Proving multivariable limit using epsilon-delta definition
$begingroup$
Let $displaystyle g(x, y) = frac{sin^2(x - y)}{|x| + |y|}$. Prove
that $lim_{(x, y)to(0,0)} g(x) = 0$.
Any help on this would be appreciated. So far I think that the fact that $|x + y| le |x| + |y|$ and $|sin(x + y)| le |x + y|$ has to be utilized but I am not sure how to do so in the epsilon delta proof.
limits multivariable-calculus
$endgroup$
add a comment |
$begingroup$
Let $displaystyle g(x, y) = frac{sin^2(x - y)}{|x| + |y|}$. Prove
that $lim_{(x, y)to(0,0)} g(x) = 0$.
Any help on this would be appreciated. So far I think that the fact that $|x + y| le |x| + |y|$ and $|sin(x + y)| le |x + y|$ has to be utilized but I am not sure how to do so in the epsilon delta proof.
limits multivariable-calculus
$endgroup$
add a comment |
$begingroup$
Let $displaystyle g(x, y) = frac{sin^2(x - y)}{|x| + |y|}$. Prove
that $lim_{(x, y)to(0,0)} g(x) = 0$.
Any help on this would be appreciated. So far I think that the fact that $|x + y| le |x| + |y|$ and $|sin(x + y)| le |x + y|$ has to be utilized but I am not sure how to do so in the epsilon delta proof.
limits multivariable-calculus
$endgroup$
Let $displaystyle g(x, y) = frac{sin^2(x - y)}{|x| + |y|}$. Prove
that $lim_{(x, y)to(0,0)} g(x) = 0$.
Any help on this would be appreciated. So far I think that the fact that $|x + y| le |x| + |y|$ and $|sin(x + y)| le |x + y|$ has to be utilized but I am not sure how to do so in the epsilon delta proof.
limits multivariable-calculus
limits multivariable-calculus
edited Jun 11 '13 at 6:19
Potato
21.4k1189189
21.4k1189189
asked Jun 11 '13 at 6:05
user33969
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Remember that $|sin(z)| < z$ for $z ne 0$. So $0 le sin^2(z) < z^2$. Set $z = x-y$. Your denominator satisfies $|z| = |x-y| le |x| + |y|$ by the triangle inequality.
$$0 le lim_{(x,y) to (0,0)} frac{sin^2(x-y)}{|x|+|y|} le lim_{(x,y) to (0,0)} frac{z^2}{|z|} = lim_{(x,y) to (0,0)} |z| = 0$$
You can easily convert this proof, which uses the squeeze theorem, into an $epsilon-delta$ proof by noting the inequalities and setting $delta = epsilon$. For $Vert ( x,y ) Vert < epsilon$, we have $|z| < epsilon$ since $|x-y| le sqrt{x^2 + y^2}$.
$endgroup$
add a comment |
$begingroup$
An idea:
$$|x-y|le|x|+|y|implies frac{sin^2(x-y)}{|x|+|y|}lefrac{sin^2(x-y)}{|x-y|}=|sin(x-y)|frac{|sin(x-y)|}{|x-y|}$$
Now just remember that $,displaystyle{lim_{tto 0}frac{sin t}t=1};$ and stuff...
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f417128%2fproving-multivariable-limit-using-epsilon-delta-definition%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Remember that $|sin(z)| < z$ for $z ne 0$. So $0 le sin^2(z) < z^2$. Set $z = x-y$. Your denominator satisfies $|z| = |x-y| le |x| + |y|$ by the triangle inequality.
$$0 le lim_{(x,y) to (0,0)} frac{sin^2(x-y)}{|x|+|y|} le lim_{(x,y) to (0,0)} frac{z^2}{|z|} = lim_{(x,y) to (0,0)} |z| = 0$$
You can easily convert this proof, which uses the squeeze theorem, into an $epsilon-delta$ proof by noting the inequalities and setting $delta = epsilon$. For $Vert ( x,y ) Vert < epsilon$, we have $|z| < epsilon$ since $|x-y| le sqrt{x^2 + y^2}$.
$endgroup$
add a comment |
$begingroup$
Remember that $|sin(z)| < z$ for $z ne 0$. So $0 le sin^2(z) < z^2$. Set $z = x-y$. Your denominator satisfies $|z| = |x-y| le |x| + |y|$ by the triangle inequality.
$$0 le lim_{(x,y) to (0,0)} frac{sin^2(x-y)}{|x|+|y|} le lim_{(x,y) to (0,0)} frac{z^2}{|z|} = lim_{(x,y) to (0,0)} |z| = 0$$
You can easily convert this proof, which uses the squeeze theorem, into an $epsilon-delta$ proof by noting the inequalities and setting $delta = epsilon$. For $Vert ( x,y ) Vert < epsilon$, we have $|z| < epsilon$ since $|x-y| le sqrt{x^2 + y^2}$.
$endgroup$
add a comment |
$begingroup$
Remember that $|sin(z)| < z$ for $z ne 0$. So $0 le sin^2(z) < z^2$. Set $z = x-y$. Your denominator satisfies $|z| = |x-y| le |x| + |y|$ by the triangle inequality.
$$0 le lim_{(x,y) to (0,0)} frac{sin^2(x-y)}{|x|+|y|} le lim_{(x,y) to (0,0)} frac{z^2}{|z|} = lim_{(x,y) to (0,0)} |z| = 0$$
You can easily convert this proof, which uses the squeeze theorem, into an $epsilon-delta$ proof by noting the inequalities and setting $delta = epsilon$. For $Vert ( x,y ) Vert < epsilon$, we have $|z| < epsilon$ since $|x-y| le sqrt{x^2 + y^2}$.
$endgroup$
Remember that $|sin(z)| < z$ for $z ne 0$. So $0 le sin^2(z) < z^2$. Set $z = x-y$. Your denominator satisfies $|z| = |x-y| le |x| + |y|$ by the triangle inequality.
$$0 le lim_{(x,y) to (0,0)} frac{sin^2(x-y)}{|x|+|y|} le lim_{(x,y) to (0,0)} frac{z^2}{|z|} = lim_{(x,y) to (0,0)} |z| = 0$$
You can easily convert this proof, which uses the squeeze theorem, into an $epsilon-delta$ proof by noting the inequalities and setting $delta = epsilon$. For $Vert ( x,y ) Vert < epsilon$, we have $|z| < epsilon$ since $|x-y| le sqrt{x^2 + y^2}$.
answered Jun 11 '13 at 6:17
A.SA.S
7,3881855
7,3881855
add a comment |
add a comment |
$begingroup$
An idea:
$$|x-y|le|x|+|y|implies frac{sin^2(x-y)}{|x|+|y|}lefrac{sin^2(x-y)}{|x-y|}=|sin(x-y)|frac{|sin(x-y)|}{|x-y|}$$
Now just remember that $,displaystyle{lim_{tto 0}frac{sin t}t=1};$ and stuff...
$endgroup$
add a comment |
$begingroup$
An idea:
$$|x-y|le|x|+|y|implies frac{sin^2(x-y)}{|x|+|y|}lefrac{sin^2(x-y)}{|x-y|}=|sin(x-y)|frac{|sin(x-y)|}{|x-y|}$$
Now just remember that $,displaystyle{lim_{tto 0}frac{sin t}t=1};$ and stuff...
$endgroup$
add a comment |
$begingroup$
An idea:
$$|x-y|le|x|+|y|implies frac{sin^2(x-y)}{|x|+|y|}lefrac{sin^2(x-y)}{|x-y|}=|sin(x-y)|frac{|sin(x-y)|}{|x-y|}$$
Now just remember that $,displaystyle{lim_{tto 0}frac{sin t}t=1};$ and stuff...
$endgroup$
An idea:
$$|x-y|le|x|+|y|implies frac{sin^2(x-y)}{|x|+|y|}lefrac{sin^2(x-y)}{|x-y|}=|sin(x-y)|frac{|sin(x-y)|}{|x-y|}$$
Now just remember that $,displaystyle{lim_{tto 0}frac{sin t}t=1};$ and stuff...
answered Jun 11 '13 at 6:19
DonAntonioDonAntonio
178k1492227
178k1492227
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f417128%2fproving-multivariable-limit-using-epsilon-delta-definition%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown