If $A_1subset A_2subset A_3subsetcdots$ is an increasing sequence of events with limit $A=bigcup_{i=1}^infty A_i$. Prove that $$lim_{nrightarrowinfty} P(A_n)=P(A)$$
My attempt so far:
Since $A_1subset A_2subset A_3subsetcdots$ is increasing and $$bigcup_{i=1}^infty A_i=lim_{nrightarrowinfty} A_n wedge A=bigcup_{i=1}^infty A_i$$ then $lim_{nrightarrowinfty}A_n=A$. I have that $$Pleft(lim_{nrightarrowinfty}A_nright)=P(A)Rightarrow lim_{nrightarrowinfty}P(A_n)=P(A)$$
probability probability-theory
probability probability-theory
edited Oct 6 '16 at 15:46
Jimmy R.
33k42157
33k42157
asked Oct 6 '16 at 15:34
seeit
113
113
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
Hint: One usually require from a probability to be $sigma$-additive, i.e. when $(B_i)_{igeq 1}$ is a countable disjointed family, then $P(bigcup_i B_i)=sum_i P(B_i)$. So try to rewrite your increasing union as a countable union of disjoint sets.
add a comment |
Let $B_1 = A_1$ and $B_{n+1} = A_{n+1}setminus A_n$ for $nge 1$. Then
$$
A_N = bigcup_{n=1}^N B_n
$$
and
$$
bigcup_{n=1}^infty A_n = bigcup_{n=1}^infty B_n,
$$
and
$$
B_n cap B_m = varnothing text{ for } nne m.
$$
So
begin{align}
P(A) & = Pleft( bigcup_{n=1}^infty A_n right) = Pleft( bigcup_{n=1}^infty B_n right) \[10pt]
& = sum_{n=1}^infty P(B_n) qquad left( begin{array}{l} text{by countable additivity of } P text{ and} \ text{pairwise disjointness of } {B_n}_{n=1}^infty end{array} right) \[10pt]
& = lim_{Ntoinfty} sum_{n=1}^N P(B_n) = lim_{Ntoinfty} Pleft( bigcup_{n=1}^N B_n right) = lim_{Ntoinfty} P(A_N).
end{align}
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1956702%2fincreasing-sequence-of-events-and-the-probability-of-their-limit%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
Hint: One usually require from a probability to be $sigma$-additive, i.e. when $(B_i)_{igeq 1}$ is a countable disjointed family, then $P(bigcup_i B_i)=sum_i P(B_i)$. So try to rewrite your increasing union as a countable union of disjoint sets.
add a comment |
Hint: One usually require from a probability to be $sigma$-additive, i.e. when $(B_i)_{igeq 1}$ is a countable disjointed family, then $P(bigcup_i B_i)=sum_i P(B_i)$. So try to rewrite your increasing union as a countable union of disjoint sets.
add a comment |
Hint: One usually require from a probability to be $sigma$-additive, i.e. when $(B_i)_{igeq 1}$ is a countable disjointed family, then $P(bigcup_i B_i)=sum_i P(B_i)$. So try to rewrite your increasing union as a countable union of disjoint sets.
Hint: One usually require from a probability to be $sigma$-additive, i.e. when $(B_i)_{igeq 1}$ is a countable disjointed family, then $P(bigcup_i B_i)=sum_i P(B_i)$. So try to rewrite your increasing union as a countable union of disjoint sets.
edited Oct 6 '16 at 15:46
Michael Hardy
1
1
answered Oct 6 '16 at 15:42
H. H. Rugh
23.2k11134
23.2k11134
add a comment |
add a comment |
Let $B_1 = A_1$ and $B_{n+1} = A_{n+1}setminus A_n$ for $nge 1$. Then
$$
A_N = bigcup_{n=1}^N B_n
$$
and
$$
bigcup_{n=1}^infty A_n = bigcup_{n=1}^infty B_n,
$$
and
$$
B_n cap B_m = varnothing text{ for } nne m.
$$
So
begin{align}
P(A) & = Pleft( bigcup_{n=1}^infty A_n right) = Pleft( bigcup_{n=1}^infty B_n right) \[10pt]
& = sum_{n=1}^infty P(B_n) qquad left( begin{array}{l} text{by countable additivity of } P text{ and} \ text{pairwise disjointness of } {B_n}_{n=1}^infty end{array} right) \[10pt]
& = lim_{Ntoinfty} sum_{n=1}^N P(B_n) = lim_{Ntoinfty} Pleft( bigcup_{n=1}^N B_n right) = lim_{Ntoinfty} P(A_N).
end{align}
add a comment |
Let $B_1 = A_1$ and $B_{n+1} = A_{n+1}setminus A_n$ for $nge 1$. Then
$$
A_N = bigcup_{n=1}^N B_n
$$
and
$$
bigcup_{n=1}^infty A_n = bigcup_{n=1}^infty B_n,
$$
and
$$
B_n cap B_m = varnothing text{ for } nne m.
$$
So
begin{align}
P(A) & = Pleft( bigcup_{n=1}^infty A_n right) = Pleft( bigcup_{n=1}^infty B_n right) \[10pt]
& = sum_{n=1}^infty P(B_n) qquad left( begin{array}{l} text{by countable additivity of } P text{ and} \ text{pairwise disjointness of } {B_n}_{n=1}^infty end{array} right) \[10pt]
& = lim_{Ntoinfty} sum_{n=1}^N P(B_n) = lim_{Ntoinfty} Pleft( bigcup_{n=1}^N B_n right) = lim_{Ntoinfty} P(A_N).
end{align}
add a comment |
Let $B_1 = A_1$ and $B_{n+1} = A_{n+1}setminus A_n$ for $nge 1$. Then
$$
A_N = bigcup_{n=1}^N B_n
$$
and
$$
bigcup_{n=1}^infty A_n = bigcup_{n=1}^infty B_n,
$$
and
$$
B_n cap B_m = varnothing text{ for } nne m.
$$
So
begin{align}
P(A) & = Pleft( bigcup_{n=1}^infty A_n right) = Pleft( bigcup_{n=1}^infty B_n right) \[10pt]
& = sum_{n=1}^infty P(B_n) qquad left( begin{array}{l} text{by countable additivity of } P text{ and} \ text{pairwise disjointness of } {B_n}_{n=1}^infty end{array} right) \[10pt]
& = lim_{Ntoinfty} sum_{n=1}^N P(B_n) = lim_{Ntoinfty} Pleft( bigcup_{n=1}^N B_n right) = lim_{Ntoinfty} P(A_N).
end{align}
Let $B_1 = A_1$ and $B_{n+1} = A_{n+1}setminus A_n$ for $nge 1$. Then
$$
A_N = bigcup_{n=1}^N B_n
$$
and
$$
bigcup_{n=1}^infty A_n = bigcup_{n=1}^infty B_n,
$$
and
$$
B_n cap B_m = varnothing text{ for } nne m.
$$
So
begin{align}
P(A) & = Pleft( bigcup_{n=1}^infty A_n right) = Pleft( bigcup_{n=1}^infty B_n right) \[10pt]
& = sum_{n=1}^infty P(B_n) qquad left( begin{array}{l} text{by countable additivity of } P text{ and} \ text{pairwise disjointness of } {B_n}_{n=1}^infty end{array} right) \[10pt]
& = lim_{Ntoinfty} sum_{n=1}^N P(B_n) = lim_{Ntoinfty} Pleft( bigcup_{n=1}^N B_n right) = lim_{Ntoinfty} P(A_N).
end{align}
edited Oct 9 '16 at 23:15
answered Oct 6 '16 at 15:44
Michael Hardy
1
1
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1956702%2fincreasing-sequence-of-events-and-the-probability-of-their-limit%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown