Expression of inverse function of $f(x)=frac{x}{sqrt{x+1}}$
$begingroup$
Here's what I did:
$$f(y)=x$$
$$frac{y}{sqrt{y+1}}=x$$
$$sqrt{y+1}=frac{y}{x}$$ $$(xneq0 ,and ,yneq0)$$
$$y+1=frac{y²}{x²}$$
$$y²-x²y²-x²=0$$
$$Delta=x^4+4x²$$
$$y=frac{x²-sqrt{x^4+4x²}}{2};or;y=frac{x²+sqrt{x^4+4x²}}{2}$$
$y=frac{x²-sqrt{x^4+4x²}}{2}$ impossible because $y>-1$
$\$Then we have:$$f^{-1}(x)=frac{x²+sqrt{x^4+4x²}}{2} forall{x}inBbb{R}$$
But the correct answer seems to be
$$f^{-1}(x)=frac{x²+xsqrt{x^2+4}}{2}$$
calculus
$endgroup$
add a comment |
$begingroup$
Here's what I did:
$$f(y)=x$$
$$frac{y}{sqrt{y+1}}=x$$
$$sqrt{y+1}=frac{y}{x}$$ $$(xneq0 ,and ,yneq0)$$
$$y+1=frac{y²}{x²}$$
$$y²-x²y²-x²=0$$
$$Delta=x^4+4x²$$
$$y=frac{x²-sqrt{x^4+4x²}}{2};or;y=frac{x²+sqrt{x^4+4x²}}{2}$$
$y=frac{x²-sqrt{x^4+4x²}}{2}$ impossible because $y>-1$
$\$Then we have:$$f^{-1}(x)=frac{x²+sqrt{x^4+4x²}}{2} forall{x}inBbb{R}$$
But the correct answer seems to be
$$f^{-1}(x)=frac{x²+xsqrt{x^2+4}}{2}$$
calculus
$endgroup$
add a comment |
$begingroup$
Here's what I did:
$$f(y)=x$$
$$frac{y}{sqrt{y+1}}=x$$
$$sqrt{y+1}=frac{y}{x}$$ $$(xneq0 ,and ,yneq0)$$
$$y+1=frac{y²}{x²}$$
$$y²-x²y²-x²=0$$
$$Delta=x^4+4x²$$
$$y=frac{x²-sqrt{x^4+4x²}}{2};or;y=frac{x²+sqrt{x^4+4x²}}{2}$$
$y=frac{x²-sqrt{x^4+4x²}}{2}$ impossible because $y>-1$
$\$Then we have:$$f^{-1}(x)=frac{x²+sqrt{x^4+4x²}}{2} forall{x}inBbb{R}$$
But the correct answer seems to be
$$f^{-1}(x)=frac{x²+xsqrt{x^2+4}}{2}$$
calculus
$endgroup$
Here's what I did:
$$f(y)=x$$
$$frac{y}{sqrt{y+1}}=x$$
$$sqrt{y+1}=frac{y}{x}$$ $$(xneq0 ,and ,yneq0)$$
$$y+1=frac{y²}{x²}$$
$$y²-x²y²-x²=0$$
$$Delta=x^4+4x²$$
$$y=frac{x²-sqrt{x^4+4x²}}{2};or;y=frac{x²+sqrt{x^4+4x²}}{2}$$
$y=frac{x²-sqrt{x^4+4x²}}{2}$ impossible because $y>-1$
$\$Then we have:$$f^{-1}(x)=frac{x²+sqrt{x^4+4x²}}{2} forall{x}inBbb{R}$$
But the correct answer seems to be
$$f^{-1}(x)=frac{x²+xsqrt{x^2+4}}{2}$$
calculus
calculus
asked Dec 9 '18 at 10:37
AlexAlex
153
153
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Your solution proposes that $f^{-1}(x)$ is always nonnegative, which is not true.
From $f(x)=frac{x}{sqrt{x+1}}$, we can see that $x$ and its image share the same sign.
Hence from $$y = frac{x^2pm sqrt{x^4+4x^2}}{2}$$
We have begin{align}y&=frac{x^2+sign(x)sqrt{x^4+4x^2}}{2}\&=frac{x^2+sign(x)|x|sqrt{x^2+4}}{2}\&= frac{x^2+xsqrt{x^2+4}}{2}end{align}
$endgroup$
$begingroup$
I understand but is there any other solution without sign function? because i've never seen it before
$endgroup$
– Alex
Dec 9 '18 at 10:51
$begingroup$
@Alex $sign(x)$ is the signum function. It is quite simple to understand: $sign(x)=begin{cases}1,&x>0\0,&x=0\-1,&x<0end{cases}$ or $sign(x)=begin{cases}frac{|x|}x,&xne0\0,&x=0end{cases}$
$endgroup$
– Shubham Johri
Dec 9 '18 at 10:54
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032249%2fexpression-of-inverse-function-of-fx-fracx-sqrtx1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Your solution proposes that $f^{-1}(x)$ is always nonnegative, which is not true.
From $f(x)=frac{x}{sqrt{x+1}}$, we can see that $x$ and its image share the same sign.
Hence from $$y = frac{x^2pm sqrt{x^4+4x^2}}{2}$$
We have begin{align}y&=frac{x^2+sign(x)sqrt{x^4+4x^2}}{2}\&=frac{x^2+sign(x)|x|sqrt{x^2+4}}{2}\&= frac{x^2+xsqrt{x^2+4}}{2}end{align}
$endgroup$
$begingroup$
I understand but is there any other solution without sign function? because i've never seen it before
$endgroup$
– Alex
Dec 9 '18 at 10:51
$begingroup$
@Alex $sign(x)$ is the signum function. It is quite simple to understand: $sign(x)=begin{cases}1,&x>0\0,&x=0\-1,&x<0end{cases}$ or $sign(x)=begin{cases}frac{|x|}x,&xne0\0,&x=0end{cases}$
$endgroup$
– Shubham Johri
Dec 9 '18 at 10:54
add a comment |
$begingroup$
Your solution proposes that $f^{-1}(x)$ is always nonnegative, which is not true.
From $f(x)=frac{x}{sqrt{x+1}}$, we can see that $x$ and its image share the same sign.
Hence from $$y = frac{x^2pm sqrt{x^4+4x^2}}{2}$$
We have begin{align}y&=frac{x^2+sign(x)sqrt{x^4+4x^2}}{2}\&=frac{x^2+sign(x)|x|sqrt{x^2+4}}{2}\&= frac{x^2+xsqrt{x^2+4}}{2}end{align}
$endgroup$
$begingroup$
I understand but is there any other solution without sign function? because i've never seen it before
$endgroup$
– Alex
Dec 9 '18 at 10:51
$begingroup$
@Alex $sign(x)$ is the signum function. It is quite simple to understand: $sign(x)=begin{cases}1,&x>0\0,&x=0\-1,&x<0end{cases}$ or $sign(x)=begin{cases}frac{|x|}x,&xne0\0,&x=0end{cases}$
$endgroup$
– Shubham Johri
Dec 9 '18 at 10:54
add a comment |
$begingroup$
Your solution proposes that $f^{-1}(x)$ is always nonnegative, which is not true.
From $f(x)=frac{x}{sqrt{x+1}}$, we can see that $x$ and its image share the same sign.
Hence from $$y = frac{x^2pm sqrt{x^4+4x^2}}{2}$$
We have begin{align}y&=frac{x^2+sign(x)sqrt{x^4+4x^2}}{2}\&=frac{x^2+sign(x)|x|sqrt{x^2+4}}{2}\&= frac{x^2+xsqrt{x^2+4}}{2}end{align}
$endgroup$
Your solution proposes that $f^{-1}(x)$ is always nonnegative, which is not true.
From $f(x)=frac{x}{sqrt{x+1}}$, we can see that $x$ and its image share the same sign.
Hence from $$y = frac{x^2pm sqrt{x^4+4x^2}}{2}$$
We have begin{align}y&=frac{x^2+sign(x)sqrt{x^4+4x^2}}{2}\&=frac{x^2+sign(x)|x|sqrt{x^2+4}}{2}\&= frac{x^2+xsqrt{x^2+4}}{2}end{align}
answered Dec 9 '18 at 10:44
Siong Thye GohSiong Thye Goh
100k1466117
100k1466117
$begingroup$
I understand but is there any other solution without sign function? because i've never seen it before
$endgroup$
– Alex
Dec 9 '18 at 10:51
$begingroup$
@Alex $sign(x)$ is the signum function. It is quite simple to understand: $sign(x)=begin{cases}1,&x>0\0,&x=0\-1,&x<0end{cases}$ or $sign(x)=begin{cases}frac{|x|}x,&xne0\0,&x=0end{cases}$
$endgroup$
– Shubham Johri
Dec 9 '18 at 10:54
add a comment |
$begingroup$
I understand but is there any other solution without sign function? because i've never seen it before
$endgroup$
– Alex
Dec 9 '18 at 10:51
$begingroup$
@Alex $sign(x)$ is the signum function. It is quite simple to understand: $sign(x)=begin{cases}1,&x>0\0,&x=0\-1,&x<0end{cases}$ or $sign(x)=begin{cases}frac{|x|}x,&xne0\0,&x=0end{cases}$
$endgroup$
– Shubham Johri
Dec 9 '18 at 10:54
$begingroup$
I understand but is there any other solution without sign function? because i've never seen it before
$endgroup$
– Alex
Dec 9 '18 at 10:51
$begingroup$
I understand but is there any other solution without sign function? because i've never seen it before
$endgroup$
– Alex
Dec 9 '18 at 10:51
$begingroup$
@Alex $sign(x)$ is the signum function. It is quite simple to understand: $sign(x)=begin{cases}1,&x>0\0,&x=0\-1,&x<0end{cases}$ or $sign(x)=begin{cases}frac{|x|}x,&xne0\0,&x=0end{cases}$
$endgroup$
– Shubham Johri
Dec 9 '18 at 10:54
$begingroup$
@Alex $sign(x)$ is the signum function. It is quite simple to understand: $sign(x)=begin{cases}1,&x>0\0,&x=0\-1,&x<0end{cases}$ or $sign(x)=begin{cases}frac{|x|}x,&xne0\0,&x=0end{cases}$
$endgroup$
– Shubham Johri
Dec 9 '18 at 10:54
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032249%2fexpression-of-inverse-function-of-fx-fracx-sqrtx1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown