How to find all complex solutions?
$begingroup$
When i'm solving this Equation
$$z^{2018} + |z|^{1995}* bar{z}^{83} = 2$$
I got this:
$$z_{k} = (cos(frac{2pi k}{1995}) + isin(frac{2pi k}{1995}) * frac{1}{sqrt[2018]{cos(frac{4202pi k}{1995})}}$$
$$k = 0 ... 1994$$
How to find all roots?
calculus trigonometry complex-numbers
$endgroup$
add a comment |
$begingroup$
When i'm solving this Equation
$$z^{2018} + |z|^{1995}* bar{z}^{83} = 2$$
I got this:
$$z_{k} = (cos(frac{2pi k}{1995}) + isin(frac{2pi k}{1995}) * frac{1}{sqrt[2018]{cos(frac{4202pi k}{1995})}}$$
$$k = 0 ... 1994$$
How to find all roots?
calculus trigonometry complex-numbers
$endgroup$
1
$begingroup$
How exactly did you get this? From Wolfram Alpha?
$endgroup$
– Kyky
Dec 9 '18 at 10:32
add a comment |
$begingroup$
When i'm solving this Equation
$$z^{2018} + |z|^{1995}* bar{z}^{83} = 2$$
I got this:
$$z_{k} = (cos(frac{2pi k}{1995}) + isin(frac{2pi k}{1995}) * frac{1}{sqrt[2018]{cos(frac{4202pi k}{1995})}}$$
$$k = 0 ... 1994$$
How to find all roots?
calculus trigonometry complex-numbers
$endgroup$
When i'm solving this Equation
$$z^{2018} + |z|^{1995}* bar{z}^{83} = 2$$
I got this:
$$z_{k} = (cos(frac{2pi k}{1995}) + isin(frac{2pi k}{1995}) * frac{1}{sqrt[2018]{cos(frac{4202pi k}{1995})}}$$
$$k = 0 ... 1994$$
How to find all roots?
calculus trigonometry complex-numbers
calculus trigonometry complex-numbers
asked Dec 9 '18 at 10:25
YornYorn
85
85
1
$begingroup$
How exactly did you get this? From Wolfram Alpha?
$endgroup$
– Kyky
Dec 9 '18 at 10:32
add a comment |
1
$begingroup$
How exactly did you get this? From Wolfram Alpha?
$endgroup$
– Kyky
Dec 9 '18 at 10:32
1
1
$begingroup$
How exactly did you get this? From Wolfram Alpha?
$endgroup$
– Kyky
Dec 9 '18 at 10:32
$begingroup$
How exactly did you get this? From Wolfram Alpha?
$endgroup$
– Kyky
Dec 9 '18 at 10:32
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Let $z=re^{it}$
$$implies2=r^{2018}(cos2018t+isin2018t+cos83t-isin83t)$$
Using Prosthaphaeresis Formulas, $$dfrac2{r^{2018}}=2cosdfrac{(2018+83)t}2left(cosdfrac{(2018-83)t}2+isindfrac{(2018-83)t}2right)$$
$impliessindfrac{(2018-83)t}2=0impliesdfrac{(2018-83)t}2=mpi$ where $m$ is any integer
If $m$ is even, $=2n$(say), $impliescosdfrac{(2018-83)t}2=+1$
$$t=dfrac{2npi}{1935},0le2n<1935$$
$$dfrac2{r^{2018}}=2cosdfrac{2101}2cdotdfrac{2npi}{1935}implies r=?$$
What if $m$ is odd, $=2n+1$(say) $impliescosdfrac{(2018-83)t}2=-1$
$endgroup$
$begingroup$
what happens if cos(...) = -1?
$endgroup$
– Yorn
Dec 9 '18 at 12:56
$begingroup$
@Yorn, Replace the values of $cos$ & $sin$ of $$dfrac{(2018-83)t}2$$
$endgroup$
– lab bhattacharjee
Dec 9 '18 at 13:07
$begingroup$
$$r = frac{1}{sqrt[2018]{cos(frac{2101pi n}{1995})}}$$ I found r, but I have a problem. I think r should be static
$endgroup$
– Yorn
Dec 9 '18 at 18:07
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032237%2fhow-to-find-all-complex-solutions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $z=re^{it}$
$$implies2=r^{2018}(cos2018t+isin2018t+cos83t-isin83t)$$
Using Prosthaphaeresis Formulas, $$dfrac2{r^{2018}}=2cosdfrac{(2018+83)t}2left(cosdfrac{(2018-83)t}2+isindfrac{(2018-83)t}2right)$$
$impliessindfrac{(2018-83)t}2=0impliesdfrac{(2018-83)t}2=mpi$ where $m$ is any integer
If $m$ is even, $=2n$(say), $impliescosdfrac{(2018-83)t}2=+1$
$$t=dfrac{2npi}{1935},0le2n<1935$$
$$dfrac2{r^{2018}}=2cosdfrac{2101}2cdotdfrac{2npi}{1935}implies r=?$$
What if $m$ is odd, $=2n+1$(say) $impliescosdfrac{(2018-83)t}2=-1$
$endgroup$
$begingroup$
what happens if cos(...) = -1?
$endgroup$
– Yorn
Dec 9 '18 at 12:56
$begingroup$
@Yorn, Replace the values of $cos$ & $sin$ of $$dfrac{(2018-83)t}2$$
$endgroup$
– lab bhattacharjee
Dec 9 '18 at 13:07
$begingroup$
$$r = frac{1}{sqrt[2018]{cos(frac{2101pi n}{1995})}}$$ I found r, but I have a problem. I think r should be static
$endgroup$
– Yorn
Dec 9 '18 at 18:07
add a comment |
$begingroup$
Let $z=re^{it}$
$$implies2=r^{2018}(cos2018t+isin2018t+cos83t-isin83t)$$
Using Prosthaphaeresis Formulas, $$dfrac2{r^{2018}}=2cosdfrac{(2018+83)t}2left(cosdfrac{(2018-83)t}2+isindfrac{(2018-83)t}2right)$$
$impliessindfrac{(2018-83)t}2=0impliesdfrac{(2018-83)t}2=mpi$ where $m$ is any integer
If $m$ is even, $=2n$(say), $impliescosdfrac{(2018-83)t}2=+1$
$$t=dfrac{2npi}{1935},0le2n<1935$$
$$dfrac2{r^{2018}}=2cosdfrac{2101}2cdotdfrac{2npi}{1935}implies r=?$$
What if $m$ is odd, $=2n+1$(say) $impliescosdfrac{(2018-83)t}2=-1$
$endgroup$
$begingroup$
what happens if cos(...) = -1?
$endgroup$
– Yorn
Dec 9 '18 at 12:56
$begingroup$
@Yorn, Replace the values of $cos$ & $sin$ of $$dfrac{(2018-83)t}2$$
$endgroup$
– lab bhattacharjee
Dec 9 '18 at 13:07
$begingroup$
$$r = frac{1}{sqrt[2018]{cos(frac{2101pi n}{1995})}}$$ I found r, but I have a problem. I think r should be static
$endgroup$
– Yorn
Dec 9 '18 at 18:07
add a comment |
$begingroup$
Let $z=re^{it}$
$$implies2=r^{2018}(cos2018t+isin2018t+cos83t-isin83t)$$
Using Prosthaphaeresis Formulas, $$dfrac2{r^{2018}}=2cosdfrac{(2018+83)t}2left(cosdfrac{(2018-83)t}2+isindfrac{(2018-83)t}2right)$$
$impliessindfrac{(2018-83)t}2=0impliesdfrac{(2018-83)t}2=mpi$ where $m$ is any integer
If $m$ is even, $=2n$(say), $impliescosdfrac{(2018-83)t}2=+1$
$$t=dfrac{2npi}{1935},0le2n<1935$$
$$dfrac2{r^{2018}}=2cosdfrac{2101}2cdotdfrac{2npi}{1935}implies r=?$$
What if $m$ is odd, $=2n+1$(say) $impliescosdfrac{(2018-83)t}2=-1$
$endgroup$
Let $z=re^{it}$
$$implies2=r^{2018}(cos2018t+isin2018t+cos83t-isin83t)$$
Using Prosthaphaeresis Formulas, $$dfrac2{r^{2018}}=2cosdfrac{(2018+83)t}2left(cosdfrac{(2018-83)t}2+isindfrac{(2018-83)t}2right)$$
$impliessindfrac{(2018-83)t}2=0impliesdfrac{(2018-83)t}2=mpi$ where $m$ is any integer
If $m$ is even, $=2n$(say), $impliescosdfrac{(2018-83)t}2=+1$
$$t=dfrac{2npi}{1935},0le2n<1935$$
$$dfrac2{r^{2018}}=2cosdfrac{2101}2cdotdfrac{2npi}{1935}implies r=?$$
What if $m$ is odd, $=2n+1$(say) $impliescosdfrac{(2018-83)t}2=-1$
answered Dec 9 '18 at 10:37
lab bhattacharjeelab bhattacharjee
224k15156274
224k15156274
$begingroup$
what happens if cos(...) = -1?
$endgroup$
– Yorn
Dec 9 '18 at 12:56
$begingroup$
@Yorn, Replace the values of $cos$ & $sin$ of $$dfrac{(2018-83)t}2$$
$endgroup$
– lab bhattacharjee
Dec 9 '18 at 13:07
$begingroup$
$$r = frac{1}{sqrt[2018]{cos(frac{2101pi n}{1995})}}$$ I found r, but I have a problem. I think r should be static
$endgroup$
– Yorn
Dec 9 '18 at 18:07
add a comment |
$begingroup$
what happens if cos(...) = -1?
$endgroup$
– Yorn
Dec 9 '18 at 12:56
$begingroup$
@Yorn, Replace the values of $cos$ & $sin$ of $$dfrac{(2018-83)t}2$$
$endgroup$
– lab bhattacharjee
Dec 9 '18 at 13:07
$begingroup$
$$r = frac{1}{sqrt[2018]{cos(frac{2101pi n}{1995})}}$$ I found r, but I have a problem. I think r should be static
$endgroup$
– Yorn
Dec 9 '18 at 18:07
$begingroup$
what happens if cos(...) = -1?
$endgroup$
– Yorn
Dec 9 '18 at 12:56
$begingroup$
what happens if cos(...) = -1?
$endgroup$
– Yorn
Dec 9 '18 at 12:56
$begingroup$
@Yorn, Replace the values of $cos$ & $sin$ of $$dfrac{(2018-83)t}2$$
$endgroup$
– lab bhattacharjee
Dec 9 '18 at 13:07
$begingroup$
@Yorn, Replace the values of $cos$ & $sin$ of $$dfrac{(2018-83)t}2$$
$endgroup$
– lab bhattacharjee
Dec 9 '18 at 13:07
$begingroup$
$$r = frac{1}{sqrt[2018]{cos(frac{2101pi n}{1995})}}$$ I found r, but I have a problem. I think r should be static
$endgroup$
– Yorn
Dec 9 '18 at 18:07
$begingroup$
$$r = frac{1}{sqrt[2018]{cos(frac{2101pi n}{1995})}}$$ I found r, but I have a problem. I think r should be static
$endgroup$
– Yorn
Dec 9 '18 at 18:07
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032237%2fhow-to-find-all-complex-solutions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
How exactly did you get this? From Wolfram Alpha?
$endgroup$
– Kyky
Dec 9 '18 at 10:32