Polynomial defined by products of binomial coefficients
up vote
2
down vote
favorite
Consider the polynomial in $x$,
$$sum_{k=1}^n {n choose k} {m+k-1 choose m} x^k , $$
where $m$ and $n$ are positive non-zero integers.
Question: can it be expressed in terms of known function(s) of $x$?
complex-analysis polynomials
add a comment |
up vote
2
down vote
favorite
Consider the polynomial in $x$,
$$sum_{k=1}^n {n choose k} {m+k-1 choose m} x^k , $$
where $m$ and $n$ are positive non-zero integers.
Question: can it be expressed in terms of known function(s) of $x$?
complex-analysis polynomials
It would be interesting (and possibly helpful) to know what motivates your Question. As you define it, each fixed positive integer $m$ will give rise to a family of polynomials with degrees $n=1,2,3,ldots$. Checking a few examples might help by ruling out some of the well-known polynomial families.
– hardmath
Nov 26 at 21:45
2
The expression is the result of an integral based on a conformal transformation, $x$ is a parameter in the mapping, $m$ and $n$ are Fourier coefficients in the original and mapped domains.
– sirron
Nov 26 at 21:59
add a comment |
up vote
2
down vote
favorite
up vote
2
down vote
favorite
Consider the polynomial in $x$,
$$sum_{k=1}^n {n choose k} {m+k-1 choose m} x^k , $$
where $m$ and $n$ are positive non-zero integers.
Question: can it be expressed in terms of known function(s) of $x$?
complex-analysis polynomials
Consider the polynomial in $x$,
$$sum_{k=1}^n {n choose k} {m+k-1 choose m} x^k , $$
where $m$ and $n$ are positive non-zero integers.
Question: can it be expressed in terms of known function(s) of $x$?
complex-analysis polynomials
complex-analysis polynomials
asked Nov 26 at 21:35
sirron
111
111
It would be interesting (and possibly helpful) to know what motivates your Question. As you define it, each fixed positive integer $m$ will give rise to a family of polynomials with degrees $n=1,2,3,ldots$. Checking a few examples might help by ruling out some of the well-known polynomial families.
– hardmath
Nov 26 at 21:45
2
The expression is the result of an integral based on a conformal transformation, $x$ is a parameter in the mapping, $m$ and $n$ are Fourier coefficients in the original and mapped domains.
– sirron
Nov 26 at 21:59
add a comment |
It would be interesting (and possibly helpful) to know what motivates your Question. As you define it, each fixed positive integer $m$ will give rise to a family of polynomials with degrees $n=1,2,3,ldots$. Checking a few examples might help by ruling out some of the well-known polynomial families.
– hardmath
Nov 26 at 21:45
2
The expression is the result of an integral based on a conformal transformation, $x$ is a parameter in the mapping, $m$ and $n$ are Fourier coefficients in the original and mapped domains.
– sirron
Nov 26 at 21:59
It would be interesting (and possibly helpful) to know what motivates your Question. As you define it, each fixed positive integer $m$ will give rise to a family of polynomials with degrees $n=1,2,3,ldots$. Checking a few examples might help by ruling out some of the well-known polynomial families.
– hardmath
Nov 26 at 21:45
It would be interesting (and possibly helpful) to know what motivates your Question. As you define it, each fixed positive integer $m$ will give rise to a family of polynomials with degrees $n=1,2,3,ldots$. Checking a few examples might help by ruling out some of the well-known polynomial families.
– hardmath
Nov 26 at 21:45
2
2
The expression is the result of an integral based on a conformal transformation, $x$ is a parameter in the mapping, $m$ and $n$ are Fourier coefficients in the original and mapped domains.
– sirron
Nov 26 at 21:59
The expression is the result of an integral based on a conformal transformation, $x$ is a parameter in the mapping, $m$ and $n$ are Fourier coefficients in the original and mapped domains.
– sirron
Nov 26 at 21:59
add a comment |
1 Answer
1
active
oldest
votes
up vote
1
down vote
If you want the generic function$$f_{m,n}(x)=sum_{k=1}^n {n choose k} {m+k-1 choose m} x^k$$ $$f_{m,n}(x)=n, x ,, _2F_1(m+1,1-n;2;-x)$$ where appears the Gaussian or ordinary hypergeometric function (see here).
A few expressions
$$left(
begin{array}{cc}
m & f_{m,n}(x) \
0 & (x+1)^n-1 \
1 & n x (x+1)^{n-1} \
2 & frac{1}{2} n x (x+1)^{n-2} ((n+1) x+2) \
3 & frac{1}{6} n x (x+1)^{n-3} left((n^2 +3 n +2) x^2+6 (n+1) x+6right)
end{array}
right)$$ which are just polynomials of degree $n$.
If you define
$$g_{m,n}(x)=frac{m!} {n ,x, (x+1)^{n-m}}, f_{m,n}(x)=P_{m-1}(x)$$
The polynomial $P_{m-1}$ can be identified using the identity (see <a href="functions.wolfram.com/HypergeometricFunctions/Hypergeometric2F1/…) $$, _2F_{1}(a,b;c;z) = (1-z)^{c-a-b} , _2F_{1}(c-a,c-b;c;z)$$ as $$P_{m-1}(x) = m! , _2F_{1}(1-m,n+1; 2; -x)$$
– sirron
Nov 29 at 15:51
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
If you want the generic function$$f_{m,n}(x)=sum_{k=1}^n {n choose k} {m+k-1 choose m} x^k$$ $$f_{m,n}(x)=n, x ,, _2F_1(m+1,1-n;2;-x)$$ where appears the Gaussian or ordinary hypergeometric function (see here).
A few expressions
$$left(
begin{array}{cc}
m & f_{m,n}(x) \
0 & (x+1)^n-1 \
1 & n x (x+1)^{n-1} \
2 & frac{1}{2} n x (x+1)^{n-2} ((n+1) x+2) \
3 & frac{1}{6} n x (x+1)^{n-3} left((n^2 +3 n +2) x^2+6 (n+1) x+6right)
end{array}
right)$$ which are just polynomials of degree $n$.
If you define
$$g_{m,n}(x)=frac{m!} {n ,x, (x+1)^{n-m}}, f_{m,n}(x)=P_{m-1}(x)$$
The polynomial $P_{m-1}$ can be identified using the identity (see <a href="functions.wolfram.com/HypergeometricFunctions/Hypergeometric2F1/…) $$, _2F_{1}(a,b;c;z) = (1-z)^{c-a-b} , _2F_{1}(c-a,c-b;c;z)$$ as $$P_{m-1}(x) = m! , _2F_{1}(1-m,n+1; 2; -x)$$
– sirron
Nov 29 at 15:51
add a comment |
up vote
1
down vote
If you want the generic function$$f_{m,n}(x)=sum_{k=1}^n {n choose k} {m+k-1 choose m} x^k$$ $$f_{m,n}(x)=n, x ,, _2F_1(m+1,1-n;2;-x)$$ where appears the Gaussian or ordinary hypergeometric function (see here).
A few expressions
$$left(
begin{array}{cc}
m & f_{m,n}(x) \
0 & (x+1)^n-1 \
1 & n x (x+1)^{n-1} \
2 & frac{1}{2} n x (x+1)^{n-2} ((n+1) x+2) \
3 & frac{1}{6} n x (x+1)^{n-3} left((n^2 +3 n +2) x^2+6 (n+1) x+6right)
end{array}
right)$$ which are just polynomials of degree $n$.
If you define
$$g_{m,n}(x)=frac{m!} {n ,x, (x+1)^{n-m}}, f_{m,n}(x)=P_{m-1}(x)$$
The polynomial $P_{m-1}$ can be identified using the identity (see <a href="functions.wolfram.com/HypergeometricFunctions/Hypergeometric2F1/…) $$, _2F_{1}(a,b;c;z) = (1-z)^{c-a-b} , _2F_{1}(c-a,c-b;c;z)$$ as $$P_{m-1}(x) = m! , _2F_{1}(1-m,n+1; 2; -x)$$
– sirron
Nov 29 at 15:51
add a comment |
up vote
1
down vote
up vote
1
down vote
If you want the generic function$$f_{m,n}(x)=sum_{k=1}^n {n choose k} {m+k-1 choose m} x^k$$ $$f_{m,n}(x)=n, x ,, _2F_1(m+1,1-n;2;-x)$$ where appears the Gaussian or ordinary hypergeometric function (see here).
A few expressions
$$left(
begin{array}{cc}
m & f_{m,n}(x) \
0 & (x+1)^n-1 \
1 & n x (x+1)^{n-1} \
2 & frac{1}{2} n x (x+1)^{n-2} ((n+1) x+2) \
3 & frac{1}{6} n x (x+1)^{n-3} left((n^2 +3 n +2) x^2+6 (n+1) x+6right)
end{array}
right)$$ which are just polynomials of degree $n$.
If you define
$$g_{m,n}(x)=frac{m!} {n ,x, (x+1)^{n-m}}, f_{m,n}(x)=P_{m-1}(x)$$
If you want the generic function$$f_{m,n}(x)=sum_{k=1}^n {n choose k} {m+k-1 choose m} x^k$$ $$f_{m,n}(x)=n, x ,, _2F_1(m+1,1-n;2;-x)$$ where appears the Gaussian or ordinary hypergeometric function (see here).
A few expressions
$$left(
begin{array}{cc}
m & f_{m,n}(x) \
0 & (x+1)^n-1 \
1 & n x (x+1)^{n-1} \
2 & frac{1}{2} n x (x+1)^{n-2} ((n+1) x+2) \
3 & frac{1}{6} n x (x+1)^{n-3} left((n^2 +3 n +2) x^2+6 (n+1) x+6right)
end{array}
right)$$ which are just polynomials of degree $n$.
If you define
$$g_{m,n}(x)=frac{m!} {n ,x, (x+1)^{n-m}}, f_{m,n}(x)=P_{m-1}(x)$$
edited Nov 27 at 9:21
answered Nov 27 at 6:29
Claude Leibovici
117k1156131
117k1156131
The polynomial $P_{m-1}$ can be identified using the identity (see <a href="functions.wolfram.com/HypergeometricFunctions/Hypergeometric2F1/…) $$, _2F_{1}(a,b;c;z) = (1-z)^{c-a-b} , _2F_{1}(c-a,c-b;c;z)$$ as $$P_{m-1}(x) = m! , _2F_{1}(1-m,n+1; 2; -x)$$
– sirron
Nov 29 at 15:51
add a comment |
The polynomial $P_{m-1}$ can be identified using the identity (see <a href="functions.wolfram.com/HypergeometricFunctions/Hypergeometric2F1/…) $$, _2F_{1}(a,b;c;z) = (1-z)^{c-a-b} , _2F_{1}(c-a,c-b;c;z)$$ as $$P_{m-1}(x) = m! , _2F_{1}(1-m,n+1; 2; -x)$$
– sirron
Nov 29 at 15:51
The polynomial $P_{m-1}$ can be identified using the identity (see <a href="functions.wolfram.com/HypergeometricFunctions/Hypergeometric2F1/…) $$, _2F_{1}(a,b;c;z) = (1-z)^{c-a-b} , _2F_{1}(c-a,c-b;c;z)$$ as $$P_{m-1}(x) = m! , _2F_{1}(1-m,n+1; 2; -x)$$
– sirron
Nov 29 at 15:51
The polynomial $P_{m-1}$ can be identified using the identity (see <a href="functions.wolfram.com/HypergeometricFunctions/Hypergeometric2F1/…) $$, _2F_{1}(a,b;c;z) = (1-z)^{c-a-b} , _2F_{1}(c-a,c-b;c;z)$$ as $$P_{m-1}(x) = m! , _2F_{1}(1-m,n+1; 2; -x)$$
– sirron
Nov 29 at 15:51
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3014963%2fpolynomial-defined-by-products-of-binomial-coefficients%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
It would be interesting (and possibly helpful) to know what motivates your Question. As you define it, each fixed positive integer $m$ will give rise to a family of polynomials with degrees $n=1,2,3,ldots$. Checking a few examples might help by ruling out some of the well-known polynomial families.
– hardmath
Nov 26 at 21:45
2
The expression is the result of an integral based on a conformal transformation, $x$ is a parameter in the mapping, $m$ and $n$ are Fourier coefficients in the original and mapped domains.
– sirron
Nov 26 at 21:59