Is there an algorithm to find relations in polynomial algebra?











up vote
0
down vote

favorite












In the context of equivariant cohomology for a GKM-manifold, I'm trying to compute the cohomology of the variety given by $x_1y_1+x_2y_2+x_3y_3=0$ with the action of $(mathbb{C}^*)^3$:



$$
((t_1,t_2,t_3),[x_1,x_2,x_3,y_1,y_2,y_3]) mapsto [t_1t_2t_3x_1,t_1t_2x_2,t_1t_3x_3,y_1,t_3y_2,t_2y_3].
$$



Thanks to a theorem of Goresky, Kottwitz, MacPherson, I can see the equivariant cohomology ring of the variety embedded as an algebra in $bigoplus^6 mathbb{C}[t_1,t_2,t_3]$.
I've found the generators for this algebra, that are



begin{align*}
a&=[1,1,1,1,1,1];\
b&=[0,t_3,t_2,t_3-t_1,t_2-t_1,t_3+t_2-t_1];\
c&=[0,0,t_2(t_2-t_3),t_1(t_1-t_3),(t_2-t_1)(t_2-t_3),t_2(t_2-t_1)];\
d&=[0,0,0,t_1(t_1-t_3),t_1(t_1-t_2),(t_1-t_3)(t_1-t_2)];\
e&=[0,0,0,0,t_1(t_1-t_2)(t_2-t_3),t_2(t_1-t_2)(t_1-t_3)];\
f&=[0,0,0,0,0,t_2t_3(t_1-t_2)(t_1-t_3)].
end{align*}



but I'm in trouble to fins the relations between them, so there exists an algorithm that can compute them for me?










share|cite|improve this question


























    up vote
    0
    down vote

    favorite












    In the context of equivariant cohomology for a GKM-manifold, I'm trying to compute the cohomology of the variety given by $x_1y_1+x_2y_2+x_3y_3=0$ with the action of $(mathbb{C}^*)^3$:



    $$
    ((t_1,t_2,t_3),[x_1,x_2,x_3,y_1,y_2,y_3]) mapsto [t_1t_2t_3x_1,t_1t_2x_2,t_1t_3x_3,y_1,t_3y_2,t_2y_3].
    $$



    Thanks to a theorem of Goresky, Kottwitz, MacPherson, I can see the equivariant cohomology ring of the variety embedded as an algebra in $bigoplus^6 mathbb{C}[t_1,t_2,t_3]$.
    I've found the generators for this algebra, that are



    begin{align*}
    a&=[1,1,1,1,1,1];\
    b&=[0,t_3,t_2,t_3-t_1,t_2-t_1,t_3+t_2-t_1];\
    c&=[0,0,t_2(t_2-t_3),t_1(t_1-t_3),(t_2-t_1)(t_2-t_3),t_2(t_2-t_1)];\
    d&=[0,0,0,t_1(t_1-t_3),t_1(t_1-t_2),(t_1-t_3)(t_1-t_2)];\
    e&=[0,0,0,0,t_1(t_1-t_2)(t_2-t_3),t_2(t_1-t_2)(t_1-t_3)];\
    f&=[0,0,0,0,0,t_2t_3(t_1-t_2)(t_1-t_3)].
    end{align*}



    but I'm in trouble to fins the relations between them, so there exists an algorithm that can compute them for me?










    share|cite|improve this question
























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      In the context of equivariant cohomology for a GKM-manifold, I'm trying to compute the cohomology of the variety given by $x_1y_1+x_2y_2+x_3y_3=0$ with the action of $(mathbb{C}^*)^3$:



      $$
      ((t_1,t_2,t_3),[x_1,x_2,x_3,y_1,y_2,y_3]) mapsto [t_1t_2t_3x_1,t_1t_2x_2,t_1t_3x_3,y_1,t_3y_2,t_2y_3].
      $$



      Thanks to a theorem of Goresky, Kottwitz, MacPherson, I can see the equivariant cohomology ring of the variety embedded as an algebra in $bigoplus^6 mathbb{C}[t_1,t_2,t_3]$.
      I've found the generators for this algebra, that are



      begin{align*}
      a&=[1,1,1,1,1,1];\
      b&=[0,t_3,t_2,t_3-t_1,t_2-t_1,t_3+t_2-t_1];\
      c&=[0,0,t_2(t_2-t_3),t_1(t_1-t_3),(t_2-t_1)(t_2-t_3),t_2(t_2-t_1)];\
      d&=[0,0,0,t_1(t_1-t_3),t_1(t_1-t_2),(t_1-t_3)(t_1-t_2)];\
      e&=[0,0,0,0,t_1(t_1-t_2)(t_2-t_3),t_2(t_1-t_2)(t_1-t_3)];\
      f&=[0,0,0,0,0,t_2t_3(t_1-t_2)(t_1-t_3)].
      end{align*}



      but I'm in trouble to fins the relations between them, so there exists an algorithm that can compute them for me?










      share|cite|improve this question













      In the context of equivariant cohomology for a GKM-manifold, I'm trying to compute the cohomology of the variety given by $x_1y_1+x_2y_2+x_3y_3=0$ with the action of $(mathbb{C}^*)^3$:



      $$
      ((t_1,t_2,t_3),[x_1,x_2,x_3,y_1,y_2,y_3]) mapsto [t_1t_2t_3x_1,t_1t_2x_2,t_1t_3x_3,y_1,t_3y_2,t_2y_3].
      $$



      Thanks to a theorem of Goresky, Kottwitz, MacPherson, I can see the equivariant cohomology ring of the variety embedded as an algebra in $bigoplus^6 mathbb{C}[t_1,t_2,t_3]$.
      I've found the generators for this algebra, that are



      begin{align*}
      a&=[1,1,1,1,1,1];\
      b&=[0,t_3,t_2,t_3-t_1,t_2-t_1,t_3+t_2-t_1];\
      c&=[0,0,t_2(t_2-t_3),t_1(t_1-t_3),(t_2-t_1)(t_2-t_3),t_2(t_2-t_1)];\
      d&=[0,0,0,t_1(t_1-t_3),t_1(t_1-t_2),(t_1-t_3)(t_1-t_2)];\
      e&=[0,0,0,0,t_1(t_1-t_2)(t_2-t_3),t_2(t_1-t_2)(t_1-t_3)];\
      f&=[0,0,0,0,0,t_2t_3(t_1-t_2)(t_1-t_3)].
      end{align*}



      but I'm in trouble to fins the relations between them, so there exists an algorithm that can compute them for me?







      abstract-algebra algebraic-geometry group-actions






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Nov 22 at 10:10









      Bobech

      699




      699



























          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














           

          draft saved


          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3008949%2fis-there-an-algorithm-to-find-relations-in-polynomial-algebra%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown






























          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















           

          draft saved


          draft discarded



















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3008949%2fis-there-an-algorithm-to-find-relations-in-polynomial-algebra%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Berounka

          Different font size/position of beamer's navigation symbols template's content depending on regular/plain...

          Sphinx de Gizeh