Density of the sum of $n$ uniform(0,1) distributed random variables












2














I am working on the following problem:




Let $X_1, X_2, ldots, X_n, ldots$ be iid. random variables, each of Uniform$(0,1)$ distribution. Denote by $f_n(x)$ the density of the random variable $S_n := sum_{k = 1}^n X_k$. Then
begin{align*}
f_n(x) = frac{1}{(n-1)!} sum_{k = 0}^{[x]} (-1)^k binom{n}{k} (x-k)^{n-1},
end{align*}
where $[x]$ denotes the floor function.




I tried this, but I think something went wrong:



Prove by induction. For $n = 1$
begin{align*}
f_1(x) = frac{1}{(1-1)!} sum_{k = 0}^{[x]} (-1)^k binom{1}{k} (x-k)^{1-1} &= sum_{k = 0}^{[x]} (-1)^k binom{1}{k}
=begin{cases}
1, & 0 le x < 1 \
0, & text{otherwise}
end{cases}
end{align*}
Furthermore
begin{align*}
f_{n+1}(x) &= mathbb P(S_{n+1} = x) = mathbb P(S_n + X_{n+1} = x) \
&= sum_{m = 0}^{infty} mathbb P(S_n + X_{n+1} = x mid X_{n+1} = m) mathbb P(X_{n+1} = m) \
&= sum_{m = 0}^{infty} mathbb P(S_n + m = x) cdot 1_{[0,1]}(m)
= mathbb P(S_n = x) + mathbb P(S_n = x-1) \
&= frac{1}{(n-1)!} sum_{k = 0}^{[x]} (-1)^kbinom{n}{k}(x-k)^{n-1} + frac{1}{(n-1)!} sum_{k = 0}^{[x-1]} (-1)^kbinom{n}{k}(x-1-k)^{n-1} \
&= frac{1}{(n-1)!}left(sum_{k = 0}^{[x]} (-1)^kbinom{n}{k}(x-k)^{n-1} + sum_{k = 0}^{[x]-1} (-1)^kbinom{n}{k}(x-1-k)^{n-1}right) \
&= frac{1}{(n-1)!}left(x^{n-1}+sum_{k = 1}^{[x]} (-1)^kbinom{n}{k}(x-k)^{n-1} + sum_{k = 1}^{[x]} (-1)^{k-1}binom{n}{k-1}(x-1-(k-1))^{n-1}right) \
&= frac{1}{(n-1)!}left(x^{n-1}+sum_{k = 1}^{[x]} (-1)^kbinom{n}{k}(x-k)^{n-1} - (-1)^{k}binom{n}{k-1}(x-k)^{n-1}right).
end{align*}



How can I solve this?



Edit:
begin{align*}
f_{n+1}(x) &= (f_n * f_{X_{n+1}})(x)
= int_{-infty}^infty f_{n}(y) f_{X_{n+1}}(x-y) , dy \
&= int_{-infty}^infty frac{1}{(n-1)!} sum_{k = 0}^{[y]} (-1)^k binom{n}{k}(y-k)^{n-1} cdot 1_{(0,1)}(x-y) , dy \
&= frac{1}{(n-1)!} int_{-infty}^{infty} sum_{k = 0}^{[y]} (-1)^k binom{n}{k}(y-k)^{n-1} cdot 1_{(x-1, x)}(y), dy \
&= frac{1}{(n-1)!} int_{x-1}^{x} sum_{k = 0}^{[y]} (-1)^k binom{n}{k}(y-k)^{n-1} , dy
end{align*}



I want to swap the sum and the integral, but the sum depends on $y$.










share|cite|improve this question




















  • 1




    In fact you are saying that $f_{n+1}(x)=0$. This because in your question it equalizes $P(S_{n+1}=x)$. You could use: $f_{n+1}left(xright)=int f_{n}left(x-uright)f_{1}left(uright)du=int_{0}^{1}f_{n}left(x-uright)du$
    – drhab
    Dec 27 '13 at 13:11












  • Ah thanks, I see I had a totally wrong approach. I will try yours.
    – numerion
    Dec 27 '13 at 13:29










  • I've edited, please check.
    – numerion
    Dec 27 '13 at 15:21










  • You have $x-1<y<x$. Then$leftlfloor yrightrfloor inleft{ leftlfloor x-1rightrfloor ,leftlfloor xrightrfloor right} $ and these cases must be discerned. If $x-1<y<leftlfloor xrightrfloor $ then $leftlfloor yrightrfloor =leftlfloor x-1rightrfloor $ and if $leftlfloor xrightrfloor leq y<x$ then $leftlfloor yrightrfloor =leftlfloor xrightrfloor $. So split up the integral: $int_{x-1}^{x}...dy=int_{x-1}^{leftlfloor xrightrfloor }...dy+int_{leftlfloor xrightrfloor }^{x}...dy$.
    – drhab
    Dec 27 '13 at 16:02
















2














I am working on the following problem:




Let $X_1, X_2, ldots, X_n, ldots$ be iid. random variables, each of Uniform$(0,1)$ distribution. Denote by $f_n(x)$ the density of the random variable $S_n := sum_{k = 1}^n X_k$. Then
begin{align*}
f_n(x) = frac{1}{(n-1)!} sum_{k = 0}^{[x]} (-1)^k binom{n}{k} (x-k)^{n-1},
end{align*}
where $[x]$ denotes the floor function.




I tried this, but I think something went wrong:



Prove by induction. For $n = 1$
begin{align*}
f_1(x) = frac{1}{(1-1)!} sum_{k = 0}^{[x]} (-1)^k binom{1}{k} (x-k)^{1-1} &= sum_{k = 0}^{[x]} (-1)^k binom{1}{k}
=begin{cases}
1, & 0 le x < 1 \
0, & text{otherwise}
end{cases}
end{align*}
Furthermore
begin{align*}
f_{n+1}(x) &= mathbb P(S_{n+1} = x) = mathbb P(S_n + X_{n+1} = x) \
&= sum_{m = 0}^{infty} mathbb P(S_n + X_{n+1} = x mid X_{n+1} = m) mathbb P(X_{n+1} = m) \
&= sum_{m = 0}^{infty} mathbb P(S_n + m = x) cdot 1_{[0,1]}(m)
= mathbb P(S_n = x) + mathbb P(S_n = x-1) \
&= frac{1}{(n-1)!} sum_{k = 0}^{[x]} (-1)^kbinom{n}{k}(x-k)^{n-1} + frac{1}{(n-1)!} sum_{k = 0}^{[x-1]} (-1)^kbinom{n}{k}(x-1-k)^{n-1} \
&= frac{1}{(n-1)!}left(sum_{k = 0}^{[x]} (-1)^kbinom{n}{k}(x-k)^{n-1} + sum_{k = 0}^{[x]-1} (-1)^kbinom{n}{k}(x-1-k)^{n-1}right) \
&= frac{1}{(n-1)!}left(x^{n-1}+sum_{k = 1}^{[x]} (-1)^kbinom{n}{k}(x-k)^{n-1} + sum_{k = 1}^{[x]} (-1)^{k-1}binom{n}{k-1}(x-1-(k-1))^{n-1}right) \
&= frac{1}{(n-1)!}left(x^{n-1}+sum_{k = 1}^{[x]} (-1)^kbinom{n}{k}(x-k)^{n-1} - (-1)^{k}binom{n}{k-1}(x-k)^{n-1}right).
end{align*}



How can I solve this?



Edit:
begin{align*}
f_{n+1}(x) &= (f_n * f_{X_{n+1}})(x)
= int_{-infty}^infty f_{n}(y) f_{X_{n+1}}(x-y) , dy \
&= int_{-infty}^infty frac{1}{(n-1)!} sum_{k = 0}^{[y]} (-1)^k binom{n}{k}(y-k)^{n-1} cdot 1_{(0,1)}(x-y) , dy \
&= frac{1}{(n-1)!} int_{-infty}^{infty} sum_{k = 0}^{[y]} (-1)^k binom{n}{k}(y-k)^{n-1} cdot 1_{(x-1, x)}(y), dy \
&= frac{1}{(n-1)!} int_{x-1}^{x} sum_{k = 0}^{[y]} (-1)^k binom{n}{k}(y-k)^{n-1} , dy
end{align*}



I want to swap the sum and the integral, but the sum depends on $y$.










share|cite|improve this question




















  • 1




    In fact you are saying that $f_{n+1}(x)=0$. This because in your question it equalizes $P(S_{n+1}=x)$. You could use: $f_{n+1}left(xright)=int f_{n}left(x-uright)f_{1}left(uright)du=int_{0}^{1}f_{n}left(x-uright)du$
    – drhab
    Dec 27 '13 at 13:11












  • Ah thanks, I see I had a totally wrong approach. I will try yours.
    – numerion
    Dec 27 '13 at 13:29










  • I've edited, please check.
    – numerion
    Dec 27 '13 at 15:21










  • You have $x-1<y<x$. Then$leftlfloor yrightrfloor inleft{ leftlfloor x-1rightrfloor ,leftlfloor xrightrfloor right} $ and these cases must be discerned. If $x-1<y<leftlfloor xrightrfloor $ then $leftlfloor yrightrfloor =leftlfloor x-1rightrfloor $ and if $leftlfloor xrightrfloor leq y<x$ then $leftlfloor yrightrfloor =leftlfloor xrightrfloor $. So split up the integral: $int_{x-1}^{x}...dy=int_{x-1}^{leftlfloor xrightrfloor }...dy+int_{leftlfloor xrightrfloor }^{x}...dy$.
    – drhab
    Dec 27 '13 at 16:02














2












2








2


1





I am working on the following problem:




Let $X_1, X_2, ldots, X_n, ldots$ be iid. random variables, each of Uniform$(0,1)$ distribution. Denote by $f_n(x)$ the density of the random variable $S_n := sum_{k = 1}^n X_k$. Then
begin{align*}
f_n(x) = frac{1}{(n-1)!} sum_{k = 0}^{[x]} (-1)^k binom{n}{k} (x-k)^{n-1},
end{align*}
where $[x]$ denotes the floor function.




I tried this, but I think something went wrong:



Prove by induction. For $n = 1$
begin{align*}
f_1(x) = frac{1}{(1-1)!} sum_{k = 0}^{[x]} (-1)^k binom{1}{k} (x-k)^{1-1} &= sum_{k = 0}^{[x]} (-1)^k binom{1}{k}
=begin{cases}
1, & 0 le x < 1 \
0, & text{otherwise}
end{cases}
end{align*}
Furthermore
begin{align*}
f_{n+1}(x) &= mathbb P(S_{n+1} = x) = mathbb P(S_n + X_{n+1} = x) \
&= sum_{m = 0}^{infty} mathbb P(S_n + X_{n+1} = x mid X_{n+1} = m) mathbb P(X_{n+1} = m) \
&= sum_{m = 0}^{infty} mathbb P(S_n + m = x) cdot 1_{[0,1]}(m)
= mathbb P(S_n = x) + mathbb P(S_n = x-1) \
&= frac{1}{(n-1)!} sum_{k = 0}^{[x]} (-1)^kbinom{n}{k}(x-k)^{n-1} + frac{1}{(n-1)!} sum_{k = 0}^{[x-1]} (-1)^kbinom{n}{k}(x-1-k)^{n-1} \
&= frac{1}{(n-1)!}left(sum_{k = 0}^{[x]} (-1)^kbinom{n}{k}(x-k)^{n-1} + sum_{k = 0}^{[x]-1} (-1)^kbinom{n}{k}(x-1-k)^{n-1}right) \
&= frac{1}{(n-1)!}left(x^{n-1}+sum_{k = 1}^{[x]} (-1)^kbinom{n}{k}(x-k)^{n-1} + sum_{k = 1}^{[x]} (-1)^{k-1}binom{n}{k-1}(x-1-(k-1))^{n-1}right) \
&= frac{1}{(n-1)!}left(x^{n-1}+sum_{k = 1}^{[x]} (-1)^kbinom{n}{k}(x-k)^{n-1} - (-1)^{k}binom{n}{k-1}(x-k)^{n-1}right).
end{align*}



How can I solve this?



Edit:
begin{align*}
f_{n+1}(x) &= (f_n * f_{X_{n+1}})(x)
= int_{-infty}^infty f_{n}(y) f_{X_{n+1}}(x-y) , dy \
&= int_{-infty}^infty frac{1}{(n-1)!} sum_{k = 0}^{[y]} (-1)^k binom{n}{k}(y-k)^{n-1} cdot 1_{(0,1)}(x-y) , dy \
&= frac{1}{(n-1)!} int_{-infty}^{infty} sum_{k = 0}^{[y]} (-1)^k binom{n}{k}(y-k)^{n-1} cdot 1_{(x-1, x)}(y), dy \
&= frac{1}{(n-1)!} int_{x-1}^{x} sum_{k = 0}^{[y]} (-1)^k binom{n}{k}(y-k)^{n-1} , dy
end{align*}



I want to swap the sum and the integral, but the sum depends on $y$.










share|cite|improve this question















I am working on the following problem:




Let $X_1, X_2, ldots, X_n, ldots$ be iid. random variables, each of Uniform$(0,1)$ distribution. Denote by $f_n(x)$ the density of the random variable $S_n := sum_{k = 1}^n X_k$. Then
begin{align*}
f_n(x) = frac{1}{(n-1)!} sum_{k = 0}^{[x]} (-1)^k binom{n}{k} (x-k)^{n-1},
end{align*}
where $[x]$ denotes the floor function.




I tried this, but I think something went wrong:



Prove by induction. For $n = 1$
begin{align*}
f_1(x) = frac{1}{(1-1)!} sum_{k = 0}^{[x]} (-1)^k binom{1}{k} (x-k)^{1-1} &= sum_{k = 0}^{[x]} (-1)^k binom{1}{k}
=begin{cases}
1, & 0 le x < 1 \
0, & text{otherwise}
end{cases}
end{align*}
Furthermore
begin{align*}
f_{n+1}(x) &= mathbb P(S_{n+1} = x) = mathbb P(S_n + X_{n+1} = x) \
&= sum_{m = 0}^{infty} mathbb P(S_n + X_{n+1} = x mid X_{n+1} = m) mathbb P(X_{n+1} = m) \
&= sum_{m = 0}^{infty} mathbb P(S_n + m = x) cdot 1_{[0,1]}(m)
= mathbb P(S_n = x) + mathbb P(S_n = x-1) \
&= frac{1}{(n-1)!} sum_{k = 0}^{[x]} (-1)^kbinom{n}{k}(x-k)^{n-1} + frac{1}{(n-1)!} sum_{k = 0}^{[x-1]} (-1)^kbinom{n}{k}(x-1-k)^{n-1} \
&= frac{1}{(n-1)!}left(sum_{k = 0}^{[x]} (-1)^kbinom{n}{k}(x-k)^{n-1} + sum_{k = 0}^{[x]-1} (-1)^kbinom{n}{k}(x-1-k)^{n-1}right) \
&= frac{1}{(n-1)!}left(x^{n-1}+sum_{k = 1}^{[x]} (-1)^kbinom{n}{k}(x-k)^{n-1} + sum_{k = 1}^{[x]} (-1)^{k-1}binom{n}{k-1}(x-1-(k-1))^{n-1}right) \
&= frac{1}{(n-1)!}left(x^{n-1}+sum_{k = 1}^{[x]} (-1)^kbinom{n}{k}(x-k)^{n-1} - (-1)^{k}binom{n}{k-1}(x-k)^{n-1}right).
end{align*}



How can I solve this?



Edit:
begin{align*}
f_{n+1}(x) &= (f_n * f_{X_{n+1}})(x)
= int_{-infty}^infty f_{n}(y) f_{X_{n+1}}(x-y) , dy \
&= int_{-infty}^infty frac{1}{(n-1)!} sum_{k = 0}^{[y]} (-1)^k binom{n}{k}(y-k)^{n-1} cdot 1_{(0,1)}(x-y) , dy \
&= frac{1}{(n-1)!} int_{-infty}^{infty} sum_{k = 0}^{[y]} (-1)^k binom{n}{k}(y-k)^{n-1} cdot 1_{(x-1, x)}(y), dy \
&= frac{1}{(n-1)!} int_{x-1}^{x} sum_{k = 0}^{[y]} (-1)^k binom{n}{k}(y-k)^{n-1} , dy
end{align*}



I want to swap the sum and the integral, but the sum depends on $y$.







probability probability-theory probability-distributions random-variables






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 27 '13 at 14:45







numerion

















asked Dec 27 '13 at 12:50









numerionnumerion

1381514




1381514








  • 1




    In fact you are saying that $f_{n+1}(x)=0$. This because in your question it equalizes $P(S_{n+1}=x)$. You could use: $f_{n+1}left(xright)=int f_{n}left(x-uright)f_{1}left(uright)du=int_{0}^{1}f_{n}left(x-uright)du$
    – drhab
    Dec 27 '13 at 13:11












  • Ah thanks, I see I had a totally wrong approach. I will try yours.
    – numerion
    Dec 27 '13 at 13:29










  • I've edited, please check.
    – numerion
    Dec 27 '13 at 15:21










  • You have $x-1<y<x$. Then$leftlfloor yrightrfloor inleft{ leftlfloor x-1rightrfloor ,leftlfloor xrightrfloor right} $ and these cases must be discerned. If $x-1<y<leftlfloor xrightrfloor $ then $leftlfloor yrightrfloor =leftlfloor x-1rightrfloor $ and if $leftlfloor xrightrfloor leq y<x$ then $leftlfloor yrightrfloor =leftlfloor xrightrfloor $. So split up the integral: $int_{x-1}^{x}...dy=int_{x-1}^{leftlfloor xrightrfloor }...dy+int_{leftlfloor xrightrfloor }^{x}...dy$.
    – drhab
    Dec 27 '13 at 16:02














  • 1




    In fact you are saying that $f_{n+1}(x)=0$. This because in your question it equalizes $P(S_{n+1}=x)$. You could use: $f_{n+1}left(xright)=int f_{n}left(x-uright)f_{1}left(uright)du=int_{0}^{1}f_{n}left(x-uright)du$
    – drhab
    Dec 27 '13 at 13:11












  • Ah thanks, I see I had a totally wrong approach. I will try yours.
    – numerion
    Dec 27 '13 at 13:29










  • I've edited, please check.
    – numerion
    Dec 27 '13 at 15:21










  • You have $x-1<y<x$. Then$leftlfloor yrightrfloor inleft{ leftlfloor x-1rightrfloor ,leftlfloor xrightrfloor right} $ and these cases must be discerned. If $x-1<y<leftlfloor xrightrfloor $ then $leftlfloor yrightrfloor =leftlfloor x-1rightrfloor $ and if $leftlfloor xrightrfloor leq y<x$ then $leftlfloor yrightrfloor =leftlfloor xrightrfloor $. So split up the integral: $int_{x-1}^{x}...dy=int_{x-1}^{leftlfloor xrightrfloor }...dy+int_{leftlfloor xrightrfloor }^{x}...dy$.
    – drhab
    Dec 27 '13 at 16:02








1




1




In fact you are saying that $f_{n+1}(x)=0$. This because in your question it equalizes $P(S_{n+1}=x)$. You could use: $f_{n+1}left(xright)=int f_{n}left(x-uright)f_{1}left(uright)du=int_{0}^{1}f_{n}left(x-uright)du$
– drhab
Dec 27 '13 at 13:11






In fact you are saying that $f_{n+1}(x)=0$. This because in your question it equalizes $P(S_{n+1}=x)$. You could use: $f_{n+1}left(xright)=int f_{n}left(x-uright)f_{1}left(uright)du=int_{0}^{1}f_{n}left(x-uright)du$
– drhab
Dec 27 '13 at 13:11














Ah thanks, I see I had a totally wrong approach. I will try yours.
– numerion
Dec 27 '13 at 13:29




Ah thanks, I see I had a totally wrong approach. I will try yours.
– numerion
Dec 27 '13 at 13:29












I've edited, please check.
– numerion
Dec 27 '13 at 15:21




I've edited, please check.
– numerion
Dec 27 '13 at 15:21












You have $x-1<y<x$. Then$leftlfloor yrightrfloor inleft{ leftlfloor x-1rightrfloor ,leftlfloor xrightrfloor right} $ and these cases must be discerned. If $x-1<y<leftlfloor xrightrfloor $ then $leftlfloor yrightrfloor =leftlfloor x-1rightrfloor $ and if $leftlfloor xrightrfloor leq y<x$ then $leftlfloor yrightrfloor =leftlfloor xrightrfloor $. So split up the integral: $int_{x-1}^{x}...dy=int_{x-1}^{leftlfloor xrightrfloor }...dy+int_{leftlfloor xrightrfloor }^{x}...dy$.
– drhab
Dec 27 '13 at 16:02




You have $x-1<y<x$. Then$leftlfloor yrightrfloor inleft{ leftlfloor x-1rightrfloor ,leftlfloor xrightrfloor right} $ and these cases must be discerned. If $x-1<y<leftlfloor xrightrfloor $ then $leftlfloor yrightrfloor =leftlfloor x-1rightrfloor $ and if $leftlfloor xrightrfloor leq y<x$ then $leftlfloor yrightrfloor =leftlfloor xrightrfloor $. So split up the integral: $int_{x-1}^{x}...dy=int_{x-1}^{leftlfloor xrightrfloor }...dy+int_{leftlfloor xrightrfloor }^{x}...dy$.
– drhab
Dec 27 '13 at 16:02










2 Answers
2






active

oldest

votes


















2














$int f_{n}left(yright)f_{1}left(x-yright)dy=intfrac{1}{left(n-1right)!}sum_{k=0}^{leftlfloor yrightrfloor }left(-1right)^{k}binom{n}{k}left(y-kright)^{n-1}1_{left(0,1right)}left(x-yright)dy$



$=frac{1}{left(n-1right)!}sum_{k=0}^{leftlfloor x-1rightrfloor }left(-1right)^{k}binom{n}{k}int_{x-1}^{leftlfloor xrightrfloor }left(y-kright)^{n-1}dy+frac{1}{left(n-1right)!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}binom{n}{k}int_{leftlfloor xrightrfloor }^{x}left(y-kright)^{n-1}dy$



$=frac{1}{n!}sum_{k=0}^{leftlfloor x-1rightrfloor }left(-1right)^{k}binom{n}{k}left[left(leftlfloor xrightrfloor -kright)^{n}-left(x-1-kright)^{n}right]+frac{1}{n!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}binom{n}{k}left[left(x-kright)^{n}-left(leftlfloor xrightrfloor -kright)^{n}right]$



$=frac{1}{n!}sum_{k=0}^{leftlfloor x-1rightrfloor }left(-1right)^{k}binom{n}{k}left[left(x-kright)^{n}-left(x-1-kright)^{n}right]+left(-1right)^{leftlfloor xrightrfloor }binom{n}{leftlfloor xrightrfloor }left(x-leftlfloor xrightrfloor right)^{n}$



$=frac{1}{n!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}binom{n}{k}left(x-kright)^{n}+frac{1}{n!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}binom{n}{k-1}left(x-kright)^{n}$
(here $binom{n}{-1}:=0$)



$=frac{1}{n!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}left[binom{n}{k}+binom{n}{k-1}right]left(x-kright)^{n}$



$=frac{1}{n!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}binom{n+1}{k}left(x-kright)^{n}$



pfffffff.....In my language: een echte 'rotsom'.






share|cite|improve this answer































    3














    Here is a totally different method. So you want to compute $I*I*cdots*I = I^{*n}$, where $I$ is the indicator function of $[0,1]$, and the $*$ denotes convolution, and the superscript $I^{*n}$ denotes the $n$th convolution with itself.



    Differentiate $n$ times. You will get $(delta_1 - delta_0)^{*n}$, where $delta_x$ denotes the Dirac delta function centered at $x$. This is easily expanded using the Binomial Theorem, remembering that $delta_x * delta_y = delta_{x+y}$.



    Now take the indefinite integral $n$ times. The tricky bit is how to consider the constants of integration. But the easiest boundary condition is to suppose that all the derivatives disappear at $-infty$. In this way $int^n delta_y (dx)^n = frac1{(n-1)!} (x-y)_+^{n-1}$, where $x_+$ denotes $max{x,0}$. (Please excuse the notation for $n$th indefinite integral.)



    I got this method from an exercise in the book by Nakhle Asmar on Partial Differential Equations.






    share|cite|improve this answer





















      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f619552%2fdensity-of-the-sum-of-n-uniform0-1-distributed-random-variables%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2














      $int f_{n}left(yright)f_{1}left(x-yright)dy=intfrac{1}{left(n-1right)!}sum_{k=0}^{leftlfloor yrightrfloor }left(-1right)^{k}binom{n}{k}left(y-kright)^{n-1}1_{left(0,1right)}left(x-yright)dy$



      $=frac{1}{left(n-1right)!}sum_{k=0}^{leftlfloor x-1rightrfloor }left(-1right)^{k}binom{n}{k}int_{x-1}^{leftlfloor xrightrfloor }left(y-kright)^{n-1}dy+frac{1}{left(n-1right)!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}binom{n}{k}int_{leftlfloor xrightrfloor }^{x}left(y-kright)^{n-1}dy$



      $=frac{1}{n!}sum_{k=0}^{leftlfloor x-1rightrfloor }left(-1right)^{k}binom{n}{k}left[left(leftlfloor xrightrfloor -kright)^{n}-left(x-1-kright)^{n}right]+frac{1}{n!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}binom{n}{k}left[left(x-kright)^{n}-left(leftlfloor xrightrfloor -kright)^{n}right]$



      $=frac{1}{n!}sum_{k=0}^{leftlfloor x-1rightrfloor }left(-1right)^{k}binom{n}{k}left[left(x-kright)^{n}-left(x-1-kright)^{n}right]+left(-1right)^{leftlfloor xrightrfloor }binom{n}{leftlfloor xrightrfloor }left(x-leftlfloor xrightrfloor right)^{n}$



      $=frac{1}{n!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}binom{n}{k}left(x-kright)^{n}+frac{1}{n!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}binom{n}{k-1}left(x-kright)^{n}$
      (here $binom{n}{-1}:=0$)



      $=frac{1}{n!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}left[binom{n}{k}+binom{n}{k-1}right]left(x-kright)^{n}$



      $=frac{1}{n!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}binom{n+1}{k}left(x-kright)^{n}$



      pfffffff.....In my language: een echte 'rotsom'.






      share|cite|improve this answer




























        2














        $int f_{n}left(yright)f_{1}left(x-yright)dy=intfrac{1}{left(n-1right)!}sum_{k=0}^{leftlfloor yrightrfloor }left(-1right)^{k}binom{n}{k}left(y-kright)^{n-1}1_{left(0,1right)}left(x-yright)dy$



        $=frac{1}{left(n-1right)!}sum_{k=0}^{leftlfloor x-1rightrfloor }left(-1right)^{k}binom{n}{k}int_{x-1}^{leftlfloor xrightrfloor }left(y-kright)^{n-1}dy+frac{1}{left(n-1right)!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}binom{n}{k}int_{leftlfloor xrightrfloor }^{x}left(y-kright)^{n-1}dy$



        $=frac{1}{n!}sum_{k=0}^{leftlfloor x-1rightrfloor }left(-1right)^{k}binom{n}{k}left[left(leftlfloor xrightrfloor -kright)^{n}-left(x-1-kright)^{n}right]+frac{1}{n!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}binom{n}{k}left[left(x-kright)^{n}-left(leftlfloor xrightrfloor -kright)^{n}right]$



        $=frac{1}{n!}sum_{k=0}^{leftlfloor x-1rightrfloor }left(-1right)^{k}binom{n}{k}left[left(x-kright)^{n}-left(x-1-kright)^{n}right]+left(-1right)^{leftlfloor xrightrfloor }binom{n}{leftlfloor xrightrfloor }left(x-leftlfloor xrightrfloor right)^{n}$



        $=frac{1}{n!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}binom{n}{k}left(x-kright)^{n}+frac{1}{n!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}binom{n}{k-1}left(x-kright)^{n}$
        (here $binom{n}{-1}:=0$)



        $=frac{1}{n!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}left[binom{n}{k}+binom{n}{k-1}right]left(x-kright)^{n}$



        $=frac{1}{n!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}binom{n+1}{k}left(x-kright)^{n}$



        pfffffff.....In my language: een echte 'rotsom'.






        share|cite|improve this answer


























          2












          2








          2






          $int f_{n}left(yright)f_{1}left(x-yright)dy=intfrac{1}{left(n-1right)!}sum_{k=0}^{leftlfloor yrightrfloor }left(-1right)^{k}binom{n}{k}left(y-kright)^{n-1}1_{left(0,1right)}left(x-yright)dy$



          $=frac{1}{left(n-1right)!}sum_{k=0}^{leftlfloor x-1rightrfloor }left(-1right)^{k}binom{n}{k}int_{x-1}^{leftlfloor xrightrfloor }left(y-kright)^{n-1}dy+frac{1}{left(n-1right)!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}binom{n}{k}int_{leftlfloor xrightrfloor }^{x}left(y-kright)^{n-1}dy$



          $=frac{1}{n!}sum_{k=0}^{leftlfloor x-1rightrfloor }left(-1right)^{k}binom{n}{k}left[left(leftlfloor xrightrfloor -kright)^{n}-left(x-1-kright)^{n}right]+frac{1}{n!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}binom{n}{k}left[left(x-kright)^{n}-left(leftlfloor xrightrfloor -kright)^{n}right]$



          $=frac{1}{n!}sum_{k=0}^{leftlfloor x-1rightrfloor }left(-1right)^{k}binom{n}{k}left[left(x-kright)^{n}-left(x-1-kright)^{n}right]+left(-1right)^{leftlfloor xrightrfloor }binom{n}{leftlfloor xrightrfloor }left(x-leftlfloor xrightrfloor right)^{n}$



          $=frac{1}{n!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}binom{n}{k}left(x-kright)^{n}+frac{1}{n!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}binom{n}{k-1}left(x-kright)^{n}$
          (here $binom{n}{-1}:=0$)



          $=frac{1}{n!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}left[binom{n}{k}+binom{n}{k-1}right]left(x-kright)^{n}$



          $=frac{1}{n!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}binom{n+1}{k}left(x-kright)^{n}$



          pfffffff.....In my language: een echte 'rotsom'.






          share|cite|improve this answer














          $int f_{n}left(yright)f_{1}left(x-yright)dy=intfrac{1}{left(n-1right)!}sum_{k=0}^{leftlfloor yrightrfloor }left(-1right)^{k}binom{n}{k}left(y-kright)^{n-1}1_{left(0,1right)}left(x-yright)dy$



          $=frac{1}{left(n-1right)!}sum_{k=0}^{leftlfloor x-1rightrfloor }left(-1right)^{k}binom{n}{k}int_{x-1}^{leftlfloor xrightrfloor }left(y-kright)^{n-1}dy+frac{1}{left(n-1right)!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}binom{n}{k}int_{leftlfloor xrightrfloor }^{x}left(y-kright)^{n-1}dy$



          $=frac{1}{n!}sum_{k=0}^{leftlfloor x-1rightrfloor }left(-1right)^{k}binom{n}{k}left[left(leftlfloor xrightrfloor -kright)^{n}-left(x-1-kright)^{n}right]+frac{1}{n!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}binom{n}{k}left[left(x-kright)^{n}-left(leftlfloor xrightrfloor -kright)^{n}right]$



          $=frac{1}{n!}sum_{k=0}^{leftlfloor x-1rightrfloor }left(-1right)^{k}binom{n}{k}left[left(x-kright)^{n}-left(x-1-kright)^{n}right]+left(-1right)^{leftlfloor xrightrfloor }binom{n}{leftlfloor xrightrfloor }left(x-leftlfloor xrightrfloor right)^{n}$



          $=frac{1}{n!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}binom{n}{k}left(x-kright)^{n}+frac{1}{n!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}binom{n}{k-1}left(x-kright)^{n}$
          (here $binom{n}{-1}:=0$)



          $=frac{1}{n!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}left[binom{n}{k}+binom{n}{k-1}right]left(x-kright)^{n}$



          $=frac{1}{n!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}binom{n+1}{k}left(x-kright)^{n}$



          pfffffff.....In my language: een echte 'rotsom'.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Dec 27 '13 at 19:04

























          answered Dec 27 '13 at 17:12









          drhabdrhab

          98.5k544129




          98.5k544129























              3














              Here is a totally different method. So you want to compute $I*I*cdots*I = I^{*n}$, where $I$ is the indicator function of $[0,1]$, and the $*$ denotes convolution, and the superscript $I^{*n}$ denotes the $n$th convolution with itself.



              Differentiate $n$ times. You will get $(delta_1 - delta_0)^{*n}$, where $delta_x$ denotes the Dirac delta function centered at $x$. This is easily expanded using the Binomial Theorem, remembering that $delta_x * delta_y = delta_{x+y}$.



              Now take the indefinite integral $n$ times. The tricky bit is how to consider the constants of integration. But the easiest boundary condition is to suppose that all the derivatives disappear at $-infty$. In this way $int^n delta_y (dx)^n = frac1{(n-1)!} (x-y)_+^{n-1}$, where $x_+$ denotes $max{x,0}$. (Please excuse the notation for $n$th indefinite integral.)



              I got this method from an exercise in the book by Nakhle Asmar on Partial Differential Equations.






              share|cite|improve this answer


























                3














                Here is a totally different method. So you want to compute $I*I*cdots*I = I^{*n}$, where $I$ is the indicator function of $[0,1]$, and the $*$ denotes convolution, and the superscript $I^{*n}$ denotes the $n$th convolution with itself.



                Differentiate $n$ times. You will get $(delta_1 - delta_0)^{*n}$, where $delta_x$ denotes the Dirac delta function centered at $x$. This is easily expanded using the Binomial Theorem, remembering that $delta_x * delta_y = delta_{x+y}$.



                Now take the indefinite integral $n$ times. The tricky bit is how to consider the constants of integration. But the easiest boundary condition is to suppose that all the derivatives disappear at $-infty$. In this way $int^n delta_y (dx)^n = frac1{(n-1)!} (x-y)_+^{n-1}$, where $x_+$ denotes $max{x,0}$. (Please excuse the notation for $n$th indefinite integral.)



                I got this method from an exercise in the book by Nakhle Asmar on Partial Differential Equations.






                share|cite|improve this answer
























                  3












                  3








                  3






                  Here is a totally different method. So you want to compute $I*I*cdots*I = I^{*n}$, where $I$ is the indicator function of $[0,1]$, and the $*$ denotes convolution, and the superscript $I^{*n}$ denotes the $n$th convolution with itself.



                  Differentiate $n$ times. You will get $(delta_1 - delta_0)^{*n}$, where $delta_x$ denotes the Dirac delta function centered at $x$. This is easily expanded using the Binomial Theorem, remembering that $delta_x * delta_y = delta_{x+y}$.



                  Now take the indefinite integral $n$ times. The tricky bit is how to consider the constants of integration. But the easiest boundary condition is to suppose that all the derivatives disappear at $-infty$. In this way $int^n delta_y (dx)^n = frac1{(n-1)!} (x-y)_+^{n-1}$, where $x_+$ denotes $max{x,0}$. (Please excuse the notation for $n$th indefinite integral.)



                  I got this method from an exercise in the book by Nakhle Asmar on Partial Differential Equations.






                  share|cite|improve this answer












                  Here is a totally different method. So you want to compute $I*I*cdots*I = I^{*n}$, where $I$ is the indicator function of $[0,1]$, and the $*$ denotes convolution, and the superscript $I^{*n}$ denotes the $n$th convolution with itself.



                  Differentiate $n$ times. You will get $(delta_1 - delta_0)^{*n}$, where $delta_x$ denotes the Dirac delta function centered at $x$. This is easily expanded using the Binomial Theorem, remembering that $delta_x * delta_y = delta_{x+y}$.



                  Now take the indefinite integral $n$ times. The tricky bit is how to consider the constants of integration. But the easiest boundary condition is to suppose that all the derivatives disappear at $-infty$. In this way $int^n delta_y (dx)^n = frac1{(n-1)!} (x-y)_+^{n-1}$, where $x_+$ denotes $max{x,0}$. (Please excuse the notation for $n$th indefinite integral.)



                  I got this method from an exercise in the book by Nakhle Asmar on Partial Differential Equations.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Dec 27 '13 at 17:04









                  Stephen Montgomery-SmithStephen Montgomery-Smith

                  17.7k12247




                  17.7k12247






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f619552%2fdensity-of-the-sum-of-n-uniform0-1-distributed-random-variables%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Berounka

                      Sphinx de Gizeh

                      Different font size/position of beamer's navigation symbols template's content depending on regular/plain...