$p-$biased measure of increasing sets/upsets











up vote
1
down vote

favorite












Let $[n] = {1 , dots, n}$ and let $mathcal{A} in mathcal{P}([n])$ be an increasing set, i.e. if $x in mathcal{A}$ and $x subset y subset [n]$ then $y in mathcal{A}$.



For $p in [0,1]$, define the $p$-biased measure of a subset $A subset [n]$ to be:



$$mu_p(A) = p^{|A|}(1-p)^{n - |A|}$$



For a family of sets $mathcal{A} subset mathcal{P}([n])$, define:



$$mu_p(mathcal{A}) = sum_{A in mathcal{A}} mu_p(A)$$



Theorem 7 says that for $0 < p <1$ and $mathcal{A}, mathcal{B} subset mathcal{P}([n])$ both increasing families of sets, then:



$$mu_p(mathcal{A})mu_p(mathcal{B}) leq mu_p(mathcal{A} cap mathcal{B})$$



With some work, I've managed to show that:



$$mu_p(mathcal{A})mu_p(mathcal{B}) = sum_{A in mathcal{A} backslash mathcal{B} \ B inmathcal{B} backslash mathcal{A}}{mu_p(mathcal{A})mu_p(mathcal{B})} +
sum_{C in mathcal{A} cap mathcal{B}}{mu_p(C) sum_{A in mathcal{A} backslash mathcal{B} \ B inmathcal{B} backslash mathcal{A}} (mu_p(A) + mu_p(B)}) + (mu_p(mathcal{A} cap mathcal{B})^2$$



However, at this point I am stuck and I'm not sure how to proceed, or how to use the fact that $mathcal{A}, mathcal{B}$ are increasing sets. How can I use this piece of information?










share|cite|improve this question






















  • Have you checked the cited reference (Harris 1960)?
    – Clement C.
    Nov 22 at 22:21















up vote
1
down vote

favorite












Let $[n] = {1 , dots, n}$ and let $mathcal{A} in mathcal{P}([n])$ be an increasing set, i.e. if $x in mathcal{A}$ and $x subset y subset [n]$ then $y in mathcal{A}$.



For $p in [0,1]$, define the $p$-biased measure of a subset $A subset [n]$ to be:



$$mu_p(A) = p^{|A|}(1-p)^{n - |A|}$$



For a family of sets $mathcal{A} subset mathcal{P}([n])$, define:



$$mu_p(mathcal{A}) = sum_{A in mathcal{A}} mu_p(A)$$



Theorem 7 says that for $0 < p <1$ and $mathcal{A}, mathcal{B} subset mathcal{P}([n])$ both increasing families of sets, then:



$$mu_p(mathcal{A})mu_p(mathcal{B}) leq mu_p(mathcal{A} cap mathcal{B})$$



With some work, I've managed to show that:



$$mu_p(mathcal{A})mu_p(mathcal{B}) = sum_{A in mathcal{A} backslash mathcal{B} \ B inmathcal{B} backslash mathcal{A}}{mu_p(mathcal{A})mu_p(mathcal{B})} +
sum_{C in mathcal{A} cap mathcal{B}}{mu_p(C) sum_{A in mathcal{A} backslash mathcal{B} \ B inmathcal{B} backslash mathcal{A}} (mu_p(A) + mu_p(B)}) + (mu_p(mathcal{A} cap mathcal{B})^2$$



However, at this point I am stuck and I'm not sure how to proceed, or how to use the fact that $mathcal{A}, mathcal{B}$ are increasing sets. How can I use this piece of information?










share|cite|improve this question






















  • Have you checked the cited reference (Harris 1960)?
    – Clement C.
    Nov 22 at 22:21













up vote
1
down vote

favorite









up vote
1
down vote

favorite











Let $[n] = {1 , dots, n}$ and let $mathcal{A} in mathcal{P}([n])$ be an increasing set, i.e. if $x in mathcal{A}$ and $x subset y subset [n]$ then $y in mathcal{A}$.



For $p in [0,1]$, define the $p$-biased measure of a subset $A subset [n]$ to be:



$$mu_p(A) = p^{|A|}(1-p)^{n - |A|}$$



For a family of sets $mathcal{A} subset mathcal{P}([n])$, define:



$$mu_p(mathcal{A}) = sum_{A in mathcal{A}} mu_p(A)$$



Theorem 7 says that for $0 < p <1$ and $mathcal{A}, mathcal{B} subset mathcal{P}([n])$ both increasing families of sets, then:



$$mu_p(mathcal{A})mu_p(mathcal{B}) leq mu_p(mathcal{A} cap mathcal{B})$$



With some work, I've managed to show that:



$$mu_p(mathcal{A})mu_p(mathcal{B}) = sum_{A in mathcal{A} backslash mathcal{B} \ B inmathcal{B} backslash mathcal{A}}{mu_p(mathcal{A})mu_p(mathcal{B})} +
sum_{C in mathcal{A} cap mathcal{B}}{mu_p(C) sum_{A in mathcal{A} backslash mathcal{B} \ B inmathcal{B} backslash mathcal{A}} (mu_p(A) + mu_p(B)}) + (mu_p(mathcal{A} cap mathcal{B})^2$$



However, at this point I am stuck and I'm not sure how to proceed, or how to use the fact that $mathcal{A}, mathcal{B}$ are increasing sets. How can I use this piece of information?










share|cite|improve this question













Let $[n] = {1 , dots, n}$ and let $mathcal{A} in mathcal{P}([n])$ be an increasing set, i.e. if $x in mathcal{A}$ and $x subset y subset [n]$ then $y in mathcal{A}$.



For $p in [0,1]$, define the $p$-biased measure of a subset $A subset [n]$ to be:



$$mu_p(A) = p^{|A|}(1-p)^{n - |A|}$$



For a family of sets $mathcal{A} subset mathcal{P}([n])$, define:



$$mu_p(mathcal{A}) = sum_{A in mathcal{A}} mu_p(A)$$



Theorem 7 says that for $0 < p <1$ and $mathcal{A}, mathcal{B} subset mathcal{P}([n])$ both increasing families of sets, then:



$$mu_p(mathcal{A})mu_p(mathcal{B}) leq mu_p(mathcal{A} cap mathcal{B})$$



With some work, I've managed to show that:



$$mu_p(mathcal{A})mu_p(mathcal{B}) = sum_{A in mathcal{A} backslash mathcal{B} \ B inmathcal{B} backslash mathcal{A}}{mu_p(mathcal{A})mu_p(mathcal{B})} +
sum_{C in mathcal{A} cap mathcal{B}}{mu_p(C) sum_{A in mathcal{A} backslash mathcal{B} \ B inmathcal{B} backslash mathcal{A}} (mu_p(A) + mu_p(B)}) + (mu_p(mathcal{A} cap mathcal{B})^2$$



However, at this point I am stuck and I'm not sure how to proceed, or how to use the fact that $mathcal{A}, mathcal{B}$ are increasing sets. How can I use this piece of information?







combinatorics






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Nov 22 at 22:20









user366818

813410




813410












  • Have you checked the cited reference (Harris 1960)?
    – Clement C.
    Nov 22 at 22:21


















  • Have you checked the cited reference (Harris 1960)?
    – Clement C.
    Nov 22 at 22:21
















Have you checked the cited reference (Harris 1960)?
– Clement C.
Nov 22 at 22:21




Have you checked the cited reference (Harris 1960)?
– Clement C.
Nov 22 at 22:21















active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














 

draft saved


draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3009743%2fp-biased-measure-of-increasing-sets-upsets%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown






























active

oldest

votes













active

oldest

votes









active

oldest

votes






active

oldest

votes
















 

draft saved


draft discarded



















































 


draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3009743%2fp-biased-measure-of-increasing-sets-upsets%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Berounka

Different font size/position of beamer's navigation symbols template's content depending on regular/plain...

Sphinx de Gizeh