geometry inequality
$begingroup$
$M$ is a point in $triangle ABC$. $AM$ intersect with $BC$ at $A_1$. $BM$ intersect with $AC$ at $B_1$. $CM$ intersect with $AB$ at $C_1$.
Proof that: $$AA_1 times BB_1 times CC_1 geq 27 (MA_1 times MB_1 times MC_1)$$
geometry inequality triangle geometric-inequalities
$endgroup$
add a comment |
$begingroup$
$M$ is a point in $triangle ABC$. $AM$ intersect with $BC$ at $A_1$. $BM$ intersect with $AC$ at $B_1$. $CM$ intersect with $AB$ at $C_1$.
Proof that: $$AA_1 times BB_1 times CC_1 geq 27 (MA_1 times MB_1 times MC_1)$$
geometry inequality triangle geometric-inequalities
$endgroup$
1
$begingroup$
Hint: consider areas and use AM-GM.
$endgroup$
– user10354138
Dec 9 '18 at 9:49
$begingroup$
What are your thoughts? Write your working in the edit. Please don't think it as spoon-feeding, question taking & answer giving website.
$endgroup$
– jayant98
Dec 9 '18 at 9:52
add a comment |
$begingroup$
$M$ is a point in $triangle ABC$. $AM$ intersect with $BC$ at $A_1$. $BM$ intersect with $AC$ at $B_1$. $CM$ intersect with $AB$ at $C_1$.
Proof that: $$AA_1 times BB_1 times CC_1 geq 27 (MA_1 times MB_1 times MC_1)$$
geometry inequality triangle geometric-inequalities
$endgroup$
$M$ is a point in $triangle ABC$. $AM$ intersect with $BC$ at $A_1$. $BM$ intersect with $AC$ at $B_1$. $CM$ intersect with $AB$ at $C_1$.
Proof that: $$AA_1 times BB_1 times CC_1 geq 27 (MA_1 times MB_1 times MC_1)$$
geometry inequality triangle geometric-inequalities
geometry inequality triangle geometric-inequalities
edited Dec 9 '18 at 12:54
Martin Sleziak
44.7k9117272
44.7k9117272
asked Dec 9 '18 at 9:42
Nguyen Xuan MinhNguyen Xuan Minh
62
62
1
$begingroup$
Hint: consider areas and use AM-GM.
$endgroup$
– user10354138
Dec 9 '18 at 9:49
$begingroup$
What are your thoughts? Write your working in the edit. Please don't think it as spoon-feeding, question taking & answer giving website.
$endgroup$
– jayant98
Dec 9 '18 at 9:52
add a comment |
1
$begingroup$
Hint: consider areas and use AM-GM.
$endgroup$
– user10354138
Dec 9 '18 at 9:49
$begingroup$
What are your thoughts? Write your working in the edit. Please don't think it as spoon-feeding, question taking & answer giving website.
$endgroup$
– jayant98
Dec 9 '18 at 9:52
1
1
$begingroup$
Hint: consider areas and use AM-GM.
$endgroup$
– user10354138
Dec 9 '18 at 9:49
$begingroup$
Hint: consider areas and use AM-GM.
$endgroup$
– user10354138
Dec 9 '18 at 9:49
$begingroup$
What are your thoughts? Write your working in the edit. Please don't think it as spoon-feeding, question taking & answer giving website.
$endgroup$
– jayant98
Dec 9 '18 at 9:52
$begingroup$
What are your thoughts? Write your working in the edit. Please don't think it as spoon-feeding, question taking & answer giving website.
$endgroup$
– jayant98
Dec 9 '18 at 9:52
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
$$ Leftrightarrow S_{AMB}cdot S_{BMC}cdot S_{CMA}le left(dfrac{ S_{AMB}+S_{BMC}+S_{CMA}}{3} right )^3 = dfrac{1}{27}S^3 $$
$endgroup$
add a comment |
$begingroup$
Transform the ratio of sides to ratio of the areas of triangles. Then the inequality is equivalent to:
$27abcleq(a+b+c)^3$, where $a$, $b$, and $c$ stand for the areas of three inner triangles.
$endgroup$
$begingroup$
Welcome to MSE. For some basic information about writing mathematics at this site see, e.g., basic help on mathjax notation, mathjax tutorial and quick reference, main meta site math tutorial and equation editing how-to.
$endgroup$
– José Carlos Santos
Dec 9 '18 at 10:07
add a comment |
$begingroup$
By AM-GM
$$frac{MA_1cdot MB_1cdot MC_1}{AA_1cdot BB_1cdot CC_1}=frac{S_{Delta BMC}}{S_{Delta ABC}}cdotfrac{S_{Delta AMC}}{S_{Delta ABC}}cdotfrac{S_{Delta AMB}}{S_{Delta ABC}}leq$$
$$leqleft(frac{frac{S_{Delta BMC}}{S_{Delta ABC}}+frac{S_{Delta AMC}}{S_{Delta ABC}}+frac{S_{Delta AMB}}{S_{Delta ABC}}}{3}right)^3=frac{1}{27}.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032205%2fgeometry-inequality%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$ Leftrightarrow S_{AMB}cdot S_{BMC}cdot S_{CMA}le left(dfrac{ S_{AMB}+S_{BMC}+S_{CMA}}{3} right )^3 = dfrac{1}{27}S^3 $$
$endgroup$
add a comment |
$begingroup$
$$ Leftrightarrow S_{AMB}cdot S_{BMC}cdot S_{CMA}le left(dfrac{ S_{AMB}+S_{BMC}+S_{CMA}}{3} right )^3 = dfrac{1}{27}S^3 $$
$endgroup$
add a comment |
$begingroup$
$$ Leftrightarrow S_{AMB}cdot S_{BMC}cdot S_{CMA}le left(dfrac{ S_{AMB}+S_{BMC}+S_{CMA}}{3} right )^3 = dfrac{1}{27}S^3 $$
$endgroup$
$$ Leftrightarrow S_{AMB}cdot S_{BMC}cdot S_{CMA}le left(dfrac{ S_{AMB}+S_{BMC}+S_{CMA}}{3} right )^3 = dfrac{1}{27}S^3 $$
answered Dec 9 '18 at 10:07
Sergic PrimazonSergic Primazon
54215
54215
add a comment |
add a comment |
$begingroup$
Transform the ratio of sides to ratio of the areas of triangles. Then the inequality is equivalent to:
$27abcleq(a+b+c)^3$, where $a$, $b$, and $c$ stand for the areas of three inner triangles.
$endgroup$
$begingroup$
Welcome to MSE. For some basic information about writing mathematics at this site see, e.g., basic help on mathjax notation, mathjax tutorial and quick reference, main meta site math tutorial and equation editing how-to.
$endgroup$
– José Carlos Santos
Dec 9 '18 at 10:07
add a comment |
$begingroup$
Transform the ratio of sides to ratio of the areas of triangles. Then the inequality is equivalent to:
$27abcleq(a+b+c)^3$, where $a$, $b$, and $c$ stand for the areas of three inner triangles.
$endgroup$
$begingroup$
Welcome to MSE. For some basic information about writing mathematics at this site see, e.g., basic help on mathjax notation, mathjax tutorial and quick reference, main meta site math tutorial and equation editing how-to.
$endgroup$
– José Carlos Santos
Dec 9 '18 at 10:07
add a comment |
$begingroup$
Transform the ratio of sides to ratio of the areas of triangles. Then the inequality is equivalent to:
$27abcleq(a+b+c)^3$, where $a$, $b$, and $c$ stand for the areas of three inner triangles.
$endgroup$
Transform the ratio of sides to ratio of the areas of triangles. Then the inequality is equivalent to:
$27abcleq(a+b+c)^3$, where $a$, $b$, and $c$ stand for the areas of three inner triangles.
edited Dec 9 '18 at 10:36
Anubhab Ghosal
82518
82518
answered Dec 9 '18 at 9:51
Ziqing XUZiqing XU
11
11
$begingroup$
Welcome to MSE. For some basic information about writing mathematics at this site see, e.g., basic help on mathjax notation, mathjax tutorial and quick reference, main meta site math tutorial and equation editing how-to.
$endgroup$
– José Carlos Santos
Dec 9 '18 at 10:07
add a comment |
$begingroup$
Welcome to MSE. For some basic information about writing mathematics at this site see, e.g., basic help on mathjax notation, mathjax tutorial and quick reference, main meta site math tutorial and equation editing how-to.
$endgroup$
– José Carlos Santos
Dec 9 '18 at 10:07
$begingroup$
Welcome to MSE. For some basic information about writing mathematics at this site see, e.g., basic help on mathjax notation, mathjax tutorial and quick reference, main meta site math tutorial and equation editing how-to.
$endgroup$
– José Carlos Santos
Dec 9 '18 at 10:07
$begingroup$
Welcome to MSE. For some basic information about writing mathematics at this site see, e.g., basic help on mathjax notation, mathjax tutorial and quick reference, main meta site math tutorial and equation editing how-to.
$endgroup$
– José Carlos Santos
Dec 9 '18 at 10:07
add a comment |
$begingroup$
By AM-GM
$$frac{MA_1cdot MB_1cdot MC_1}{AA_1cdot BB_1cdot CC_1}=frac{S_{Delta BMC}}{S_{Delta ABC}}cdotfrac{S_{Delta AMC}}{S_{Delta ABC}}cdotfrac{S_{Delta AMB}}{S_{Delta ABC}}leq$$
$$leqleft(frac{frac{S_{Delta BMC}}{S_{Delta ABC}}+frac{S_{Delta AMC}}{S_{Delta ABC}}+frac{S_{Delta AMB}}{S_{Delta ABC}}}{3}right)^3=frac{1}{27}.$$
$endgroup$
add a comment |
$begingroup$
By AM-GM
$$frac{MA_1cdot MB_1cdot MC_1}{AA_1cdot BB_1cdot CC_1}=frac{S_{Delta BMC}}{S_{Delta ABC}}cdotfrac{S_{Delta AMC}}{S_{Delta ABC}}cdotfrac{S_{Delta AMB}}{S_{Delta ABC}}leq$$
$$leqleft(frac{frac{S_{Delta BMC}}{S_{Delta ABC}}+frac{S_{Delta AMC}}{S_{Delta ABC}}+frac{S_{Delta AMB}}{S_{Delta ABC}}}{3}right)^3=frac{1}{27}.$$
$endgroup$
add a comment |
$begingroup$
By AM-GM
$$frac{MA_1cdot MB_1cdot MC_1}{AA_1cdot BB_1cdot CC_1}=frac{S_{Delta BMC}}{S_{Delta ABC}}cdotfrac{S_{Delta AMC}}{S_{Delta ABC}}cdotfrac{S_{Delta AMB}}{S_{Delta ABC}}leq$$
$$leqleft(frac{frac{S_{Delta BMC}}{S_{Delta ABC}}+frac{S_{Delta AMC}}{S_{Delta ABC}}+frac{S_{Delta AMB}}{S_{Delta ABC}}}{3}right)^3=frac{1}{27}.$$
$endgroup$
By AM-GM
$$frac{MA_1cdot MB_1cdot MC_1}{AA_1cdot BB_1cdot CC_1}=frac{S_{Delta BMC}}{S_{Delta ABC}}cdotfrac{S_{Delta AMC}}{S_{Delta ABC}}cdotfrac{S_{Delta AMB}}{S_{Delta ABC}}leq$$
$$leqleft(frac{frac{S_{Delta BMC}}{S_{Delta ABC}}+frac{S_{Delta AMC}}{S_{Delta ABC}}+frac{S_{Delta AMB}}{S_{Delta ABC}}}{3}right)^3=frac{1}{27}.$$
answered Dec 9 '18 at 10:42
Michael RozenbergMichael Rozenberg
98.7k1590189
98.7k1590189
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032205%2fgeometry-inequality%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Hint: consider areas and use AM-GM.
$endgroup$
– user10354138
Dec 9 '18 at 9:49
$begingroup$
What are your thoughts? Write your working in the edit. Please don't think it as spoon-feeding, question taking & answer giving website.
$endgroup$
– jayant98
Dec 9 '18 at 9:52