Density of the sum of $n$ uniform(0,1) distributed random variables
I am working on the following problem:
Let $X_1, X_2, ldots, X_n, ldots$ be iid. random variables, each of Uniform$(0,1)$ distribution. Denote by $f_n(x)$ the density of the random variable $S_n := sum_{k = 1}^n X_k$. Then
begin{align*}
f_n(x) = frac{1}{(n-1)!} sum_{k = 0}^{[x]} (-1)^k binom{n}{k} (x-k)^{n-1},
end{align*}
where $[x]$ denotes the floor function.
I tried this, but I think something went wrong:
Prove by induction. For $n = 1$
begin{align*}
f_1(x) = frac{1}{(1-1)!} sum_{k = 0}^{[x]} (-1)^k binom{1}{k} (x-k)^{1-1} &= sum_{k = 0}^{[x]} (-1)^k binom{1}{k}
=begin{cases}
1, & 0 le x < 1 \
0, & text{otherwise}
end{cases}
end{align*}
Furthermore
begin{align*}
f_{n+1}(x) &= mathbb P(S_{n+1} = x) = mathbb P(S_n + X_{n+1} = x) \
&= sum_{m = 0}^{infty} mathbb P(S_n + X_{n+1} = x mid X_{n+1} = m) mathbb P(X_{n+1} = m) \
&= sum_{m = 0}^{infty} mathbb P(S_n + m = x) cdot 1_{[0,1]}(m)
= mathbb P(S_n = x) + mathbb P(S_n = x-1) \
&= frac{1}{(n-1)!} sum_{k = 0}^{[x]} (-1)^kbinom{n}{k}(x-k)^{n-1} + frac{1}{(n-1)!} sum_{k = 0}^{[x-1]} (-1)^kbinom{n}{k}(x-1-k)^{n-1} \
&= frac{1}{(n-1)!}left(sum_{k = 0}^{[x]} (-1)^kbinom{n}{k}(x-k)^{n-1} + sum_{k = 0}^{[x]-1} (-1)^kbinom{n}{k}(x-1-k)^{n-1}right) \
&= frac{1}{(n-1)!}left(x^{n-1}+sum_{k = 1}^{[x]} (-1)^kbinom{n}{k}(x-k)^{n-1} + sum_{k = 1}^{[x]} (-1)^{k-1}binom{n}{k-1}(x-1-(k-1))^{n-1}right) \
&= frac{1}{(n-1)!}left(x^{n-1}+sum_{k = 1}^{[x]} (-1)^kbinom{n}{k}(x-k)^{n-1} - (-1)^{k}binom{n}{k-1}(x-k)^{n-1}right).
end{align*}
How can I solve this?
Edit:
begin{align*}
f_{n+1}(x) &= (f_n * f_{X_{n+1}})(x)
= int_{-infty}^infty f_{n}(y) f_{X_{n+1}}(x-y) , dy \
&= int_{-infty}^infty frac{1}{(n-1)!} sum_{k = 0}^{[y]} (-1)^k binom{n}{k}(y-k)^{n-1} cdot 1_{(0,1)}(x-y) , dy \
&= frac{1}{(n-1)!} int_{-infty}^{infty} sum_{k = 0}^{[y]} (-1)^k binom{n}{k}(y-k)^{n-1} cdot 1_{(x-1, x)}(y), dy \
&= frac{1}{(n-1)!} int_{x-1}^{x} sum_{k = 0}^{[y]} (-1)^k binom{n}{k}(y-k)^{n-1} , dy
end{align*}
I want to swap the sum and the integral, but the sum depends on $y$.
probability probability-theory probability-distributions random-variables
add a comment |
I am working on the following problem:
Let $X_1, X_2, ldots, X_n, ldots$ be iid. random variables, each of Uniform$(0,1)$ distribution. Denote by $f_n(x)$ the density of the random variable $S_n := sum_{k = 1}^n X_k$. Then
begin{align*}
f_n(x) = frac{1}{(n-1)!} sum_{k = 0}^{[x]} (-1)^k binom{n}{k} (x-k)^{n-1},
end{align*}
where $[x]$ denotes the floor function.
I tried this, but I think something went wrong:
Prove by induction. For $n = 1$
begin{align*}
f_1(x) = frac{1}{(1-1)!} sum_{k = 0}^{[x]} (-1)^k binom{1}{k} (x-k)^{1-1} &= sum_{k = 0}^{[x]} (-1)^k binom{1}{k}
=begin{cases}
1, & 0 le x < 1 \
0, & text{otherwise}
end{cases}
end{align*}
Furthermore
begin{align*}
f_{n+1}(x) &= mathbb P(S_{n+1} = x) = mathbb P(S_n + X_{n+1} = x) \
&= sum_{m = 0}^{infty} mathbb P(S_n + X_{n+1} = x mid X_{n+1} = m) mathbb P(X_{n+1} = m) \
&= sum_{m = 0}^{infty} mathbb P(S_n + m = x) cdot 1_{[0,1]}(m)
= mathbb P(S_n = x) + mathbb P(S_n = x-1) \
&= frac{1}{(n-1)!} sum_{k = 0}^{[x]} (-1)^kbinom{n}{k}(x-k)^{n-1} + frac{1}{(n-1)!} sum_{k = 0}^{[x-1]} (-1)^kbinom{n}{k}(x-1-k)^{n-1} \
&= frac{1}{(n-1)!}left(sum_{k = 0}^{[x]} (-1)^kbinom{n}{k}(x-k)^{n-1} + sum_{k = 0}^{[x]-1} (-1)^kbinom{n}{k}(x-1-k)^{n-1}right) \
&= frac{1}{(n-1)!}left(x^{n-1}+sum_{k = 1}^{[x]} (-1)^kbinom{n}{k}(x-k)^{n-1} + sum_{k = 1}^{[x]} (-1)^{k-1}binom{n}{k-1}(x-1-(k-1))^{n-1}right) \
&= frac{1}{(n-1)!}left(x^{n-1}+sum_{k = 1}^{[x]} (-1)^kbinom{n}{k}(x-k)^{n-1} - (-1)^{k}binom{n}{k-1}(x-k)^{n-1}right).
end{align*}
How can I solve this?
Edit:
begin{align*}
f_{n+1}(x) &= (f_n * f_{X_{n+1}})(x)
= int_{-infty}^infty f_{n}(y) f_{X_{n+1}}(x-y) , dy \
&= int_{-infty}^infty frac{1}{(n-1)!} sum_{k = 0}^{[y]} (-1)^k binom{n}{k}(y-k)^{n-1} cdot 1_{(0,1)}(x-y) , dy \
&= frac{1}{(n-1)!} int_{-infty}^{infty} sum_{k = 0}^{[y]} (-1)^k binom{n}{k}(y-k)^{n-1} cdot 1_{(x-1, x)}(y), dy \
&= frac{1}{(n-1)!} int_{x-1}^{x} sum_{k = 0}^{[y]} (-1)^k binom{n}{k}(y-k)^{n-1} , dy
end{align*}
I want to swap the sum and the integral, but the sum depends on $y$.
probability probability-theory probability-distributions random-variables
1
In fact you are saying that $f_{n+1}(x)=0$. This because in your question it equalizes $P(S_{n+1}=x)$. You could use: $f_{n+1}left(xright)=int f_{n}left(x-uright)f_{1}left(uright)du=int_{0}^{1}f_{n}left(x-uright)du$
– drhab
Dec 27 '13 at 13:11
Ah thanks, I see I had a totally wrong approach. I will try yours.
– numerion
Dec 27 '13 at 13:29
I've edited, please check.
– numerion
Dec 27 '13 at 15:21
You have $x-1<y<x$. Then$leftlfloor yrightrfloor inleft{ leftlfloor x-1rightrfloor ,leftlfloor xrightrfloor right} $ and these cases must be discerned. If $x-1<y<leftlfloor xrightrfloor $ then $leftlfloor yrightrfloor =leftlfloor x-1rightrfloor $ and if $leftlfloor xrightrfloor leq y<x$ then $leftlfloor yrightrfloor =leftlfloor xrightrfloor $. So split up the integral: $int_{x-1}^{x}...dy=int_{x-1}^{leftlfloor xrightrfloor }...dy+int_{leftlfloor xrightrfloor }^{x}...dy$.
– drhab
Dec 27 '13 at 16:02
add a comment |
I am working on the following problem:
Let $X_1, X_2, ldots, X_n, ldots$ be iid. random variables, each of Uniform$(0,1)$ distribution. Denote by $f_n(x)$ the density of the random variable $S_n := sum_{k = 1}^n X_k$. Then
begin{align*}
f_n(x) = frac{1}{(n-1)!} sum_{k = 0}^{[x]} (-1)^k binom{n}{k} (x-k)^{n-1},
end{align*}
where $[x]$ denotes the floor function.
I tried this, but I think something went wrong:
Prove by induction. For $n = 1$
begin{align*}
f_1(x) = frac{1}{(1-1)!} sum_{k = 0}^{[x]} (-1)^k binom{1}{k} (x-k)^{1-1} &= sum_{k = 0}^{[x]} (-1)^k binom{1}{k}
=begin{cases}
1, & 0 le x < 1 \
0, & text{otherwise}
end{cases}
end{align*}
Furthermore
begin{align*}
f_{n+1}(x) &= mathbb P(S_{n+1} = x) = mathbb P(S_n + X_{n+1} = x) \
&= sum_{m = 0}^{infty} mathbb P(S_n + X_{n+1} = x mid X_{n+1} = m) mathbb P(X_{n+1} = m) \
&= sum_{m = 0}^{infty} mathbb P(S_n + m = x) cdot 1_{[0,1]}(m)
= mathbb P(S_n = x) + mathbb P(S_n = x-1) \
&= frac{1}{(n-1)!} sum_{k = 0}^{[x]} (-1)^kbinom{n}{k}(x-k)^{n-1} + frac{1}{(n-1)!} sum_{k = 0}^{[x-1]} (-1)^kbinom{n}{k}(x-1-k)^{n-1} \
&= frac{1}{(n-1)!}left(sum_{k = 0}^{[x]} (-1)^kbinom{n}{k}(x-k)^{n-1} + sum_{k = 0}^{[x]-1} (-1)^kbinom{n}{k}(x-1-k)^{n-1}right) \
&= frac{1}{(n-1)!}left(x^{n-1}+sum_{k = 1}^{[x]} (-1)^kbinom{n}{k}(x-k)^{n-1} + sum_{k = 1}^{[x]} (-1)^{k-1}binom{n}{k-1}(x-1-(k-1))^{n-1}right) \
&= frac{1}{(n-1)!}left(x^{n-1}+sum_{k = 1}^{[x]} (-1)^kbinom{n}{k}(x-k)^{n-1} - (-1)^{k}binom{n}{k-1}(x-k)^{n-1}right).
end{align*}
How can I solve this?
Edit:
begin{align*}
f_{n+1}(x) &= (f_n * f_{X_{n+1}})(x)
= int_{-infty}^infty f_{n}(y) f_{X_{n+1}}(x-y) , dy \
&= int_{-infty}^infty frac{1}{(n-1)!} sum_{k = 0}^{[y]} (-1)^k binom{n}{k}(y-k)^{n-1} cdot 1_{(0,1)}(x-y) , dy \
&= frac{1}{(n-1)!} int_{-infty}^{infty} sum_{k = 0}^{[y]} (-1)^k binom{n}{k}(y-k)^{n-1} cdot 1_{(x-1, x)}(y), dy \
&= frac{1}{(n-1)!} int_{x-1}^{x} sum_{k = 0}^{[y]} (-1)^k binom{n}{k}(y-k)^{n-1} , dy
end{align*}
I want to swap the sum and the integral, but the sum depends on $y$.
probability probability-theory probability-distributions random-variables
I am working on the following problem:
Let $X_1, X_2, ldots, X_n, ldots$ be iid. random variables, each of Uniform$(0,1)$ distribution. Denote by $f_n(x)$ the density of the random variable $S_n := sum_{k = 1}^n X_k$. Then
begin{align*}
f_n(x) = frac{1}{(n-1)!} sum_{k = 0}^{[x]} (-1)^k binom{n}{k} (x-k)^{n-1},
end{align*}
where $[x]$ denotes the floor function.
I tried this, but I think something went wrong:
Prove by induction. For $n = 1$
begin{align*}
f_1(x) = frac{1}{(1-1)!} sum_{k = 0}^{[x]} (-1)^k binom{1}{k} (x-k)^{1-1} &= sum_{k = 0}^{[x]} (-1)^k binom{1}{k}
=begin{cases}
1, & 0 le x < 1 \
0, & text{otherwise}
end{cases}
end{align*}
Furthermore
begin{align*}
f_{n+1}(x) &= mathbb P(S_{n+1} = x) = mathbb P(S_n + X_{n+1} = x) \
&= sum_{m = 0}^{infty} mathbb P(S_n + X_{n+1} = x mid X_{n+1} = m) mathbb P(X_{n+1} = m) \
&= sum_{m = 0}^{infty} mathbb P(S_n + m = x) cdot 1_{[0,1]}(m)
= mathbb P(S_n = x) + mathbb P(S_n = x-1) \
&= frac{1}{(n-1)!} sum_{k = 0}^{[x]} (-1)^kbinom{n}{k}(x-k)^{n-1} + frac{1}{(n-1)!} sum_{k = 0}^{[x-1]} (-1)^kbinom{n}{k}(x-1-k)^{n-1} \
&= frac{1}{(n-1)!}left(sum_{k = 0}^{[x]} (-1)^kbinom{n}{k}(x-k)^{n-1} + sum_{k = 0}^{[x]-1} (-1)^kbinom{n}{k}(x-1-k)^{n-1}right) \
&= frac{1}{(n-1)!}left(x^{n-1}+sum_{k = 1}^{[x]} (-1)^kbinom{n}{k}(x-k)^{n-1} + sum_{k = 1}^{[x]} (-1)^{k-1}binom{n}{k-1}(x-1-(k-1))^{n-1}right) \
&= frac{1}{(n-1)!}left(x^{n-1}+sum_{k = 1}^{[x]} (-1)^kbinom{n}{k}(x-k)^{n-1} - (-1)^{k}binom{n}{k-1}(x-k)^{n-1}right).
end{align*}
How can I solve this?
Edit:
begin{align*}
f_{n+1}(x) &= (f_n * f_{X_{n+1}})(x)
= int_{-infty}^infty f_{n}(y) f_{X_{n+1}}(x-y) , dy \
&= int_{-infty}^infty frac{1}{(n-1)!} sum_{k = 0}^{[y]} (-1)^k binom{n}{k}(y-k)^{n-1} cdot 1_{(0,1)}(x-y) , dy \
&= frac{1}{(n-1)!} int_{-infty}^{infty} sum_{k = 0}^{[y]} (-1)^k binom{n}{k}(y-k)^{n-1} cdot 1_{(x-1, x)}(y), dy \
&= frac{1}{(n-1)!} int_{x-1}^{x} sum_{k = 0}^{[y]} (-1)^k binom{n}{k}(y-k)^{n-1} , dy
end{align*}
I want to swap the sum and the integral, but the sum depends on $y$.
probability probability-theory probability-distributions random-variables
probability probability-theory probability-distributions random-variables
edited Dec 27 '13 at 14:45
numerion
asked Dec 27 '13 at 12:50
numerionnumerion
1381514
1381514
1
In fact you are saying that $f_{n+1}(x)=0$. This because in your question it equalizes $P(S_{n+1}=x)$. You could use: $f_{n+1}left(xright)=int f_{n}left(x-uright)f_{1}left(uright)du=int_{0}^{1}f_{n}left(x-uright)du$
– drhab
Dec 27 '13 at 13:11
Ah thanks, I see I had a totally wrong approach. I will try yours.
– numerion
Dec 27 '13 at 13:29
I've edited, please check.
– numerion
Dec 27 '13 at 15:21
You have $x-1<y<x$. Then$leftlfloor yrightrfloor inleft{ leftlfloor x-1rightrfloor ,leftlfloor xrightrfloor right} $ and these cases must be discerned. If $x-1<y<leftlfloor xrightrfloor $ then $leftlfloor yrightrfloor =leftlfloor x-1rightrfloor $ and if $leftlfloor xrightrfloor leq y<x$ then $leftlfloor yrightrfloor =leftlfloor xrightrfloor $. So split up the integral: $int_{x-1}^{x}...dy=int_{x-1}^{leftlfloor xrightrfloor }...dy+int_{leftlfloor xrightrfloor }^{x}...dy$.
– drhab
Dec 27 '13 at 16:02
add a comment |
1
In fact you are saying that $f_{n+1}(x)=0$. This because in your question it equalizes $P(S_{n+1}=x)$. You could use: $f_{n+1}left(xright)=int f_{n}left(x-uright)f_{1}left(uright)du=int_{0}^{1}f_{n}left(x-uright)du$
– drhab
Dec 27 '13 at 13:11
Ah thanks, I see I had a totally wrong approach. I will try yours.
– numerion
Dec 27 '13 at 13:29
I've edited, please check.
– numerion
Dec 27 '13 at 15:21
You have $x-1<y<x$. Then$leftlfloor yrightrfloor inleft{ leftlfloor x-1rightrfloor ,leftlfloor xrightrfloor right} $ and these cases must be discerned. If $x-1<y<leftlfloor xrightrfloor $ then $leftlfloor yrightrfloor =leftlfloor x-1rightrfloor $ and if $leftlfloor xrightrfloor leq y<x$ then $leftlfloor yrightrfloor =leftlfloor xrightrfloor $. So split up the integral: $int_{x-1}^{x}...dy=int_{x-1}^{leftlfloor xrightrfloor }...dy+int_{leftlfloor xrightrfloor }^{x}...dy$.
– drhab
Dec 27 '13 at 16:02
1
1
In fact you are saying that $f_{n+1}(x)=0$. This because in your question it equalizes $P(S_{n+1}=x)$. You could use: $f_{n+1}left(xright)=int f_{n}left(x-uright)f_{1}left(uright)du=int_{0}^{1}f_{n}left(x-uright)du$
– drhab
Dec 27 '13 at 13:11
In fact you are saying that $f_{n+1}(x)=0$. This because in your question it equalizes $P(S_{n+1}=x)$. You could use: $f_{n+1}left(xright)=int f_{n}left(x-uright)f_{1}left(uright)du=int_{0}^{1}f_{n}left(x-uright)du$
– drhab
Dec 27 '13 at 13:11
Ah thanks, I see I had a totally wrong approach. I will try yours.
– numerion
Dec 27 '13 at 13:29
Ah thanks, I see I had a totally wrong approach. I will try yours.
– numerion
Dec 27 '13 at 13:29
I've edited, please check.
– numerion
Dec 27 '13 at 15:21
I've edited, please check.
– numerion
Dec 27 '13 at 15:21
You have $x-1<y<x$. Then$leftlfloor yrightrfloor inleft{ leftlfloor x-1rightrfloor ,leftlfloor xrightrfloor right} $ and these cases must be discerned. If $x-1<y<leftlfloor xrightrfloor $ then $leftlfloor yrightrfloor =leftlfloor x-1rightrfloor $ and if $leftlfloor xrightrfloor leq y<x$ then $leftlfloor yrightrfloor =leftlfloor xrightrfloor $. So split up the integral: $int_{x-1}^{x}...dy=int_{x-1}^{leftlfloor xrightrfloor }...dy+int_{leftlfloor xrightrfloor }^{x}...dy$.
– drhab
Dec 27 '13 at 16:02
You have $x-1<y<x$. Then$leftlfloor yrightrfloor inleft{ leftlfloor x-1rightrfloor ,leftlfloor xrightrfloor right} $ and these cases must be discerned. If $x-1<y<leftlfloor xrightrfloor $ then $leftlfloor yrightrfloor =leftlfloor x-1rightrfloor $ and if $leftlfloor xrightrfloor leq y<x$ then $leftlfloor yrightrfloor =leftlfloor xrightrfloor $. So split up the integral: $int_{x-1}^{x}...dy=int_{x-1}^{leftlfloor xrightrfloor }...dy+int_{leftlfloor xrightrfloor }^{x}...dy$.
– drhab
Dec 27 '13 at 16:02
add a comment |
2 Answers
2
active
oldest
votes
$int f_{n}left(yright)f_{1}left(x-yright)dy=intfrac{1}{left(n-1right)!}sum_{k=0}^{leftlfloor yrightrfloor }left(-1right)^{k}binom{n}{k}left(y-kright)^{n-1}1_{left(0,1right)}left(x-yright)dy$
$=frac{1}{left(n-1right)!}sum_{k=0}^{leftlfloor x-1rightrfloor }left(-1right)^{k}binom{n}{k}int_{x-1}^{leftlfloor xrightrfloor }left(y-kright)^{n-1}dy+frac{1}{left(n-1right)!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}binom{n}{k}int_{leftlfloor xrightrfloor }^{x}left(y-kright)^{n-1}dy$
$=frac{1}{n!}sum_{k=0}^{leftlfloor x-1rightrfloor }left(-1right)^{k}binom{n}{k}left[left(leftlfloor xrightrfloor -kright)^{n}-left(x-1-kright)^{n}right]+frac{1}{n!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}binom{n}{k}left[left(x-kright)^{n}-left(leftlfloor xrightrfloor -kright)^{n}right]$
$=frac{1}{n!}sum_{k=0}^{leftlfloor x-1rightrfloor }left(-1right)^{k}binom{n}{k}left[left(x-kright)^{n}-left(x-1-kright)^{n}right]+left(-1right)^{leftlfloor xrightrfloor }binom{n}{leftlfloor xrightrfloor }left(x-leftlfloor xrightrfloor right)^{n}$
$=frac{1}{n!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}binom{n}{k}left(x-kright)^{n}+frac{1}{n!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}binom{n}{k-1}left(x-kright)^{n}$
(here $binom{n}{-1}:=0$)
$=frac{1}{n!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}left[binom{n}{k}+binom{n}{k-1}right]left(x-kright)^{n}$
$=frac{1}{n!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}binom{n+1}{k}left(x-kright)^{n}$
pfffffff.....In my language: een echte 'rotsom'.
add a comment |
Here is a totally different method. So you want to compute $I*I*cdots*I = I^{*n}$, where $I$ is the indicator function of $[0,1]$, and the $*$ denotes convolution, and the superscript $I^{*n}$ denotes the $n$th convolution with itself.
Differentiate $n$ times. You will get $(delta_1 - delta_0)^{*n}$, where $delta_x$ denotes the Dirac delta function centered at $x$. This is easily expanded using the Binomial Theorem, remembering that $delta_x * delta_y = delta_{x+y}$.
Now take the indefinite integral $n$ times. The tricky bit is how to consider the constants of integration. But the easiest boundary condition is to suppose that all the derivatives disappear at $-infty$. In this way $int^n delta_y (dx)^n = frac1{(n-1)!} (x-y)_+^{n-1}$, where $x_+$ denotes $max{x,0}$. (Please excuse the notation for $n$th indefinite integral.)
I got this method from an exercise in the book by Nakhle Asmar on Partial Differential Equations.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f619552%2fdensity-of-the-sum-of-n-uniform0-1-distributed-random-variables%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$int f_{n}left(yright)f_{1}left(x-yright)dy=intfrac{1}{left(n-1right)!}sum_{k=0}^{leftlfloor yrightrfloor }left(-1right)^{k}binom{n}{k}left(y-kright)^{n-1}1_{left(0,1right)}left(x-yright)dy$
$=frac{1}{left(n-1right)!}sum_{k=0}^{leftlfloor x-1rightrfloor }left(-1right)^{k}binom{n}{k}int_{x-1}^{leftlfloor xrightrfloor }left(y-kright)^{n-1}dy+frac{1}{left(n-1right)!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}binom{n}{k}int_{leftlfloor xrightrfloor }^{x}left(y-kright)^{n-1}dy$
$=frac{1}{n!}sum_{k=0}^{leftlfloor x-1rightrfloor }left(-1right)^{k}binom{n}{k}left[left(leftlfloor xrightrfloor -kright)^{n}-left(x-1-kright)^{n}right]+frac{1}{n!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}binom{n}{k}left[left(x-kright)^{n}-left(leftlfloor xrightrfloor -kright)^{n}right]$
$=frac{1}{n!}sum_{k=0}^{leftlfloor x-1rightrfloor }left(-1right)^{k}binom{n}{k}left[left(x-kright)^{n}-left(x-1-kright)^{n}right]+left(-1right)^{leftlfloor xrightrfloor }binom{n}{leftlfloor xrightrfloor }left(x-leftlfloor xrightrfloor right)^{n}$
$=frac{1}{n!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}binom{n}{k}left(x-kright)^{n}+frac{1}{n!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}binom{n}{k-1}left(x-kright)^{n}$
(here $binom{n}{-1}:=0$)
$=frac{1}{n!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}left[binom{n}{k}+binom{n}{k-1}right]left(x-kright)^{n}$
$=frac{1}{n!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}binom{n+1}{k}left(x-kright)^{n}$
pfffffff.....In my language: een echte 'rotsom'.
add a comment |
$int f_{n}left(yright)f_{1}left(x-yright)dy=intfrac{1}{left(n-1right)!}sum_{k=0}^{leftlfloor yrightrfloor }left(-1right)^{k}binom{n}{k}left(y-kright)^{n-1}1_{left(0,1right)}left(x-yright)dy$
$=frac{1}{left(n-1right)!}sum_{k=0}^{leftlfloor x-1rightrfloor }left(-1right)^{k}binom{n}{k}int_{x-1}^{leftlfloor xrightrfloor }left(y-kright)^{n-1}dy+frac{1}{left(n-1right)!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}binom{n}{k}int_{leftlfloor xrightrfloor }^{x}left(y-kright)^{n-1}dy$
$=frac{1}{n!}sum_{k=0}^{leftlfloor x-1rightrfloor }left(-1right)^{k}binom{n}{k}left[left(leftlfloor xrightrfloor -kright)^{n}-left(x-1-kright)^{n}right]+frac{1}{n!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}binom{n}{k}left[left(x-kright)^{n}-left(leftlfloor xrightrfloor -kright)^{n}right]$
$=frac{1}{n!}sum_{k=0}^{leftlfloor x-1rightrfloor }left(-1right)^{k}binom{n}{k}left[left(x-kright)^{n}-left(x-1-kright)^{n}right]+left(-1right)^{leftlfloor xrightrfloor }binom{n}{leftlfloor xrightrfloor }left(x-leftlfloor xrightrfloor right)^{n}$
$=frac{1}{n!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}binom{n}{k}left(x-kright)^{n}+frac{1}{n!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}binom{n}{k-1}left(x-kright)^{n}$
(here $binom{n}{-1}:=0$)
$=frac{1}{n!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}left[binom{n}{k}+binom{n}{k-1}right]left(x-kright)^{n}$
$=frac{1}{n!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}binom{n+1}{k}left(x-kright)^{n}$
pfffffff.....In my language: een echte 'rotsom'.
add a comment |
$int f_{n}left(yright)f_{1}left(x-yright)dy=intfrac{1}{left(n-1right)!}sum_{k=0}^{leftlfloor yrightrfloor }left(-1right)^{k}binom{n}{k}left(y-kright)^{n-1}1_{left(0,1right)}left(x-yright)dy$
$=frac{1}{left(n-1right)!}sum_{k=0}^{leftlfloor x-1rightrfloor }left(-1right)^{k}binom{n}{k}int_{x-1}^{leftlfloor xrightrfloor }left(y-kright)^{n-1}dy+frac{1}{left(n-1right)!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}binom{n}{k}int_{leftlfloor xrightrfloor }^{x}left(y-kright)^{n-1}dy$
$=frac{1}{n!}sum_{k=0}^{leftlfloor x-1rightrfloor }left(-1right)^{k}binom{n}{k}left[left(leftlfloor xrightrfloor -kright)^{n}-left(x-1-kright)^{n}right]+frac{1}{n!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}binom{n}{k}left[left(x-kright)^{n}-left(leftlfloor xrightrfloor -kright)^{n}right]$
$=frac{1}{n!}sum_{k=0}^{leftlfloor x-1rightrfloor }left(-1right)^{k}binom{n}{k}left[left(x-kright)^{n}-left(x-1-kright)^{n}right]+left(-1right)^{leftlfloor xrightrfloor }binom{n}{leftlfloor xrightrfloor }left(x-leftlfloor xrightrfloor right)^{n}$
$=frac{1}{n!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}binom{n}{k}left(x-kright)^{n}+frac{1}{n!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}binom{n}{k-1}left(x-kright)^{n}$
(here $binom{n}{-1}:=0$)
$=frac{1}{n!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}left[binom{n}{k}+binom{n}{k-1}right]left(x-kright)^{n}$
$=frac{1}{n!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}binom{n+1}{k}left(x-kright)^{n}$
pfffffff.....In my language: een echte 'rotsom'.
$int f_{n}left(yright)f_{1}left(x-yright)dy=intfrac{1}{left(n-1right)!}sum_{k=0}^{leftlfloor yrightrfloor }left(-1right)^{k}binom{n}{k}left(y-kright)^{n-1}1_{left(0,1right)}left(x-yright)dy$
$=frac{1}{left(n-1right)!}sum_{k=0}^{leftlfloor x-1rightrfloor }left(-1right)^{k}binom{n}{k}int_{x-1}^{leftlfloor xrightrfloor }left(y-kright)^{n-1}dy+frac{1}{left(n-1right)!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}binom{n}{k}int_{leftlfloor xrightrfloor }^{x}left(y-kright)^{n-1}dy$
$=frac{1}{n!}sum_{k=0}^{leftlfloor x-1rightrfloor }left(-1right)^{k}binom{n}{k}left[left(leftlfloor xrightrfloor -kright)^{n}-left(x-1-kright)^{n}right]+frac{1}{n!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}binom{n}{k}left[left(x-kright)^{n}-left(leftlfloor xrightrfloor -kright)^{n}right]$
$=frac{1}{n!}sum_{k=0}^{leftlfloor x-1rightrfloor }left(-1right)^{k}binom{n}{k}left[left(x-kright)^{n}-left(x-1-kright)^{n}right]+left(-1right)^{leftlfloor xrightrfloor }binom{n}{leftlfloor xrightrfloor }left(x-leftlfloor xrightrfloor right)^{n}$
$=frac{1}{n!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}binom{n}{k}left(x-kright)^{n}+frac{1}{n!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}binom{n}{k-1}left(x-kright)^{n}$
(here $binom{n}{-1}:=0$)
$=frac{1}{n!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}left[binom{n}{k}+binom{n}{k-1}right]left(x-kright)^{n}$
$=frac{1}{n!}sum_{k=0}^{leftlfloor xrightrfloor }left(-1right)^{k}binom{n+1}{k}left(x-kright)^{n}$
pfffffff.....In my language: een echte 'rotsom'.
edited Dec 27 '13 at 19:04
answered Dec 27 '13 at 17:12
drhabdrhab
98.5k544129
98.5k544129
add a comment |
add a comment |
Here is a totally different method. So you want to compute $I*I*cdots*I = I^{*n}$, where $I$ is the indicator function of $[0,1]$, and the $*$ denotes convolution, and the superscript $I^{*n}$ denotes the $n$th convolution with itself.
Differentiate $n$ times. You will get $(delta_1 - delta_0)^{*n}$, where $delta_x$ denotes the Dirac delta function centered at $x$. This is easily expanded using the Binomial Theorem, remembering that $delta_x * delta_y = delta_{x+y}$.
Now take the indefinite integral $n$ times. The tricky bit is how to consider the constants of integration. But the easiest boundary condition is to suppose that all the derivatives disappear at $-infty$. In this way $int^n delta_y (dx)^n = frac1{(n-1)!} (x-y)_+^{n-1}$, where $x_+$ denotes $max{x,0}$. (Please excuse the notation for $n$th indefinite integral.)
I got this method from an exercise in the book by Nakhle Asmar on Partial Differential Equations.
add a comment |
Here is a totally different method. So you want to compute $I*I*cdots*I = I^{*n}$, where $I$ is the indicator function of $[0,1]$, and the $*$ denotes convolution, and the superscript $I^{*n}$ denotes the $n$th convolution with itself.
Differentiate $n$ times. You will get $(delta_1 - delta_0)^{*n}$, where $delta_x$ denotes the Dirac delta function centered at $x$. This is easily expanded using the Binomial Theorem, remembering that $delta_x * delta_y = delta_{x+y}$.
Now take the indefinite integral $n$ times. The tricky bit is how to consider the constants of integration. But the easiest boundary condition is to suppose that all the derivatives disappear at $-infty$. In this way $int^n delta_y (dx)^n = frac1{(n-1)!} (x-y)_+^{n-1}$, where $x_+$ denotes $max{x,0}$. (Please excuse the notation for $n$th indefinite integral.)
I got this method from an exercise in the book by Nakhle Asmar on Partial Differential Equations.
add a comment |
Here is a totally different method. So you want to compute $I*I*cdots*I = I^{*n}$, where $I$ is the indicator function of $[0,1]$, and the $*$ denotes convolution, and the superscript $I^{*n}$ denotes the $n$th convolution with itself.
Differentiate $n$ times. You will get $(delta_1 - delta_0)^{*n}$, where $delta_x$ denotes the Dirac delta function centered at $x$. This is easily expanded using the Binomial Theorem, remembering that $delta_x * delta_y = delta_{x+y}$.
Now take the indefinite integral $n$ times. The tricky bit is how to consider the constants of integration. But the easiest boundary condition is to suppose that all the derivatives disappear at $-infty$. In this way $int^n delta_y (dx)^n = frac1{(n-1)!} (x-y)_+^{n-1}$, where $x_+$ denotes $max{x,0}$. (Please excuse the notation for $n$th indefinite integral.)
I got this method from an exercise in the book by Nakhle Asmar on Partial Differential Equations.
Here is a totally different method. So you want to compute $I*I*cdots*I = I^{*n}$, where $I$ is the indicator function of $[0,1]$, and the $*$ denotes convolution, and the superscript $I^{*n}$ denotes the $n$th convolution with itself.
Differentiate $n$ times. You will get $(delta_1 - delta_0)^{*n}$, where $delta_x$ denotes the Dirac delta function centered at $x$. This is easily expanded using the Binomial Theorem, remembering that $delta_x * delta_y = delta_{x+y}$.
Now take the indefinite integral $n$ times. The tricky bit is how to consider the constants of integration. But the easiest boundary condition is to suppose that all the derivatives disappear at $-infty$. In this way $int^n delta_y (dx)^n = frac1{(n-1)!} (x-y)_+^{n-1}$, where $x_+$ denotes $max{x,0}$. (Please excuse the notation for $n$th indefinite integral.)
I got this method from an exercise in the book by Nakhle Asmar on Partial Differential Equations.
answered Dec 27 '13 at 17:04
Stephen Montgomery-SmithStephen Montgomery-Smith
17.7k12247
17.7k12247
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f619552%2fdensity-of-the-sum-of-n-uniform0-1-distributed-random-variables%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
In fact you are saying that $f_{n+1}(x)=0$. This because in your question it equalizes $P(S_{n+1}=x)$. You could use: $f_{n+1}left(xright)=int f_{n}left(x-uright)f_{1}left(uright)du=int_{0}^{1}f_{n}left(x-uright)du$
– drhab
Dec 27 '13 at 13:11
Ah thanks, I see I had a totally wrong approach. I will try yours.
– numerion
Dec 27 '13 at 13:29
I've edited, please check.
– numerion
Dec 27 '13 at 15:21
You have $x-1<y<x$. Then$leftlfloor yrightrfloor inleft{ leftlfloor x-1rightrfloor ,leftlfloor xrightrfloor right} $ and these cases must be discerned. If $x-1<y<leftlfloor xrightrfloor $ then $leftlfloor yrightrfloor =leftlfloor x-1rightrfloor $ and if $leftlfloor xrightrfloor leq y<x$ then $leftlfloor yrightrfloor =leftlfloor xrightrfloor $. So split up the integral: $int_{x-1}^{x}...dy=int_{x-1}^{leftlfloor xrightrfloor }...dy+int_{leftlfloor xrightrfloor }^{x}...dy$.
– drhab
Dec 27 '13 at 16:02