Values in pandas dataframe not getting sorted











up vote
2
down vote

favorite












I have a dataframe as shown below:



    Category    1   2   3   4   5   6   7   8   9   10  11  12  13
A 424 377 161 133 2 81 141 169 297 153 53 50 197
B 231 121 111 106 4 79 68 70 92 93 71 65 66
C 480 379 159 139 2 116 148 175 308 150 98 82 195
D 88 56 38 40 0 25 24 55 84 36 24 26 36
E 1084 1002 478 299 7 256 342 342 695 378 175 132 465
F 497 246 283 206 4 142 151 168 297 224 194 198 148
H 8 5 4 3 0 2 3 2 7 5 3 2 0
G 3191 2119 1656 856 50 826 955 739 1447 1342 975 628 1277
K 58 26 27 51 1 18 22 42 47 35 19 20 14
S 363 254 131 105 6 82 86 121 196 98 81 57 125
T 54 59 20 4 0 9 12 7 36 23 5 4 20
O 554 304 207 155 3 130 260 183 287 204 98 106 195
P 756 497 325 230 5 212 300 280 448 270 201 140 313
PP 64 43 26 17 1 15 35 17 32 28 18 9 27
R 265 157 109 89 1 68 68 104 154 96 63 55 90
S 377 204 201 114 5 112 267 136 209 172 147 90 157
St 770 443 405 234 5 172 464 232 367 270 290 136 294
Qs 47 33 11 14 0 18 14 19 26 17 5 6 13
Y 1806 626 1102 1177 14 625 619 1079 1273 981 845 891 455
W 123 177 27 28 0 18 62 34 64 27 14 4 51
Z 2770 1375 1579 1082 17 900 1630 1137 1465 1383 861 755 1201


I want to sort the dataframe by values in each row. Once done, I want to sort the index also.



For example the values in first row corresponding to category A, should appear as:
2 50 53 81 133 141 153 161 169 197 297 377 424



I have tried df.sort_values(by=df.index.tolist(), ascending=False, axis=1) but this doesn't work. The values don't appear in sorted order at all










share|improve this question




















  • 1




    Edited the question.
    – mlRocks
    Nov 21 at 16:57










  • Possibly you can use df.sort_values(['c1','c2'], ascending=False) but in your case you have multiple columns which is little tricky
    – pygo
    Nov 21 at 17:18















up vote
2
down vote

favorite












I have a dataframe as shown below:



    Category    1   2   3   4   5   6   7   8   9   10  11  12  13
A 424 377 161 133 2 81 141 169 297 153 53 50 197
B 231 121 111 106 4 79 68 70 92 93 71 65 66
C 480 379 159 139 2 116 148 175 308 150 98 82 195
D 88 56 38 40 0 25 24 55 84 36 24 26 36
E 1084 1002 478 299 7 256 342 342 695 378 175 132 465
F 497 246 283 206 4 142 151 168 297 224 194 198 148
H 8 5 4 3 0 2 3 2 7 5 3 2 0
G 3191 2119 1656 856 50 826 955 739 1447 1342 975 628 1277
K 58 26 27 51 1 18 22 42 47 35 19 20 14
S 363 254 131 105 6 82 86 121 196 98 81 57 125
T 54 59 20 4 0 9 12 7 36 23 5 4 20
O 554 304 207 155 3 130 260 183 287 204 98 106 195
P 756 497 325 230 5 212 300 280 448 270 201 140 313
PP 64 43 26 17 1 15 35 17 32 28 18 9 27
R 265 157 109 89 1 68 68 104 154 96 63 55 90
S 377 204 201 114 5 112 267 136 209 172 147 90 157
St 770 443 405 234 5 172 464 232 367 270 290 136 294
Qs 47 33 11 14 0 18 14 19 26 17 5 6 13
Y 1806 626 1102 1177 14 625 619 1079 1273 981 845 891 455
W 123 177 27 28 0 18 62 34 64 27 14 4 51
Z 2770 1375 1579 1082 17 900 1630 1137 1465 1383 861 755 1201


I want to sort the dataframe by values in each row. Once done, I want to sort the index also.



For example the values in first row corresponding to category A, should appear as:
2 50 53 81 133 141 153 161 169 197 297 377 424



I have tried df.sort_values(by=df.index.tolist(), ascending=False, axis=1) but this doesn't work. The values don't appear in sorted order at all










share|improve this question




















  • 1




    Edited the question.
    – mlRocks
    Nov 21 at 16:57










  • Possibly you can use df.sort_values(['c1','c2'], ascending=False) but in your case you have multiple columns which is little tricky
    – pygo
    Nov 21 at 17:18













up vote
2
down vote

favorite









up vote
2
down vote

favorite











I have a dataframe as shown below:



    Category    1   2   3   4   5   6   7   8   9   10  11  12  13
A 424 377 161 133 2 81 141 169 297 153 53 50 197
B 231 121 111 106 4 79 68 70 92 93 71 65 66
C 480 379 159 139 2 116 148 175 308 150 98 82 195
D 88 56 38 40 0 25 24 55 84 36 24 26 36
E 1084 1002 478 299 7 256 342 342 695 378 175 132 465
F 497 246 283 206 4 142 151 168 297 224 194 198 148
H 8 5 4 3 0 2 3 2 7 5 3 2 0
G 3191 2119 1656 856 50 826 955 739 1447 1342 975 628 1277
K 58 26 27 51 1 18 22 42 47 35 19 20 14
S 363 254 131 105 6 82 86 121 196 98 81 57 125
T 54 59 20 4 0 9 12 7 36 23 5 4 20
O 554 304 207 155 3 130 260 183 287 204 98 106 195
P 756 497 325 230 5 212 300 280 448 270 201 140 313
PP 64 43 26 17 1 15 35 17 32 28 18 9 27
R 265 157 109 89 1 68 68 104 154 96 63 55 90
S 377 204 201 114 5 112 267 136 209 172 147 90 157
St 770 443 405 234 5 172 464 232 367 270 290 136 294
Qs 47 33 11 14 0 18 14 19 26 17 5 6 13
Y 1806 626 1102 1177 14 625 619 1079 1273 981 845 891 455
W 123 177 27 28 0 18 62 34 64 27 14 4 51
Z 2770 1375 1579 1082 17 900 1630 1137 1465 1383 861 755 1201


I want to sort the dataframe by values in each row. Once done, I want to sort the index also.



For example the values in first row corresponding to category A, should appear as:
2 50 53 81 133 141 153 161 169 197 297 377 424



I have tried df.sort_values(by=df.index.tolist(), ascending=False, axis=1) but this doesn't work. The values don't appear in sorted order at all










share|improve this question















I have a dataframe as shown below:



    Category    1   2   3   4   5   6   7   8   9   10  11  12  13
A 424 377 161 133 2 81 141 169 297 153 53 50 197
B 231 121 111 106 4 79 68 70 92 93 71 65 66
C 480 379 159 139 2 116 148 175 308 150 98 82 195
D 88 56 38 40 0 25 24 55 84 36 24 26 36
E 1084 1002 478 299 7 256 342 342 695 378 175 132 465
F 497 246 283 206 4 142 151 168 297 224 194 198 148
H 8 5 4 3 0 2 3 2 7 5 3 2 0
G 3191 2119 1656 856 50 826 955 739 1447 1342 975 628 1277
K 58 26 27 51 1 18 22 42 47 35 19 20 14
S 363 254 131 105 6 82 86 121 196 98 81 57 125
T 54 59 20 4 0 9 12 7 36 23 5 4 20
O 554 304 207 155 3 130 260 183 287 204 98 106 195
P 756 497 325 230 5 212 300 280 448 270 201 140 313
PP 64 43 26 17 1 15 35 17 32 28 18 9 27
R 265 157 109 89 1 68 68 104 154 96 63 55 90
S 377 204 201 114 5 112 267 136 209 172 147 90 157
St 770 443 405 234 5 172 464 232 367 270 290 136 294
Qs 47 33 11 14 0 18 14 19 26 17 5 6 13
Y 1806 626 1102 1177 14 625 619 1079 1273 981 845 891 455
W 123 177 27 28 0 18 62 34 64 27 14 4 51
Z 2770 1375 1579 1082 17 900 1630 1137 1465 1383 861 755 1201


I want to sort the dataframe by values in each row. Once done, I want to sort the index also.



For example the values in first row corresponding to category A, should appear as:
2 50 53 81 133 141 153 161 169 197 297 377 424



I have tried df.sort_values(by=df.index.tolist(), ascending=False, axis=1) but this doesn't work. The values don't appear in sorted order at all







python python-3.x pandas sorting dataframe






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Nov 21 at 17:03









jpp

87k194999




87k194999










asked Nov 21 at 16:41









mlRocks

472112




472112








  • 1




    Edited the question.
    – mlRocks
    Nov 21 at 16:57










  • Possibly you can use df.sort_values(['c1','c2'], ascending=False) but in your case you have multiple columns which is little tricky
    – pygo
    Nov 21 at 17:18














  • 1




    Edited the question.
    – mlRocks
    Nov 21 at 16:57










  • Possibly you can use df.sort_values(['c1','c2'], ascending=False) but in your case you have multiple columns which is little tricky
    – pygo
    Nov 21 at 17:18








1




1




Edited the question.
– mlRocks
Nov 21 at 16:57




Edited the question.
– mlRocks
Nov 21 at 16:57












Possibly you can use df.sort_values(['c1','c2'], ascending=False) but in your case you have multiple columns which is little tricky
– pygo
Nov 21 at 17:18




Possibly you can use df.sort_values(['c1','c2'], ascending=False) but in your case you have multiple columns which is little tricky
– pygo
Nov 21 at 17:18












2 Answers
2






active

oldest

votes

















up vote
2
down vote



accepted











np.sort + sort_index



You can use np.sort along axis=1, then sort_index:



cols, idx = df.columns[1:], df.iloc[:, 0]

res = pd.DataFrame(np.sort(df.iloc[:, 1:].values, axis=1), columns=cols, index=idx)
.sort_index()

print(res)

1 2 3 4 5 6 7 8 9 10 11 12
Category
A 2 50 53 81 133 141 153 161 169 197 297 377
B 4 65 66 68 70 71 79 92 93 106 111 121
C 2 82 98 116 139 148 150 159 175 195 308 379
D 0 24 24 25 26 36 36 38 40 55 56 84
E 7 132 175 256 299 342 342 378 465 478 695 1002
F 4 142 148 151 168 194 198 206 224 246 283 297
G 50 628 739 826 856 955 975 1277 1342 1447 1656 2119
H 0 0 2 2 2 3 3 3 4 5 5 7
K 1 14 18 19 20 22 26 27 35 42 47 51
O 3 98 106 130 155 183 195 204 207 260 287 304
P 5 140 201 212 230 270 280 300 313 325 448 497
PP 1 9 15 17 17 18 26 27 28 32 35 43
Qs 0 5 6 11 13 14 14 17 18 19 26 33
R 1 55 63 68 68 89 90 96 104 109 154 157
S 6 57 81 82 86 98 105 121 125 131 196 254
S 5 90 112 114 136 147 157 172 201 204 209 267
St 5 136 172 232 234 270 290 294 367 405 443 464
T 0 4 4 5 7 9 12 20 20 23 36 54
W 0 4 14 18 27 27 28 34 51 62 64 123
Y 14 455 619 625 626 845 891 981 1079 1102 1177 1273
Z 1 17 755 861 900 1082 1137 1375 1383 1465 1579 1630





share|improve this answer





















  • But why is sort_values not working?
    – mlRocks
    Nov 21 at 17:07










  • Because it's designed to work row-wise, i.e. sort rows up and down for all columns, not sorting columns left and right for each row. This is expected with Pandas, where data is stored in columnar series.
    – jpp
    Nov 21 at 17:08












  • Shouldn't this be mentioned in the docs?
    – mlRocks
    Nov 21 at 17:08






  • 1




    @mlRocks, What do you expect for column names? The order will be different for each row, right?
    – jpp
    Nov 21 at 17:24






  • 1




    Yeap. My bad!. Thanks
    – mlRocks
    Nov 21 at 17:27


















up vote
1
down vote













One way is to apply sorted setting 1 as axis, applying pd.Series to return a dataframe instead of a list, and finally sorting by Category:



df.loc[:,'1':].apply(sorted, axis = 1).apply(pd.Series)
.set_index(df.Category).sort_index()



Category 0 1 2 3 4 5 6 7 8 9 10 ...
0 A 2 50 53 81 133 141 153 161 169 197 297 ...
1 B 4 65 66 68 70 71 79 92 93 106 111 ...





share|improve this answer























  • This works, but apply(pd.Series) is a Python-level loop and will be slow for larger dataframes.
    – jpp
    Nov 21 at 17:11












  • Yes, it is not ideal for big dataframes, as you say. First solution that came across my mind :)
    – nixon
    Nov 21 at 17:16











Your Answer






StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53416763%2fvalues-in-pandas-dataframe-not-getting-sorted%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes








up vote
2
down vote



accepted











np.sort + sort_index



You can use np.sort along axis=1, then sort_index:



cols, idx = df.columns[1:], df.iloc[:, 0]

res = pd.DataFrame(np.sort(df.iloc[:, 1:].values, axis=1), columns=cols, index=idx)
.sort_index()

print(res)

1 2 3 4 5 6 7 8 9 10 11 12
Category
A 2 50 53 81 133 141 153 161 169 197 297 377
B 4 65 66 68 70 71 79 92 93 106 111 121
C 2 82 98 116 139 148 150 159 175 195 308 379
D 0 24 24 25 26 36 36 38 40 55 56 84
E 7 132 175 256 299 342 342 378 465 478 695 1002
F 4 142 148 151 168 194 198 206 224 246 283 297
G 50 628 739 826 856 955 975 1277 1342 1447 1656 2119
H 0 0 2 2 2 3 3 3 4 5 5 7
K 1 14 18 19 20 22 26 27 35 42 47 51
O 3 98 106 130 155 183 195 204 207 260 287 304
P 5 140 201 212 230 270 280 300 313 325 448 497
PP 1 9 15 17 17 18 26 27 28 32 35 43
Qs 0 5 6 11 13 14 14 17 18 19 26 33
R 1 55 63 68 68 89 90 96 104 109 154 157
S 6 57 81 82 86 98 105 121 125 131 196 254
S 5 90 112 114 136 147 157 172 201 204 209 267
St 5 136 172 232 234 270 290 294 367 405 443 464
T 0 4 4 5 7 9 12 20 20 23 36 54
W 0 4 14 18 27 27 28 34 51 62 64 123
Y 14 455 619 625 626 845 891 981 1079 1102 1177 1273
Z 1 17 755 861 900 1082 1137 1375 1383 1465 1579 1630





share|improve this answer





















  • But why is sort_values not working?
    – mlRocks
    Nov 21 at 17:07










  • Because it's designed to work row-wise, i.e. sort rows up and down for all columns, not sorting columns left and right for each row. This is expected with Pandas, where data is stored in columnar series.
    – jpp
    Nov 21 at 17:08












  • Shouldn't this be mentioned in the docs?
    – mlRocks
    Nov 21 at 17:08






  • 1




    @mlRocks, What do you expect for column names? The order will be different for each row, right?
    – jpp
    Nov 21 at 17:24






  • 1




    Yeap. My bad!. Thanks
    – mlRocks
    Nov 21 at 17:27















up vote
2
down vote



accepted











np.sort + sort_index



You can use np.sort along axis=1, then sort_index:



cols, idx = df.columns[1:], df.iloc[:, 0]

res = pd.DataFrame(np.sort(df.iloc[:, 1:].values, axis=1), columns=cols, index=idx)
.sort_index()

print(res)

1 2 3 4 5 6 7 8 9 10 11 12
Category
A 2 50 53 81 133 141 153 161 169 197 297 377
B 4 65 66 68 70 71 79 92 93 106 111 121
C 2 82 98 116 139 148 150 159 175 195 308 379
D 0 24 24 25 26 36 36 38 40 55 56 84
E 7 132 175 256 299 342 342 378 465 478 695 1002
F 4 142 148 151 168 194 198 206 224 246 283 297
G 50 628 739 826 856 955 975 1277 1342 1447 1656 2119
H 0 0 2 2 2 3 3 3 4 5 5 7
K 1 14 18 19 20 22 26 27 35 42 47 51
O 3 98 106 130 155 183 195 204 207 260 287 304
P 5 140 201 212 230 270 280 300 313 325 448 497
PP 1 9 15 17 17 18 26 27 28 32 35 43
Qs 0 5 6 11 13 14 14 17 18 19 26 33
R 1 55 63 68 68 89 90 96 104 109 154 157
S 6 57 81 82 86 98 105 121 125 131 196 254
S 5 90 112 114 136 147 157 172 201 204 209 267
St 5 136 172 232 234 270 290 294 367 405 443 464
T 0 4 4 5 7 9 12 20 20 23 36 54
W 0 4 14 18 27 27 28 34 51 62 64 123
Y 14 455 619 625 626 845 891 981 1079 1102 1177 1273
Z 1 17 755 861 900 1082 1137 1375 1383 1465 1579 1630





share|improve this answer





















  • But why is sort_values not working?
    – mlRocks
    Nov 21 at 17:07










  • Because it's designed to work row-wise, i.e. sort rows up and down for all columns, not sorting columns left and right for each row. This is expected with Pandas, where data is stored in columnar series.
    – jpp
    Nov 21 at 17:08












  • Shouldn't this be mentioned in the docs?
    – mlRocks
    Nov 21 at 17:08






  • 1




    @mlRocks, What do you expect for column names? The order will be different for each row, right?
    – jpp
    Nov 21 at 17:24






  • 1




    Yeap. My bad!. Thanks
    – mlRocks
    Nov 21 at 17:27













up vote
2
down vote



accepted







up vote
2
down vote



accepted







np.sort + sort_index



You can use np.sort along axis=1, then sort_index:



cols, idx = df.columns[1:], df.iloc[:, 0]

res = pd.DataFrame(np.sort(df.iloc[:, 1:].values, axis=1), columns=cols, index=idx)
.sort_index()

print(res)

1 2 3 4 5 6 7 8 9 10 11 12
Category
A 2 50 53 81 133 141 153 161 169 197 297 377
B 4 65 66 68 70 71 79 92 93 106 111 121
C 2 82 98 116 139 148 150 159 175 195 308 379
D 0 24 24 25 26 36 36 38 40 55 56 84
E 7 132 175 256 299 342 342 378 465 478 695 1002
F 4 142 148 151 168 194 198 206 224 246 283 297
G 50 628 739 826 856 955 975 1277 1342 1447 1656 2119
H 0 0 2 2 2 3 3 3 4 5 5 7
K 1 14 18 19 20 22 26 27 35 42 47 51
O 3 98 106 130 155 183 195 204 207 260 287 304
P 5 140 201 212 230 270 280 300 313 325 448 497
PP 1 9 15 17 17 18 26 27 28 32 35 43
Qs 0 5 6 11 13 14 14 17 18 19 26 33
R 1 55 63 68 68 89 90 96 104 109 154 157
S 6 57 81 82 86 98 105 121 125 131 196 254
S 5 90 112 114 136 147 157 172 201 204 209 267
St 5 136 172 232 234 270 290 294 367 405 443 464
T 0 4 4 5 7 9 12 20 20 23 36 54
W 0 4 14 18 27 27 28 34 51 62 64 123
Y 14 455 619 625 626 845 891 981 1079 1102 1177 1273
Z 1 17 755 861 900 1082 1137 1375 1383 1465 1579 1630





share|improve this answer













np.sort + sort_index



You can use np.sort along axis=1, then sort_index:



cols, idx = df.columns[1:], df.iloc[:, 0]

res = pd.DataFrame(np.sort(df.iloc[:, 1:].values, axis=1), columns=cols, index=idx)
.sort_index()

print(res)

1 2 3 4 5 6 7 8 9 10 11 12
Category
A 2 50 53 81 133 141 153 161 169 197 297 377
B 4 65 66 68 70 71 79 92 93 106 111 121
C 2 82 98 116 139 148 150 159 175 195 308 379
D 0 24 24 25 26 36 36 38 40 55 56 84
E 7 132 175 256 299 342 342 378 465 478 695 1002
F 4 142 148 151 168 194 198 206 224 246 283 297
G 50 628 739 826 856 955 975 1277 1342 1447 1656 2119
H 0 0 2 2 2 3 3 3 4 5 5 7
K 1 14 18 19 20 22 26 27 35 42 47 51
O 3 98 106 130 155 183 195 204 207 260 287 304
P 5 140 201 212 230 270 280 300 313 325 448 497
PP 1 9 15 17 17 18 26 27 28 32 35 43
Qs 0 5 6 11 13 14 14 17 18 19 26 33
R 1 55 63 68 68 89 90 96 104 109 154 157
S 6 57 81 82 86 98 105 121 125 131 196 254
S 5 90 112 114 136 147 157 172 201 204 209 267
St 5 136 172 232 234 270 290 294 367 405 443 464
T 0 4 4 5 7 9 12 20 20 23 36 54
W 0 4 14 18 27 27 28 34 51 62 64 123
Y 14 455 619 625 626 845 891 981 1079 1102 1177 1273
Z 1 17 755 861 900 1082 1137 1375 1383 1465 1579 1630






share|improve this answer












share|improve this answer



share|improve this answer










answered Nov 21 at 17:01









jpp

87k194999




87k194999












  • But why is sort_values not working?
    – mlRocks
    Nov 21 at 17:07










  • Because it's designed to work row-wise, i.e. sort rows up and down for all columns, not sorting columns left and right for each row. This is expected with Pandas, where data is stored in columnar series.
    – jpp
    Nov 21 at 17:08












  • Shouldn't this be mentioned in the docs?
    – mlRocks
    Nov 21 at 17:08






  • 1




    @mlRocks, What do you expect for column names? The order will be different for each row, right?
    – jpp
    Nov 21 at 17:24






  • 1




    Yeap. My bad!. Thanks
    – mlRocks
    Nov 21 at 17:27


















  • But why is sort_values not working?
    – mlRocks
    Nov 21 at 17:07










  • Because it's designed to work row-wise, i.e. sort rows up and down for all columns, not sorting columns left and right for each row. This is expected with Pandas, where data is stored in columnar series.
    – jpp
    Nov 21 at 17:08












  • Shouldn't this be mentioned in the docs?
    – mlRocks
    Nov 21 at 17:08






  • 1




    @mlRocks, What do you expect for column names? The order will be different for each row, right?
    – jpp
    Nov 21 at 17:24






  • 1




    Yeap. My bad!. Thanks
    – mlRocks
    Nov 21 at 17:27
















But why is sort_values not working?
– mlRocks
Nov 21 at 17:07




But why is sort_values not working?
– mlRocks
Nov 21 at 17:07












Because it's designed to work row-wise, i.e. sort rows up and down for all columns, not sorting columns left and right for each row. This is expected with Pandas, where data is stored in columnar series.
– jpp
Nov 21 at 17:08






Because it's designed to work row-wise, i.e. sort rows up and down for all columns, not sorting columns left and right for each row. This is expected with Pandas, where data is stored in columnar series.
– jpp
Nov 21 at 17:08














Shouldn't this be mentioned in the docs?
– mlRocks
Nov 21 at 17:08




Shouldn't this be mentioned in the docs?
– mlRocks
Nov 21 at 17:08




1




1




@mlRocks, What do you expect for column names? The order will be different for each row, right?
– jpp
Nov 21 at 17:24




@mlRocks, What do you expect for column names? The order will be different for each row, right?
– jpp
Nov 21 at 17:24




1




1




Yeap. My bad!. Thanks
– mlRocks
Nov 21 at 17:27




Yeap. My bad!. Thanks
– mlRocks
Nov 21 at 17:27












up vote
1
down vote













One way is to apply sorted setting 1 as axis, applying pd.Series to return a dataframe instead of a list, and finally sorting by Category:



df.loc[:,'1':].apply(sorted, axis = 1).apply(pd.Series)
.set_index(df.Category).sort_index()



Category 0 1 2 3 4 5 6 7 8 9 10 ...
0 A 2 50 53 81 133 141 153 161 169 197 297 ...
1 B 4 65 66 68 70 71 79 92 93 106 111 ...





share|improve this answer























  • This works, but apply(pd.Series) is a Python-level loop and will be slow for larger dataframes.
    – jpp
    Nov 21 at 17:11












  • Yes, it is not ideal for big dataframes, as you say. First solution that came across my mind :)
    – nixon
    Nov 21 at 17:16















up vote
1
down vote













One way is to apply sorted setting 1 as axis, applying pd.Series to return a dataframe instead of a list, and finally sorting by Category:



df.loc[:,'1':].apply(sorted, axis = 1).apply(pd.Series)
.set_index(df.Category).sort_index()



Category 0 1 2 3 4 5 6 7 8 9 10 ...
0 A 2 50 53 81 133 141 153 161 169 197 297 ...
1 B 4 65 66 68 70 71 79 92 93 106 111 ...





share|improve this answer























  • This works, but apply(pd.Series) is a Python-level loop and will be slow for larger dataframes.
    – jpp
    Nov 21 at 17:11












  • Yes, it is not ideal for big dataframes, as you say. First solution that came across my mind :)
    – nixon
    Nov 21 at 17:16













up vote
1
down vote










up vote
1
down vote









One way is to apply sorted setting 1 as axis, applying pd.Series to return a dataframe instead of a list, and finally sorting by Category:



df.loc[:,'1':].apply(sorted, axis = 1).apply(pd.Series)
.set_index(df.Category).sort_index()



Category 0 1 2 3 4 5 6 7 8 9 10 ...
0 A 2 50 53 81 133 141 153 161 169 197 297 ...
1 B 4 65 66 68 70 71 79 92 93 106 111 ...





share|improve this answer














One way is to apply sorted setting 1 as axis, applying pd.Series to return a dataframe instead of a list, and finally sorting by Category:



df.loc[:,'1':].apply(sorted, axis = 1).apply(pd.Series)
.set_index(df.Category).sort_index()



Category 0 1 2 3 4 5 6 7 8 9 10 ...
0 A 2 50 53 81 133 141 153 161 169 197 297 ...
1 B 4 65 66 68 70 71 79 92 93 106 111 ...






share|improve this answer














share|improve this answer



share|improve this answer








edited Nov 21 at 17:11

























answered Nov 21 at 17:01









nixon

1,86316




1,86316












  • This works, but apply(pd.Series) is a Python-level loop and will be slow for larger dataframes.
    – jpp
    Nov 21 at 17:11












  • Yes, it is not ideal for big dataframes, as you say. First solution that came across my mind :)
    – nixon
    Nov 21 at 17:16


















  • This works, but apply(pd.Series) is a Python-level loop and will be slow for larger dataframes.
    – jpp
    Nov 21 at 17:11












  • Yes, it is not ideal for big dataframes, as you say. First solution that came across my mind :)
    – nixon
    Nov 21 at 17:16
















This works, but apply(pd.Series) is a Python-level loop and will be slow for larger dataframes.
– jpp
Nov 21 at 17:11






This works, but apply(pd.Series) is a Python-level loop and will be slow for larger dataframes.
– jpp
Nov 21 at 17:11














Yes, it is not ideal for big dataframes, as you say. First solution that came across my mind :)
– nixon
Nov 21 at 17:16




Yes, it is not ideal for big dataframes, as you say. First solution that came across my mind :)
– nixon
Nov 21 at 17:16


















draft saved

draft discarded




















































Thanks for contributing an answer to Stack Overflow!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.





Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


Please pay close attention to the following guidance:


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53416763%2fvalues-in-pandas-dataframe-not-getting-sorted%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Berounka

Different font size/position of beamer's navigation symbols template's content depending on regular/plain...

Sphinx de Gizeh