Expression of inverse function of $f(x)=frac{x}{sqrt{x+1}}$












1












$begingroup$


Here's what I did:
$$f(y)=x$$
$$frac{y}{sqrt{y+1}}=x$$
$$sqrt{y+1}=frac{y}{x}$$ $$(xneq0 ,and ,yneq0)$$
$$y+1=frac{y²}{x²}$$
$$y²-x²y²-x²=0$$
$$Delta=x^4+4x²$$
$$y=frac{x²-sqrt{x^4+4x²}}{2};or;y=frac{x²+sqrt{x^4+4x²}}{2}$$
$y=frac{x²-sqrt{x^4+4x²}}{2}$ impossible because $y>-1$
$\$Then we have:$$f^{-1}(x)=frac{x²+sqrt{x^4+4x²}}{2} forall{x}inBbb{R}$$
But the correct answer seems to be
$$f^{-1}(x)=frac{x²+xsqrt{x^2+4}}{2}$$










share|cite|improve this question









$endgroup$

















    1












    $begingroup$


    Here's what I did:
    $$f(y)=x$$
    $$frac{y}{sqrt{y+1}}=x$$
    $$sqrt{y+1}=frac{y}{x}$$ $$(xneq0 ,and ,yneq0)$$
    $$y+1=frac{y²}{x²}$$
    $$y²-x²y²-x²=0$$
    $$Delta=x^4+4x²$$
    $$y=frac{x²-sqrt{x^4+4x²}}{2};or;y=frac{x²+sqrt{x^4+4x²}}{2}$$
    $y=frac{x²-sqrt{x^4+4x²}}{2}$ impossible because $y>-1$
    $\$Then we have:$$f^{-1}(x)=frac{x²+sqrt{x^4+4x²}}{2} forall{x}inBbb{R}$$
    But the correct answer seems to be
    $$f^{-1}(x)=frac{x²+xsqrt{x^2+4}}{2}$$










    share|cite|improve this question









    $endgroup$















      1












      1








      1


      1



      $begingroup$


      Here's what I did:
      $$f(y)=x$$
      $$frac{y}{sqrt{y+1}}=x$$
      $$sqrt{y+1}=frac{y}{x}$$ $$(xneq0 ,and ,yneq0)$$
      $$y+1=frac{y²}{x²}$$
      $$y²-x²y²-x²=0$$
      $$Delta=x^4+4x²$$
      $$y=frac{x²-sqrt{x^4+4x²}}{2};or;y=frac{x²+sqrt{x^4+4x²}}{2}$$
      $y=frac{x²-sqrt{x^4+4x²}}{2}$ impossible because $y>-1$
      $\$Then we have:$$f^{-1}(x)=frac{x²+sqrt{x^4+4x²}}{2} forall{x}inBbb{R}$$
      But the correct answer seems to be
      $$f^{-1}(x)=frac{x²+xsqrt{x^2+4}}{2}$$










      share|cite|improve this question









      $endgroup$




      Here's what I did:
      $$f(y)=x$$
      $$frac{y}{sqrt{y+1}}=x$$
      $$sqrt{y+1}=frac{y}{x}$$ $$(xneq0 ,and ,yneq0)$$
      $$y+1=frac{y²}{x²}$$
      $$y²-x²y²-x²=0$$
      $$Delta=x^4+4x²$$
      $$y=frac{x²-sqrt{x^4+4x²}}{2};or;y=frac{x²+sqrt{x^4+4x²}}{2}$$
      $y=frac{x²-sqrt{x^4+4x²}}{2}$ impossible because $y>-1$
      $\$Then we have:$$f^{-1}(x)=frac{x²+sqrt{x^4+4x²}}{2} forall{x}inBbb{R}$$
      But the correct answer seems to be
      $$f^{-1}(x)=frac{x²+xsqrt{x^2+4}}{2}$$







      calculus






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 9 '18 at 10:37









      AlexAlex

      153




      153






















          1 Answer
          1






          active

          oldest

          votes


















          3












          $begingroup$

          Your solution proposes that $f^{-1}(x)$ is always nonnegative, which is not true.



          From $f(x)=frac{x}{sqrt{x+1}}$, we can see that $x$ and its image share the same sign.



          Hence from $$y = frac{x^2pm sqrt{x^4+4x^2}}{2}$$



          We have begin{align}y&=frac{x^2+sign(x)sqrt{x^4+4x^2}}{2}\&=frac{x^2+sign(x)|x|sqrt{x^2+4}}{2}\&= frac{x^2+xsqrt{x^2+4}}{2}end{align}






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            I understand but is there any other solution without sign function? because i've never seen it before
            $endgroup$
            – Alex
            Dec 9 '18 at 10:51










          • $begingroup$
            @Alex $sign(x)$ is the signum function. It is quite simple to understand: $sign(x)=begin{cases}1,&x>0\0,&x=0\-1,&x<0end{cases}$ or $sign(x)=begin{cases}frac{|x|}x,&xne0\0,&x=0end{cases}$
            $endgroup$
            – Shubham Johri
            Dec 9 '18 at 10:54













          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032249%2fexpression-of-inverse-function-of-fx-fracx-sqrtx1%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          3












          $begingroup$

          Your solution proposes that $f^{-1}(x)$ is always nonnegative, which is not true.



          From $f(x)=frac{x}{sqrt{x+1}}$, we can see that $x$ and its image share the same sign.



          Hence from $$y = frac{x^2pm sqrt{x^4+4x^2}}{2}$$



          We have begin{align}y&=frac{x^2+sign(x)sqrt{x^4+4x^2}}{2}\&=frac{x^2+sign(x)|x|sqrt{x^2+4}}{2}\&= frac{x^2+xsqrt{x^2+4}}{2}end{align}






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            I understand but is there any other solution without sign function? because i've never seen it before
            $endgroup$
            – Alex
            Dec 9 '18 at 10:51










          • $begingroup$
            @Alex $sign(x)$ is the signum function. It is quite simple to understand: $sign(x)=begin{cases}1,&x>0\0,&x=0\-1,&x<0end{cases}$ or $sign(x)=begin{cases}frac{|x|}x,&xne0\0,&x=0end{cases}$
            $endgroup$
            – Shubham Johri
            Dec 9 '18 at 10:54


















          3












          $begingroup$

          Your solution proposes that $f^{-1}(x)$ is always nonnegative, which is not true.



          From $f(x)=frac{x}{sqrt{x+1}}$, we can see that $x$ and its image share the same sign.



          Hence from $$y = frac{x^2pm sqrt{x^4+4x^2}}{2}$$



          We have begin{align}y&=frac{x^2+sign(x)sqrt{x^4+4x^2}}{2}\&=frac{x^2+sign(x)|x|sqrt{x^2+4}}{2}\&= frac{x^2+xsqrt{x^2+4}}{2}end{align}






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            I understand but is there any other solution without sign function? because i've never seen it before
            $endgroup$
            – Alex
            Dec 9 '18 at 10:51










          • $begingroup$
            @Alex $sign(x)$ is the signum function. It is quite simple to understand: $sign(x)=begin{cases}1,&x>0\0,&x=0\-1,&x<0end{cases}$ or $sign(x)=begin{cases}frac{|x|}x,&xne0\0,&x=0end{cases}$
            $endgroup$
            – Shubham Johri
            Dec 9 '18 at 10:54
















          3












          3








          3





          $begingroup$

          Your solution proposes that $f^{-1}(x)$ is always nonnegative, which is not true.



          From $f(x)=frac{x}{sqrt{x+1}}$, we can see that $x$ and its image share the same sign.



          Hence from $$y = frac{x^2pm sqrt{x^4+4x^2}}{2}$$



          We have begin{align}y&=frac{x^2+sign(x)sqrt{x^4+4x^2}}{2}\&=frac{x^2+sign(x)|x|sqrt{x^2+4}}{2}\&= frac{x^2+xsqrt{x^2+4}}{2}end{align}






          share|cite|improve this answer









          $endgroup$



          Your solution proposes that $f^{-1}(x)$ is always nonnegative, which is not true.



          From $f(x)=frac{x}{sqrt{x+1}}$, we can see that $x$ and its image share the same sign.



          Hence from $$y = frac{x^2pm sqrt{x^4+4x^2}}{2}$$



          We have begin{align}y&=frac{x^2+sign(x)sqrt{x^4+4x^2}}{2}\&=frac{x^2+sign(x)|x|sqrt{x^2+4}}{2}\&= frac{x^2+xsqrt{x^2+4}}{2}end{align}







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 9 '18 at 10:44









          Siong Thye GohSiong Thye Goh

          100k1466117




          100k1466117












          • $begingroup$
            I understand but is there any other solution without sign function? because i've never seen it before
            $endgroup$
            – Alex
            Dec 9 '18 at 10:51










          • $begingroup$
            @Alex $sign(x)$ is the signum function. It is quite simple to understand: $sign(x)=begin{cases}1,&x>0\0,&x=0\-1,&x<0end{cases}$ or $sign(x)=begin{cases}frac{|x|}x,&xne0\0,&x=0end{cases}$
            $endgroup$
            – Shubham Johri
            Dec 9 '18 at 10:54




















          • $begingroup$
            I understand but is there any other solution without sign function? because i've never seen it before
            $endgroup$
            – Alex
            Dec 9 '18 at 10:51










          • $begingroup$
            @Alex $sign(x)$ is the signum function. It is quite simple to understand: $sign(x)=begin{cases}1,&x>0\0,&x=0\-1,&x<0end{cases}$ or $sign(x)=begin{cases}frac{|x|}x,&xne0\0,&x=0end{cases}$
            $endgroup$
            – Shubham Johri
            Dec 9 '18 at 10:54


















          $begingroup$
          I understand but is there any other solution without sign function? because i've never seen it before
          $endgroup$
          – Alex
          Dec 9 '18 at 10:51




          $begingroup$
          I understand but is there any other solution without sign function? because i've never seen it before
          $endgroup$
          – Alex
          Dec 9 '18 at 10:51












          $begingroup$
          @Alex $sign(x)$ is the signum function. It is quite simple to understand: $sign(x)=begin{cases}1,&x>0\0,&x=0\-1,&x<0end{cases}$ or $sign(x)=begin{cases}frac{|x|}x,&xne0\0,&x=0end{cases}$
          $endgroup$
          – Shubham Johri
          Dec 9 '18 at 10:54






          $begingroup$
          @Alex $sign(x)$ is the signum function. It is quite simple to understand: $sign(x)=begin{cases}1,&x>0\0,&x=0\-1,&x<0end{cases}$ or $sign(x)=begin{cases}frac{|x|}x,&xne0\0,&x=0end{cases}$
          $endgroup$
          – Shubham Johri
          Dec 9 '18 at 10:54




















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032249%2fexpression-of-inverse-function-of-fx-fracx-sqrtx1%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Berounka

          Sphinx de Gizeh

          Different font size/position of beamer's navigation symbols template's content depending on regular/plain...