Finding the Taylor Series for $f(x) = sqrt{x-1}$ about $a = 5$












0














$$f(x) = sqrt{x-1}$$ about $a=5$



So I found the polynomial, but getting it into a series is where I'm having trouble. The first two terms are positive, and then it alternates.
The $C_n$ term is $1$ divided by some power of $2$. That power goes $0, 2, 6, 9, 14, dots $



Any suggestions?



I can't post images apparently, but it's



$$2 + frac{1}{4}(x-5) - frac{1}{64}(x-5)^2 + frac{1}{512}(x-5)^3 - frac{5}{16384}(x-5)^4 + cdots$$



What I have so far:



$$sum_{n=0}^infty frac{(-1)^n(x-5)^n}{n!}$$










share|cite|improve this question





























    0














    $$f(x) = sqrt{x-1}$$ about $a=5$



    So I found the polynomial, but getting it into a series is where I'm having trouble. The first two terms are positive, and then it alternates.
    The $C_n$ term is $1$ divided by some power of $2$. That power goes $0, 2, 6, 9, 14, dots $



    Any suggestions?



    I can't post images apparently, but it's



    $$2 + frac{1}{4}(x-5) - frac{1}{64}(x-5)^2 + frac{1}{512}(x-5)^3 - frac{5}{16384}(x-5)^4 + cdots$$



    What I have so far:



    $$sum_{n=0}^infty frac{(-1)^n(x-5)^n}{n!}$$










    share|cite|improve this question



























      0












      0








      0


      1





      $$f(x) = sqrt{x-1}$$ about $a=5$



      So I found the polynomial, but getting it into a series is where I'm having trouble. The first two terms are positive, and then it alternates.
      The $C_n$ term is $1$ divided by some power of $2$. That power goes $0, 2, 6, 9, 14, dots $



      Any suggestions?



      I can't post images apparently, but it's



      $$2 + frac{1}{4}(x-5) - frac{1}{64}(x-5)^2 + frac{1}{512}(x-5)^3 - frac{5}{16384}(x-5)^4 + cdots$$



      What I have so far:



      $$sum_{n=0}^infty frac{(-1)^n(x-5)^n}{n!}$$










      share|cite|improve this question















      $$f(x) = sqrt{x-1}$$ about $a=5$



      So I found the polynomial, but getting it into a series is where I'm having trouble. The first two terms are positive, and then it alternates.
      The $C_n$ term is $1$ divided by some power of $2$. That power goes $0, 2, 6, 9, 14, dots $



      Any suggestions?



      I can't post images apparently, but it's



      $$2 + frac{1}{4}(x-5) - frac{1}{64}(x-5)^2 + frac{1}{512}(x-5)^3 - frac{5}{16384}(x-5)^4 + cdots$$



      What I have so far:



      $$sum_{n=0}^infty frac{(-1)^n(x-5)^n}{n!}$$







      sequences-and-series






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 5 '18 at 5:07







      user623028

















      asked Dec 5 '18 at 4:07









      user623028user623028

      114




      114






















          3 Answers
          3






          active

          oldest

          votes


















          1














          Let us forget the value of $5$ and be as lazy as I am.



          Let $x=y+a$ to make
          $$sqrt{x-1}=sqrt{y+(a-1)}=sqrt{(a-1)},sqrt{1+frac{y}{a-1}}$$ Now, let $z=frac{y}{a-1}$ and use the binomial expansion for $sqrt{1+z}=sum_{k=0}^inftybinom{1/2}{k}z^k$. Then, replace. So, around $x=a$,
          $$sqrt{x-1}=sqrt{(a-1)},sum_{k=0}^inftybinom{frac 12}{k}left(frac{y}{a-1}right)^k=sum_{k=0}^inftyfrac{binom{frac 12}{k}}{(a-1)^{k-frac 12} }(x-a)^k $$






          share|cite|improve this answer





























            0














            If you really want the specific closed form for the series, you need to express the $n$th derivative of $f$ evaluated at $x=5$ for all $n$.



            Since $f(x)=(x-1)^{frac{1}{2}}$, we know that $f'(x)=frac{1}{2}(x-1)^{-frac{1}{2}}$. Note the change: the power on $(x-1)$ drops by 1, and you multiply on the current power.



            This means the $n$th derivative of $f$, for $n>1$ is
            $$begin{align*}
            f^{(n)}(x)&=frac{1}{2}left(-frac{1}{2}right)dotscleft(frac{3}{2}-nright)(x-1)^{frac{1}{2}-n}\
            &=frac{1}{2^n}left(1cdot(-1)cdot(-3)cdotdotsccdot(-(2n-3))right)(x-1)^{frac{1}{2}-n}\
            &=frac{(-1)^{n-1}}{2^n}(1cdot3cdotdotsccdot(2n-3))(x-1)^{frac{1}{2}-n}\
            &=-left(-frac{1}{2}right)^n(2n-3)!!(x-1)^{frac{1}{2}-n}
            end{align*}$$

            where $!!$ is the double factorial.



            Now substitute $x=5$ to get $f(5)=4$, $f'(5)=1/4$, and
            $$begin{align*}
            f^{(n)}(5)&=-left(-frac{1}{2}right)^n(2n-3)!!cdot4^{frac{1}{2}-n}\
            &=-2left(-frac{1}{8}right)^n(2n-3)!!
            end{align*}$$



            Putting that into the Taylor expansion gives
            $$f(x)=4+frac{1}{4}(x-5)-2sum_{n=2}^{infty}frac{(-1)^n(2n-3)!!}{8^nn!}(x-5)^n$$



            Note: if you really dislike the double factorial, rewrite it as
            $$begin{align*}
            (2n-1)!!&=1cdot3cdotdotsccdot(2n-1)\
            &=frac{1cdot2cdot3cdotdotsccdot2n}{2cdot4cdot6cdotdotsccdot2n}\
            &=frac{(2n)!}{2^nn!}
            end{align*}$$






            share|cite|improve this answer































              0














              We know that taylor expansion is given as
              begin{equation}
              f(x) =
              f(a)+frac {f'(a)}{1!} (x-a)+ frac{f''(a)}{2!} (x-a)^2+frac{f'''(a)}{3!}(x-a)^3+ +frac{f''''(a)}{4!}(x-a)^4+ cdots
              end{equation}

              In your case $a=5$, so
              begin{equation}
              f(x) =
              f(5)+frac {f'(5)}{1!} (x-5)+ frac{f''(5)}{2!} (x-5)^2+frac{f'''(5)}{3!}(x-5)^3+ frac{f''''(5)}{4!}(x-5)^4+ cdots
              end{equation}

              Let's get all 4 derivatives



              begin{align}
              f'(x) &= dfrac{1}{2sqrt{x-1}}\
              f''(x) &= -dfrac{1}{4left(x-1right)^frac{3}{2}}\
              f'''(x) &= dfrac{3}{8left(x-1right)^frac{5}{2}}\
              f''''(x) &= -dfrac{15}{16left(x-1right)^frac{7}{2}}
              end{align}

              Replacing for $x = a = 5$, we get
              begin{align}
              f(5) &= 2\
              f'(5) &= frac{1}{4}\
              f''(5) &= -frac{1}{32}\
              f'''(5) &= frac{3}{256}\
              f''''(5) &= -frac{15}{2048}
              end{align}

              Replacing we get
              begin{equation}
              f(x) =
              2+ frac{1}{4} (x-5) -frac{1}{32(2)}(x-5)^2+frac{3}{3!(256)}(x-5)^3-frac{15}{4!(2048)}(x-5)^4+ cdots
              end{equation}

              that is
              begin{equation}
              f(x) =
              2+ frac{1}{4} (x-5) -frac{1}{64}(x-5)^2+frac{1}{512}(x-5)^3-frac{15}{4!(2048)}(x-5)^4+ cdots
              end{equation}





              In General




              We notice that for $n > 2$
              begin{equation}
              f^{(n)}(x)
              =
              (-1)^{n+1}
              frac{prod_{k=1}^{n-2} (2k+1)}{2^{n}(x-1)^{frac{2n-1}{2}}}
              end{equation}

              so for $n>2$
              begin{equation}
              f^{(n)}(5)
              =
              (-1)^{n+1}
              frac{prod_{k=1}^{n-2} (2k+1)}{2^{n}(5-1)^{frac{2n-1}{2}}}
              =
              (-1)^{n+1}
              frac{prod_{k=1}^{n-2} (2k+1)}{2^{n}(4)^{frac{2n-1}{2}}}
              =
              (-1)^{n+1}
              frac{prod_{k=1}^{n-2} (2k+1)}{2^{n}(2)^{2n-1}}
              end{equation}

              Replacing we get
              begin{equation}
              f(x)
              =
              2+
              frac{1}{4}(x-5)
              -
              frac{1}{64}(x-5)^2
              +
              sum_{n=3}^{infty}
              (-1)^{n+1}frac{prod_{k=1}^{n-2} (2k+1)}{underbrace{2^{n}(2)^{2n-1}}_{2^{3n-1}}n!}(x-5)^n
              end{equation}







              share|cite|improve this answer























              • I already did that part, but thank you. Sorry if it's unclear, but I'm trying to find the series representing that polynomial. I tried doing it at the end of my OP.
                – user623028
                Dec 5 '18 at 4:19










              • i have edited @BigArsole
                – Ahmad Bazzi
                Dec 5 '18 at 4:25










              • When n=3, the denominator is not 512. n=4, the fraction is also incorrect. Sorry for nitpicking but I've been trying for a long time
                – user623028
                Dec 5 '18 at 4:36












              • you are definitely right, i forgot a numerator term .. let me edit
                – Ahmad Bazzi
                Dec 5 '18 at 4:51










              • btw your lastterm 16384 is not correct as well.. should be like the one mentioned here
                – Ahmad Bazzi
                Dec 5 '18 at 4:54











              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3026605%2ffinding-the-taylor-series-for-fx-sqrtx-1-about-a-5%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              3 Answers
              3






              active

              oldest

              votes








              3 Answers
              3






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              1














              Let us forget the value of $5$ and be as lazy as I am.



              Let $x=y+a$ to make
              $$sqrt{x-1}=sqrt{y+(a-1)}=sqrt{(a-1)},sqrt{1+frac{y}{a-1}}$$ Now, let $z=frac{y}{a-1}$ and use the binomial expansion for $sqrt{1+z}=sum_{k=0}^inftybinom{1/2}{k}z^k$. Then, replace. So, around $x=a$,
              $$sqrt{x-1}=sqrt{(a-1)},sum_{k=0}^inftybinom{frac 12}{k}left(frac{y}{a-1}right)^k=sum_{k=0}^inftyfrac{binom{frac 12}{k}}{(a-1)^{k-frac 12} }(x-a)^k $$






              share|cite|improve this answer


























                1














                Let us forget the value of $5$ and be as lazy as I am.



                Let $x=y+a$ to make
                $$sqrt{x-1}=sqrt{y+(a-1)}=sqrt{(a-1)},sqrt{1+frac{y}{a-1}}$$ Now, let $z=frac{y}{a-1}$ and use the binomial expansion for $sqrt{1+z}=sum_{k=0}^inftybinom{1/2}{k}z^k$. Then, replace. So, around $x=a$,
                $$sqrt{x-1}=sqrt{(a-1)},sum_{k=0}^inftybinom{frac 12}{k}left(frac{y}{a-1}right)^k=sum_{k=0}^inftyfrac{binom{frac 12}{k}}{(a-1)^{k-frac 12} }(x-a)^k $$






                share|cite|improve this answer
























                  1












                  1








                  1






                  Let us forget the value of $5$ and be as lazy as I am.



                  Let $x=y+a$ to make
                  $$sqrt{x-1}=sqrt{y+(a-1)}=sqrt{(a-1)},sqrt{1+frac{y}{a-1}}$$ Now, let $z=frac{y}{a-1}$ and use the binomial expansion for $sqrt{1+z}=sum_{k=0}^inftybinom{1/2}{k}z^k$. Then, replace. So, around $x=a$,
                  $$sqrt{x-1}=sqrt{(a-1)},sum_{k=0}^inftybinom{frac 12}{k}left(frac{y}{a-1}right)^k=sum_{k=0}^inftyfrac{binom{frac 12}{k}}{(a-1)^{k-frac 12} }(x-a)^k $$






                  share|cite|improve this answer












                  Let us forget the value of $5$ and be as lazy as I am.



                  Let $x=y+a$ to make
                  $$sqrt{x-1}=sqrt{y+(a-1)}=sqrt{(a-1)},sqrt{1+frac{y}{a-1}}$$ Now, let $z=frac{y}{a-1}$ and use the binomial expansion for $sqrt{1+z}=sum_{k=0}^inftybinom{1/2}{k}z^k$. Then, replace. So, around $x=a$,
                  $$sqrt{x-1}=sqrt{(a-1)},sum_{k=0}^inftybinom{frac 12}{k}left(frac{y}{a-1}right)^k=sum_{k=0}^inftyfrac{binom{frac 12}{k}}{(a-1)^{k-frac 12} }(x-a)^k $$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Dec 5 '18 at 5:06









                  Claude LeiboviciClaude Leibovici

                  119k1157132




                  119k1157132























                      0














                      If you really want the specific closed form for the series, you need to express the $n$th derivative of $f$ evaluated at $x=5$ for all $n$.



                      Since $f(x)=(x-1)^{frac{1}{2}}$, we know that $f'(x)=frac{1}{2}(x-1)^{-frac{1}{2}}$. Note the change: the power on $(x-1)$ drops by 1, and you multiply on the current power.



                      This means the $n$th derivative of $f$, for $n>1$ is
                      $$begin{align*}
                      f^{(n)}(x)&=frac{1}{2}left(-frac{1}{2}right)dotscleft(frac{3}{2}-nright)(x-1)^{frac{1}{2}-n}\
                      &=frac{1}{2^n}left(1cdot(-1)cdot(-3)cdotdotsccdot(-(2n-3))right)(x-1)^{frac{1}{2}-n}\
                      &=frac{(-1)^{n-1}}{2^n}(1cdot3cdotdotsccdot(2n-3))(x-1)^{frac{1}{2}-n}\
                      &=-left(-frac{1}{2}right)^n(2n-3)!!(x-1)^{frac{1}{2}-n}
                      end{align*}$$

                      where $!!$ is the double factorial.



                      Now substitute $x=5$ to get $f(5)=4$, $f'(5)=1/4$, and
                      $$begin{align*}
                      f^{(n)}(5)&=-left(-frac{1}{2}right)^n(2n-3)!!cdot4^{frac{1}{2}-n}\
                      &=-2left(-frac{1}{8}right)^n(2n-3)!!
                      end{align*}$$



                      Putting that into the Taylor expansion gives
                      $$f(x)=4+frac{1}{4}(x-5)-2sum_{n=2}^{infty}frac{(-1)^n(2n-3)!!}{8^nn!}(x-5)^n$$



                      Note: if you really dislike the double factorial, rewrite it as
                      $$begin{align*}
                      (2n-1)!!&=1cdot3cdotdotsccdot(2n-1)\
                      &=frac{1cdot2cdot3cdotdotsccdot2n}{2cdot4cdot6cdotdotsccdot2n}\
                      &=frac{(2n)!}{2^nn!}
                      end{align*}$$






                      share|cite|improve this answer




























                        0














                        If you really want the specific closed form for the series, you need to express the $n$th derivative of $f$ evaluated at $x=5$ for all $n$.



                        Since $f(x)=(x-1)^{frac{1}{2}}$, we know that $f'(x)=frac{1}{2}(x-1)^{-frac{1}{2}}$. Note the change: the power on $(x-1)$ drops by 1, and you multiply on the current power.



                        This means the $n$th derivative of $f$, for $n>1$ is
                        $$begin{align*}
                        f^{(n)}(x)&=frac{1}{2}left(-frac{1}{2}right)dotscleft(frac{3}{2}-nright)(x-1)^{frac{1}{2}-n}\
                        &=frac{1}{2^n}left(1cdot(-1)cdot(-3)cdotdotsccdot(-(2n-3))right)(x-1)^{frac{1}{2}-n}\
                        &=frac{(-1)^{n-1}}{2^n}(1cdot3cdotdotsccdot(2n-3))(x-1)^{frac{1}{2}-n}\
                        &=-left(-frac{1}{2}right)^n(2n-3)!!(x-1)^{frac{1}{2}-n}
                        end{align*}$$

                        where $!!$ is the double factorial.



                        Now substitute $x=5$ to get $f(5)=4$, $f'(5)=1/4$, and
                        $$begin{align*}
                        f^{(n)}(5)&=-left(-frac{1}{2}right)^n(2n-3)!!cdot4^{frac{1}{2}-n}\
                        &=-2left(-frac{1}{8}right)^n(2n-3)!!
                        end{align*}$$



                        Putting that into the Taylor expansion gives
                        $$f(x)=4+frac{1}{4}(x-5)-2sum_{n=2}^{infty}frac{(-1)^n(2n-3)!!}{8^nn!}(x-5)^n$$



                        Note: if you really dislike the double factorial, rewrite it as
                        $$begin{align*}
                        (2n-1)!!&=1cdot3cdotdotsccdot(2n-1)\
                        &=frac{1cdot2cdot3cdotdotsccdot2n}{2cdot4cdot6cdotdotsccdot2n}\
                        &=frac{(2n)!}{2^nn!}
                        end{align*}$$






                        share|cite|improve this answer


























                          0












                          0








                          0






                          If you really want the specific closed form for the series, you need to express the $n$th derivative of $f$ evaluated at $x=5$ for all $n$.



                          Since $f(x)=(x-1)^{frac{1}{2}}$, we know that $f'(x)=frac{1}{2}(x-1)^{-frac{1}{2}}$. Note the change: the power on $(x-1)$ drops by 1, and you multiply on the current power.



                          This means the $n$th derivative of $f$, for $n>1$ is
                          $$begin{align*}
                          f^{(n)}(x)&=frac{1}{2}left(-frac{1}{2}right)dotscleft(frac{3}{2}-nright)(x-1)^{frac{1}{2}-n}\
                          &=frac{1}{2^n}left(1cdot(-1)cdot(-3)cdotdotsccdot(-(2n-3))right)(x-1)^{frac{1}{2}-n}\
                          &=frac{(-1)^{n-1}}{2^n}(1cdot3cdotdotsccdot(2n-3))(x-1)^{frac{1}{2}-n}\
                          &=-left(-frac{1}{2}right)^n(2n-3)!!(x-1)^{frac{1}{2}-n}
                          end{align*}$$

                          where $!!$ is the double factorial.



                          Now substitute $x=5$ to get $f(5)=4$, $f'(5)=1/4$, and
                          $$begin{align*}
                          f^{(n)}(5)&=-left(-frac{1}{2}right)^n(2n-3)!!cdot4^{frac{1}{2}-n}\
                          &=-2left(-frac{1}{8}right)^n(2n-3)!!
                          end{align*}$$



                          Putting that into the Taylor expansion gives
                          $$f(x)=4+frac{1}{4}(x-5)-2sum_{n=2}^{infty}frac{(-1)^n(2n-3)!!}{8^nn!}(x-5)^n$$



                          Note: if you really dislike the double factorial, rewrite it as
                          $$begin{align*}
                          (2n-1)!!&=1cdot3cdotdotsccdot(2n-1)\
                          &=frac{1cdot2cdot3cdotdotsccdot2n}{2cdot4cdot6cdotdotsccdot2n}\
                          &=frac{(2n)!}{2^nn!}
                          end{align*}$$






                          share|cite|improve this answer














                          If you really want the specific closed form for the series, you need to express the $n$th derivative of $f$ evaluated at $x=5$ for all $n$.



                          Since $f(x)=(x-1)^{frac{1}{2}}$, we know that $f'(x)=frac{1}{2}(x-1)^{-frac{1}{2}}$. Note the change: the power on $(x-1)$ drops by 1, and you multiply on the current power.



                          This means the $n$th derivative of $f$, for $n>1$ is
                          $$begin{align*}
                          f^{(n)}(x)&=frac{1}{2}left(-frac{1}{2}right)dotscleft(frac{3}{2}-nright)(x-1)^{frac{1}{2}-n}\
                          &=frac{1}{2^n}left(1cdot(-1)cdot(-3)cdotdotsccdot(-(2n-3))right)(x-1)^{frac{1}{2}-n}\
                          &=frac{(-1)^{n-1}}{2^n}(1cdot3cdotdotsccdot(2n-3))(x-1)^{frac{1}{2}-n}\
                          &=-left(-frac{1}{2}right)^n(2n-3)!!(x-1)^{frac{1}{2}-n}
                          end{align*}$$

                          where $!!$ is the double factorial.



                          Now substitute $x=5$ to get $f(5)=4$, $f'(5)=1/4$, and
                          $$begin{align*}
                          f^{(n)}(5)&=-left(-frac{1}{2}right)^n(2n-3)!!cdot4^{frac{1}{2}-n}\
                          &=-2left(-frac{1}{8}right)^n(2n-3)!!
                          end{align*}$$



                          Putting that into the Taylor expansion gives
                          $$f(x)=4+frac{1}{4}(x-5)-2sum_{n=2}^{infty}frac{(-1)^n(2n-3)!!}{8^nn!}(x-5)^n$$



                          Note: if you really dislike the double factorial, rewrite it as
                          $$begin{align*}
                          (2n-1)!!&=1cdot3cdotdotsccdot(2n-1)\
                          &=frac{1cdot2cdot3cdotdotsccdot2n}{2cdot4cdot6cdotdotsccdot2n}\
                          &=frac{(2n)!}{2^nn!}
                          end{align*}$$







                          share|cite|improve this answer














                          share|cite|improve this answer



                          share|cite|improve this answer








                          edited Dec 5 '18 at 4:53

























                          answered Dec 5 '18 at 4:40









                          obscuransobscurans

                          878211




                          878211























                              0














                              We know that taylor expansion is given as
                              begin{equation}
                              f(x) =
                              f(a)+frac {f'(a)}{1!} (x-a)+ frac{f''(a)}{2!} (x-a)^2+frac{f'''(a)}{3!}(x-a)^3+ +frac{f''''(a)}{4!}(x-a)^4+ cdots
                              end{equation}

                              In your case $a=5$, so
                              begin{equation}
                              f(x) =
                              f(5)+frac {f'(5)}{1!} (x-5)+ frac{f''(5)}{2!} (x-5)^2+frac{f'''(5)}{3!}(x-5)^3+ frac{f''''(5)}{4!}(x-5)^4+ cdots
                              end{equation}

                              Let's get all 4 derivatives



                              begin{align}
                              f'(x) &= dfrac{1}{2sqrt{x-1}}\
                              f''(x) &= -dfrac{1}{4left(x-1right)^frac{3}{2}}\
                              f'''(x) &= dfrac{3}{8left(x-1right)^frac{5}{2}}\
                              f''''(x) &= -dfrac{15}{16left(x-1right)^frac{7}{2}}
                              end{align}

                              Replacing for $x = a = 5$, we get
                              begin{align}
                              f(5) &= 2\
                              f'(5) &= frac{1}{4}\
                              f''(5) &= -frac{1}{32}\
                              f'''(5) &= frac{3}{256}\
                              f''''(5) &= -frac{15}{2048}
                              end{align}

                              Replacing we get
                              begin{equation}
                              f(x) =
                              2+ frac{1}{4} (x-5) -frac{1}{32(2)}(x-5)^2+frac{3}{3!(256)}(x-5)^3-frac{15}{4!(2048)}(x-5)^4+ cdots
                              end{equation}

                              that is
                              begin{equation}
                              f(x) =
                              2+ frac{1}{4} (x-5) -frac{1}{64}(x-5)^2+frac{1}{512}(x-5)^3-frac{15}{4!(2048)}(x-5)^4+ cdots
                              end{equation}





                              In General




                              We notice that for $n > 2$
                              begin{equation}
                              f^{(n)}(x)
                              =
                              (-1)^{n+1}
                              frac{prod_{k=1}^{n-2} (2k+1)}{2^{n}(x-1)^{frac{2n-1}{2}}}
                              end{equation}

                              so for $n>2$
                              begin{equation}
                              f^{(n)}(5)
                              =
                              (-1)^{n+1}
                              frac{prod_{k=1}^{n-2} (2k+1)}{2^{n}(5-1)^{frac{2n-1}{2}}}
                              =
                              (-1)^{n+1}
                              frac{prod_{k=1}^{n-2} (2k+1)}{2^{n}(4)^{frac{2n-1}{2}}}
                              =
                              (-1)^{n+1}
                              frac{prod_{k=1}^{n-2} (2k+1)}{2^{n}(2)^{2n-1}}
                              end{equation}

                              Replacing we get
                              begin{equation}
                              f(x)
                              =
                              2+
                              frac{1}{4}(x-5)
                              -
                              frac{1}{64}(x-5)^2
                              +
                              sum_{n=3}^{infty}
                              (-1)^{n+1}frac{prod_{k=1}^{n-2} (2k+1)}{underbrace{2^{n}(2)^{2n-1}}_{2^{3n-1}}n!}(x-5)^n
                              end{equation}







                              share|cite|improve this answer























                              • I already did that part, but thank you. Sorry if it's unclear, but I'm trying to find the series representing that polynomial. I tried doing it at the end of my OP.
                                – user623028
                                Dec 5 '18 at 4:19










                              • i have edited @BigArsole
                                – Ahmad Bazzi
                                Dec 5 '18 at 4:25










                              • When n=3, the denominator is not 512. n=4, the fraction is also incorrect. Sorry for nitpicking but I've been trying for a long time
                                – user623028
                                Dec 5 '18 at 4:36












                              • you are definitely right, i forgot a numerator term .. let me edit
                                – Ahmad Bazzi
                                Dec 5 '18 at 4:51










                              • btw your lastterm 16384 is not correct as well.. should be like the one mentioned here
                                – Ahmad Bazzi
                                Dec 5 '18 at 4:54
















                              0














                              We know that taylor expansion is given as
                              begin{equation}
                              f(x) =
                              f(a)+frac {f'(a)}{1!} (x-a)+ frac{f''(a)}{2!} (x-a)^2+frac{f'''(a)}{3!}(x-a)^3+ +frac{f''''(a)}{4!}(x-a)^4+ cdots
                              end{equation}

                              In your case $a=5$, so
                              begin{equation}
                              f(x) =
                              f(5)+frac {f'(5)}{1!} (x-5)+ frac{f''(5)}{2!} (x-5)^2+frac{f'''(5)}{3!}(x-5)^3+ frac{f''''(5)}{4!}(x-5)^4+ cdots
                              end{equation}

                              Let's get all 4 derivatives



                              begin{align}
                              f'(x) &= dfrac{1}{2sqrt{x-1}}\
                              f''(x) &= -dfrac{1}{4left(x-1right)^frac{3}{2}}\
                              f'''(x) &= dfrac{3}{8left(x-1right)^frac{5}{2}}\
                              f''''(x) &= -dfrac{15}{16left(x-1right)^frac{7}{2}}
                              end{align}

                              Replacing for $x = a = 5$, we get
                              begin{align}
                              f(5) &= 2\
                              f'(5) &= frac{1}{4}\
                              f''(5) &= -frac{1}{32}\
                              f'''(5) &= frac{3}{256}\
                              f''''(5) &= -frac{15}{2048}
                              end{align}

                              Replacing we get
                              begin{equation}
                              f(x) =
                              2+ frac{1}{4} (x-5) -frac{1}{32(2)}(x-5)^2+frac{3}{3!(256)}(x-5)^3-frac{15}{4!(2048)}(x-5)^4+ cdots
                              end{equation}

                              that is
                              begin{equation}
                              f(x) =
                              2+ frac{1}{4} (x-5) -frac{1}{64}(x-5)^2+frac{1}{512}(x-5)^3-frac{15}{4!(2048)}(x-5)^4+ cdots
                              end{equation}





                              In General




                              We notice that for $n > 2$
                              begin{equation}
                              f^{(n)}(x)
                              =
                              (-1)^{n+1}
                              frac{prod_{k=1}^{n-2} (2k+1)}{2^{n}(x-1)^{frac{2n-1}{2}}}
                              end{equation}

                              so for $n>2$
                              begin{equation}
                              f^{(n)}(5)
                              =
                              (-1)^{n+1}
                              frac{prod_{k=1}^{n-2} (2k+1)}{2^{n}(5-1)^{frac{2n-1}{2}}}
                              =
                              (-1)^{n+1}
                              frac{prod_{k=1}^{n-2} (2k+1)}{2^{n}(4)^{frac{2n-1}{2}}}
                              =
                              (-1)^{n+1}
                              frac{prod_{k=1}^{n-2} (2k+1)}{2^{n}(2)^{2n-1}}
                              end{equation}

                              Replacing we get
                              begin{equation}
                              f(x)
                              =
                              2+
                              frac{1}{4}(x-5)
                              -
                              frac{1}{64}(x-5)^2
                              +
                              sum_{n=3}^{infty}
                              (-1)^{n+1}frac{prod_{k=1}^{n-2} (2k+1)}{underbrace{2^{n}(2)^{2n-1}}_{2^{3n-1}}n!}(x-5)^n
                              end{equation}







                              share|cite|improve this answer























                              • I already did that part, but thank you. Sorry if it's unclear, but I'm trying to find the series representing that polynomial. I tried doing it at the end of my OP.
                                – user623028
                                Dec 5 '18 at 4:19










                              • i have edited @BigArsole
                                – Ahmad Bazzi
                                Dec 5 '18 at 4:25










                              • When n=3, the denominator is not 512. n=4, the fraction is also incorrect. Sorry for nitpicking but I've been trying for a long time
                                – user623028
                                Dec 5 '18 at 4:36












                              • you are definitely right, i forgot a numerator term .. let me edit
                                – Ahmad Bazzi
                                Dec 5 '18 at 4:51










                              • btw your lastterm 16384 is not correct as well.. should be like the one mentioned here
                                – Ahmad Bazzi
                                Dec 5 '18 at 4:54














                              0












                              0








                              0






                              We know that taylor expansion is given as
                              begin{equation}
                              f(x) =
                              f(a)+frac {f'(a)}{1!} (x-a)+ frac{f''(a)}{2!} (x-a)^2+frac{f'''(a)}{3!}(x-a)^3+ +frac{f''''(a)}{4!}(x-a)^4+ cdots
                              end{equation}

                              In your case $a=5$, so
                              begin{equation}
                              f(x) =
                              f(5)+frac {f'(5)}{1!} (x-5)+ frac{f''(5)}{2!} (x-5)^2+frac{f'''(5)}{3!}(x-5)^3+ frac{f''''(5)}{4!}(x-5)^4+ cdots
                              end{equation}

                              Let's get all 4 derivatives



                              begin{align}
                              f'(x) &= dfrac{1}{2sqrt{x-1}}\
                              f''(x) &= -dfrac{1}{4left(x-1right)^frac{3}{2}}\
                              f'''(x) &= dfrac{3}{8left(x-1right)^frac{5}{2}}\
                              f''''(x) &= -dfrac{15}{16left(x-1right)^frac{7}{2}}
                              end{align}

                              Replacing for $x = a = 5$, we get
                              begin{align}
                              f(5) &= 2\
                              f'(5) &= frac{1}{4}\
                              f''(5) &= -frac{1}{32}\
                              f'''(5) &= frac{3}{256}\
                              f''''(5) &= -frac{15}{2048}
                              end{align}

                              Replacing we get
                              begin{equation}
                              f(x) =
                              2+ frac{1}{4} (x-5) -frac{1}{32(2)}(x-5)^2+frac{3}{3!(256)}(x-5)^3-frac{15}{4!(2048)}(x-5)^4+ cdots
                              end{equation}

                              that is
                              begin{equation}
                              f(x) =
                              2+ frac{1}{4} (x-5) -frac{1}{64}(x-5)^2+frac{1}{512}(x-5)^3-frac{15}{4!(2048)}(x-5)^4+ cdots
                              end{equation}





                              In General




                              We notice that for $n > 2$
                              begin{equation}
                              f^{(n)}(x)
                              =
                              (-1)^{n+1}
                              frac{prod_{k=1}^{n-2} (2k+1)}{2^{n}(x-1)^{frac{2n-1}{2}}}
                              end{equation}

                              so for $n>2$
                              begin{equation}
                              f^{(n)}(5)
                              =
                              (-1)^{n+1}
                              frac{prod_{k=1}^{n-2} (2k+1)}{2^{n}(5-1)^{frac{2n-1}{2}}}
                              =
                              (-1)^{n+1}
                              frac{prod_{k=1}^{n-2} (2k+1)}{2^{n}(4)^{frac{2n-1}{2}}}
                              =
                              (-1)^{n+1}
                              frac{prod_{k=1}^{n-2} (2k+1)}{2^{n}(2)^{2n-1}}
                              end{equation}

                              Replacing we get
                              begin{equation}
                              f(x)
                              =
                              2+
                              frac{1}{4}(x-5)
                              -
                              frac{1}{64}(x-5)^2
                              +
                              sum_{n=3}^{infty}
                              (-1)^{n+1}frac{prod_{k=1}^{n-2} (2k+1)}{underbrace{2^{n}(2)^{2n-1}}_{2^{3n-1}}n!}(x-5)^n
                              end{equation}







                              share|cite|improve this answer














                              We know that taylor expansion is given as
                              begin{equation}
                              f(x) =
                              f(a)+frac {f'(a)}{1!} (x-a)+ frac{f''(a)}{2!} (x-a)^2+frac{f'''(a)}{3!}(x-a)^3+ +frac{f''''(a)}{4!}(x-a)^4+ cdots
                              end{equation}

                              In your case $a=5$, so
                              begin{equation}
                              f(x) =
                              f(5)+frac {f'(5)}{1!} (x-5)+ frac{f''(5)}{2!} (x-5)^2+frac{f'''(5)}{3!}(x-5)^3+ frac{f''''(5)}{4!}(x-5)^4+ cdots
                              end{equation}

                              Let's get all 4 derivatives



                              begin{align}
                              f'(x) &= dfrac{1}{2sqrt{x-1}}\
                              f''(x) &= -dfrac{1}{4left(x-1right)^frac{3}{2}}\
                              f'''(x) &= dfrac{3}{8left(x-1right)^frac{5}{2}}\
                              f''''(x) &= -dfrac{15}{16left(x-1right)^frac{7}{2}}
                              end{align}

                              Replacing for $x = a = 5$, we get
                              begin{align}
                              f(5) &= 2\
                              f'(5) &= frac{1}{4}\
                              f''(5) &= -frac{1}{32}\
                              f'''(5) &= frac{3}{256}\
                              f''''(5) &= -frac{15}{2048}
                              end{align}

                              Replacing we get
                              begin{equation}
                              f(x) =
                              2+ frac{1}{4} (x-5) -frac{1}{32(2)}(x-5)^2+frac{3}{3!(256)}(x-5)^3-frac{15}{4!(2048)}(x-5)^4+ cdots
                              end{equation}

                              that is
                              begin{equation}
                              f(x) =
                              2+ frac{1}{4} (x-5) -frac{1}{64}(x-5)^2+frac{1}{512}(x-5)^3-frac{15}{4!(2048)}(x-5)^4+ cdots
                              end{equation}





                              In General




                              We notice that for $n > 2$
                              begin{equation}
                              f^{(n)}(x)
                              =
                              (-1)^{n+1}
                              frac{prod_{k=1}^{n-2} (2k+1)}{2^{n}(x-1)^{frac{2n-1}{2}}}
                              end{equation}

                              so for $n>2$
                              begin{equation}
                              f^{(n)}(5)
                              =
                              (-1)^{n+1}
                              frac{prod_{k=1}^{n-2} (2k+1)}{2^{n}(5-1)^{frac{2n-1}{2}}}
                              =
                              (-1)^{n+1}
                              frac{prod_{k=1}^{n-2} (2k+1)}{2^{n}(4)^{frac{2n-1}{2}}}
                              =
                              (-1)^{n+1}
                              frac{prod_{k=1}^{n-2} (2k+1)}{2^{n}(2)^{2n-1}}
                              end{equation}

                              Replacing we get
                              begin{equation}
                              f(x)
                              =
                              2+
                              frac{1}{4}(x-5)
                              -
                              frac{1}{64}(x-5)^2
                              +
                              sum_{n=3}^{infty}
                              (-1)^{n+1}frac{prod_{k=1}^{n-2} (2k+1)}{underbrace{2^{n}(2)^{2n-1}}_{2^{3n-1}}n!}(x-5)^n
                              end{equation}








                              share|cite|improve this answer














                              share|cite|improve this answer



                              share|cite|improve this answer








                              edited Dec 5 '18 at 5:05

























                              answered Dec 5 '18 at 4:14









                              Ahmad BazziAhmad Bazzi

                              7,7712724




                              7,7712724












                              • I already did that part, but thank you. Sorry if it's unclear, but I'm trying to find the series representing that polynomial. I tried doing it at the end of my OP.
                                – user623028
                                Dec 5 '18 at 4:19










                              • i have edited @BigArsole
                                – Ahmad Bazzi
                                Dec 5 '18 at 4:25










                              • When n=3, the denominator is not 512. n=4, the fraction is also incorrect. Sorry for nitpicking but I've been trying for a long time
                                – user623028
                                Dec 5 '18 at 4:36












                              • you are definitely right, i forgot a numerator term .. let me edit
                                – Ahmad Bazzi
                                Dec 5 '18 at 4:51










                              • btw your lastterm 16384 is not correct as well.. should be like the one mentioned here
                                – Ahmad Bazzi
                                Dec 5 '18 at 4:54


















                              • I already did that part, but thank you. Sorry if it's unclear, but I'm trying to find the series representing that polynomial. I tried doing it at the end of my OP.
                                – user623028
                                Dec 5 '18 at 4:19










                              • i have edited @BigArsole
                                – Ahmad Bazzi
                                Dec 5 '18 at 4:25










                              • When n=3, the denominator is not 512. n=4, the fraction is also incorrect. Sorry for nitpicking but I've been trying for a long time
                                – user623028
                                Dec 5 '18 at 4:36












                              • you are definitely right, i forgot a numerator term .. let me edit
                                – Ahmad Bazzi
                                Dec 5 '18 at 4:51










                              • btw your lastterm 16384 is not correct as well.. should be like the one mentioned here
                                – Ahmad Bazzi
                                Dec 5 '18 at 4:54
















                              I already did that part, but thank you. Sorry if it's unclear, but I'm trying to find the series representing that polynomial. I tried doing it at the end of my OP.
                              – user623028
                              Dec 5 '18 at 4:19




                              I already did that part, but thank you. Sorry if it's unclear, but I'm trying to find the series representing that polynomial. I tried doing it at the end of my OP.
                              – user623028
                              Dec 5 '18 at 4:19












                              i have edited @BigArsole
                              – Ahmad Bazzi
                              Dec 5 '18 at 4:25




                              i have edited @BigArsole
                              – Ahmad Bazzi
                              Dec 5 '18 at 4:25












                              When n=3, the denominator is not 512. n=4, the fraction is also incorrect. Sorry for nitpicking but I've been trying for a long time
                              – user623028
                              Dec 5 '18 at 4:36






                              When n=3, the denominator is not 512. n=4, the fraction is also incorrect. Sorry for nitpicking but I've been trying for a long time
                              – user623028
                              Dec 5 '18 at 4:36














                              you are definitely right, i forgot a numerator term .. let me edit
                              – Ahmad Bazzi
                              Dec 5 '18 at 4:51




                              you are definitely right, i forgot a numerator term .. let me edit
                              – Ahmad Bazzi
                              Dec 5 '18 at 4:51












                              btw your lastterm 16384 is not correct as well.. should be like the one mentioned here
                              – Ahmad Bazzi
                              Dec 5 '18 at 4:54




                              btw your lastterm 16384 is not correct as well.. should be like the one mentioned here
                              – Ahmad Bazzi
                              Dec 5 '18 at 4:54


















                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.





                              Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                              Please pay close attention to the following guidance:


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3026605%2ffinding-the-taylor-series-for-fx-sqrtx-1-about-a-5%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Berounka

                              Different font size/position of beamer's navigation symbols template's content depending on regular/plain...

                              Sphinx de Gizeh