Evaluating this limit without Taylor $lim_{xtoinfty} frac{x^3sin(x)}{x^2+x+1}$











up vote
-2
down vote

favorite












I need help with this limit, and without using Taylor series



$$lim_{xtoinfty} frac{x^3sin(x)}{x^2+x+1}$$










share|cite|improve this question
























  • Are you looking for that $frac{x^3sin x}{x^2+x+1}$?
    – gimusi
    Nov 22 at 22:34










  • If it is $displaystylelim_{xtoinfty}frac{x^3sin x}{x^2+x+1}$, then the limit obviously doesn't exist.
    – egreg
    Nov 22 at 22:36















up vote
-2
down vote

favorite












I need help with this limit, and without using Taylor series



$$lim_{xtoinfty} frac{x^3sin(x)}{x^2+x+1}$$










share|cite|improve this question
























  • Are you looking for that $frac{x^3sin x}{x^2+x+1}$?
    – gimusi
    Nov 22 at 22:34










  • If it is $displaystylelim_{xtoinfty}frac{x^3sin x}{x^2+x+1}$, then the limit obviously doesn't exist.
    – egreg
    Nov 22 at 22:36













up vote
-2
down vote

favorite









up vote
-2
down vote

favorite











I need help with this limit, and without using Taylor series



$$lim_{xtoinfty} frac{x^3sin(x)}{x^2+x+1}$$










share|cite|improve this question















I need help with this limit, and without using Taylor series



$$lim_{xtoinfty} frac{x^3sin(x)}{x^2+x+1}$$







limits






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 22 at 22:41









gimusi

88k74393




88k74393










asked Nov 22 at 22:32









Franco Cabrera

64




64












  • Are you looking for that $frac{x^3sin x}{x^2+x+1}$?
    – gimusi
    Nov 22 at 22:34










  • If it is $displaystylelim_{xtoinfty}frac{x^3sin x}{x^2+x+1}$, then the limit obviously doesn't exist.
    – egreg
    Nov 22 at 22:36


















  • Are you looking for that $frac{x^3sin x}{x^2+x+1}$?
    – gimusi
    Nov 22 at 22:34










  • If it is $displaystylelim_{xtoinfty}frac{x^3sin x}{x^2+x+1}$, then the limit obviously doesn't exist.
    – egreg
    Nov 22 at 22:36
















Are you looking for that $frac{x^3sin x}{x^2+x+1}$?
– gimusi
Nov 22 at 22:34




Are you looking for that $frac{x^3sin x}{x^2+x+1}$?
– gimusi
Nov 22 at 22:34












If it is $displaystylelim_{xtoinfty}frac{x^3sin x}{x^2+x+1}$, then the limit obviously doesn't exist.
– egreg
Nov 22 at 22:36




If it is $displaystylelim_{xtoinfty}frac{x^3sin x}{x^2+x+1}$, then the limit obviously doesn't exist.
– egreg
Nov 22 at 22:36










1 Answer
1






active

oldest

votes

















up vote
2
down vote













HINT



Let consider




  • for $x_n=2pi nto infty implies frac{x_n^3sin x_n}{x_n^2+x_n+1}to,?$


  • for $x_n=frac{pi}2+2pi nto infty implies frac{x_n^3sin x_n}{x_n^2+x_n+1}to ,?$







share|cite|improve this answer





















    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














     

    draft saved


    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3009760%2fevaluating-this-limit-without-taylor-lim-x-to-infty-fracx3-sinxx2x%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    2
    down vote













    HINT



    Let consider




    • for $x_n=2pi nto infty implies frac{x_n^3sin x_n}{x_n^2+x_n+1}to,?$


    • for $x_n=frac{pi}2+2pi nto infty implies frac{x_n^3sin x_n}{x_n^2+x_n+1}to ,?$







    share|cite|improve this answer

























      up vote
      2
      down vote













      HINT



      Let consider




      • for $x_n=2pi nto infty implies frac{x_n^3sin x_n}{x_n^2+x_n+1}to,?$


      • for $x_n=frac{pi}2+2pi nto infty implies frac{x_n^3sin x_n}{x_n^2+x_n+1}to ,?$







      share|cite|improve this answer























        up vote
        2
        down vote










        up vote
        2
        down vote









        HINT



        Let consider




        • for $x_n=2pi nto infty implies frac{x_n^3sin x_n}{x_n^2+x_n+1}to,?$


        • for $x_n=frac{pi}2+2pi nto infty implies frac{x_n^3sin x_n}{x_n^2+x_n+1}to ,?$







        share|cite|improve this answer












        HINT



        Let consider




        • for $x_n=2pi nto infty implies frac{x_n^3sin x_n}{x_n^2+x_n+1}to,?$


        • for $x_n=frac{pi}2+2pi nto infty implies frac{x_n^3sin x_n}{x_n^2+x_n+1}to ,?$








        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Nov 22 at 22:37









        gimusi

        88k74393




        88k74393






























             

            draft saved


            draft discarded



















































             


            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3009760%2fevaluating-this-limit-without-taylor-lim-x-to-infty-fracx3-sinxx2x%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Berounka

            Different font size/position of beamer's navigation symbols template's content depending on regular/plain...

            Sphinx de Gizeh