Is there an algorithm to find relations in polynomial algebra?
up vote
0
down vote
favorite
In the context of equivariant cohomology for a GKM-manifold, I'm trying to compute the cohomology of the variety given by $x_1y_1+x_2y_2+x_3y_3=0$ with the action of $(mathbb{C}^*)^3$:
$$
((t_1,t_2,t_3),[x_1,x_2,x_3,y_1,y_2,y_3]) mapsto [t_1t_2t_3x_1,t_1t_2x_2,t_1t_3x_3,y_1,t_3y_2,t_2y_3].
$$
Thanks to a theorem of Goresky, Kottwitz, MacPherson, I can see the equivariant cohomology ring of the variety embedded as an algebra in $bigoplus^6 mathbb{C}[t_1,t_2,t_3]$.
I've found the generators for this algebra, that are
begin{align*}
a&=[1,1,1,1,1,1];\
b&=[0,t_3,t_2,t_3-t_1,t_2-t_1,t_3+t_2-t_1];\
c&=[0,0,t_2(t_2-t_3),t_1(t_1-t_3),(t_2-t_1)(t_2-t_3),t_2(t_2-t_1)];\
d&=[0,0,0,t_1(t_1-t_3),t_1(t_1-t_2),(t_1-t_3)(t_1-t_2)];\
e&=[0,0,0,0,t_1(t_1-t_2)(t_2-t_3),t_2(t_1-t_2)(t_1-t_3)];\
f&=[0,0,0,0,0,t_2t_3(t_1-t_2)(t_1-t_3)].
end{align*}
but I'm in trouble to fins the relations between them, so there exists an algorithm that can compute them for me?
abstract-algebra algebraic-geometry group-actions
add a comment |
up vote
0
down vote
favorite
In the context of equivariant cohomology for a GKM-manifold, I'm trying to compute the cohomology of the variety given by $x_1y_1+x_2y_2+x_3y_3=0$ with the action of $(mathbb{C}^*)^3$:
$$
((t_1,t_2,t_3),[x_1,x_2,x_3,y_1,y_2,y_3]) mapsto [t_1t_2t_3x_1,t_1t_2x_2,t_1t_3x_3,y_1,t_3y_2,t_2y_3].
$$
Thanks to a theorem of Goresky, Kottwitz, MacPherson, I can see the equivariant cohomology ring of the variety embedded as an algebra in $bigoplus^6 mathbb{C}[t_1,t_2,t_3]$.
I've found the generators for this algebra, that are
begin{align*}
a&=[1,1,1,1,1,1];\
b&=[0,t_3,t_2,t_3-t_1,t_2-t_1,t_3+t_2-t_1];\
c&=[0,0,t_2(t_2-t_3),t_1(t_1-t_3),(t_2-t_1)(t_2-t_3),t_2(t_2-t_1)];\
d&=[0,0,0,t_1(t_1-t_3),t_1(t_1-t_2),(t_1-t_3)(t_1-t_2)];\
e&=[0,0,0,0,t_1(t_1-t_2)(t_2-t_3),t_2(t_1-t_2)(t_1-t_3)];\
f&=[0,0,0,0,0,t_2t_3(t_1-t_2)(t_1-t_3)].
end{align*}
but I'm in trouble to fins the relations between them, so there exists an algorithm that can compute them for me?
abstract-algebra algebraic-geometry group-actions
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
In the context of equivariant cohomology for a GKM-manifold, I'm trying to compute the cohomology of the variety given by $x_1y_1+x_2y_2+x_3y_3=0$ with the action of $(mathbb{C}^*)^3$:
$$
((t_1,t_2,t_3),[x_1,x_2,x_3,y_1,y_2,y_3]) mapsto [t_1t_2t_3x_1,t_1t_2x_2,t_1t_3x_3,y_1,t_3y_2,t_2y_3].
$$
Thanks to a theorem of Goresky, Kottwitz, MacPherson, I can see the equivariant cohomology ring of the variety embedded as an algebra in $bigoplus^6 mathbb{C}[t_1,t_2,t_3]$.
I've found the generators for this algebra, that are
begin{align*}
a&=[1,1,1,1,1,1];\
b&=[0,t_3,t_2,t_3-t_1,t_2-t_1,t_3+t_2-t_1];\
c&=[0,0,t_2(t_2-t_3),t_1(t_1-t_3),(t_2-t_1)(t_2-t_3),t_2(t_2-t_1)];\
d&=[0,0,0,t_1(t_1-t_3),t_1(t_1-t_2),(t_1-t_3)(t_1-t_2)];\
e&=[0,0,0,0,t_1(t_1-t_2)(t_2-t_3),t_2(t_1-t_2)(t_1-t_3)];\
f&=[0,0,0,0,0,t_2t_3(t_1-t_2)(t_1-t_3)].
end{align*}
but I'm in trouble to fins the relations between them, so there exists an algorithm that can compute them for me?
abstract-algebra algebraic-geometry group-actions
In the context of equivariant cohomology for a GKM-manifold, I'm trying to compute the cohomology of the variety given by $x_1y_1+x_2y_2+x_3y_3=0$ with the action of $(mathbb{C}^*)^3$:
$$
((t_1,t_2,t_3),[x_1,x_2,x_3,y_1,y_2,y_3]) mapsto [t_1t_2t_3x_1,t_1t_2x_2,t_1t_3x_3,y_1,t_3y_2,t_2y_3].
$$
Thanks to a theorem of Goresky, Kottwitz, MacPherson, I can see the equivariant cohomology ring of the variety embedded as an algebra in $bigoplus^6 mathbb{C}[t_1,t_2,t_3]$.
I've found the generators for this algebra, that are
begin{align*}
a&=[1,1,1,1,1,1];\
b&=[0,t_3,t_2,t_3-t_1,t_2-t_1,t_3+t_2-t_1];\
c&=[0,0,t_2(t_2-t_3),t_1(t_1-t_3),(t_2-t_1)(t_2-t_3),t_2(t_2-t_1)];\
d&=[0,0,0,t_1(t_1-t_3),t_1(t_1-t_2),(t_1-t_3)(t_1-t_2)];\
e&=[0,0,0,0,t_1(t_1-t_2)(t_2-t_3),t_2(t_1-t_2)(t_1-t_3)];\
f&=[0,0,0,0,0,t_2t_3(t_1-t_2)(t_1-t_3)].
end{align*}
but I'm in trouble to fins the relations between them, so there exists an algorithm that can compute them for me?
abstract-algebra algebraic-geometry group-actions
abstract-algebra algebraic-geometry group-actions
asked Nov 22 at 10:10
Bobech
699
699
add a comment |
add a comment |
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3008949%2fis-there-an-algorithm-to-find-relations-in-polynomial-algebra%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown