If $aleph_alpha=alpha$, then $alpha$ is a limit ordinal
$begingroup$
If $aleph_alpha=alpha$, then $alpha$ is a limit ordinal.
My attempt:
Assume the contrary that $alpha$ is not a limit ordinal. Then $alpha$ is a successor ordinal and thus $alpha=beta+1$ for a unique $beta$.
It follows that $beta bigcup{beta}=aleph_alpha$. Thus $|aleph_alpha|=|beta|$ or $aleph_alpha=|beta|$. This means $aleph_alpha$ is equipotent to a smaller ordrinal. This is clearly a contradiction.
My proof is quite short and I wonder if it contains any logical flaw/gap. Thank you for your help!
proof-verification elementary-set-theory ordinals
$endgroup$
add a comment |
$begingroup$
If $aleph_alpha=alpha$, then $alpha$ is a limit ordinal.
My attempt:
Assume the contrary that $alpha$ is not a limit ordinal. Then $alpha$ is a successor ordinal and thus $alpha=beta+1$ for a unique $beta$.
It follows that $beta bigcup{beta}=aleph_alpha$. Thus $|aleph_alpha|=|beta|$ or $aleph_alpha=|beta|$. This means $aleph_alpha$ is equipotent to a smaller ordrinal. This is clearly a contradiction.
My proof is quite short and I wonder if it contains any logical flaw/gap. Thank you for your help!
proof-verification elementary-set-theory ordinals
$endgroup$
add a comment |
$begingroup$
If $aleph_alpha=alpha$, then $alpha$ is a limit ordinal.
My attempt:
Assume the contrary that $alpha$ is not a limit ordinal. Then $alpha$ is a successor ordinal and thus $alpha=beta+1$ for a unique $beta$.
It follows that $beta bigcup{beta}=aleph_alpha$. Thus $|aleph_alpha|=|beta|$ or $aleph_alpha=|beta|$. This means $aleph_alpha$ is equipotent to a smaller ordrinal. This is clearly a contradiction.
My proof is quite short and I wonder if it contains any logical flaw/gap. Thank you for your help!
proof-verification elementary-set-theory ordinals
$endgroup$
If $aleph_alpha=alpha$, then $alpha$ is a limit ordinal.
My attempt:
Assume the contrary that $alpha$ is not a limit ordinal. Then $alpha$ is a successor ordinal and thus $alpha=beta+1$ for a unique $beta$.
It follows that $beta bigcup{beta}=aleph_alpha$. Thus $|aleph_alpha|=|beta|$ or $aleph_alpha=|beta|$. This means $aleph_alpha$ is equipotent to a smaller ordrinal. This is clearly a contradiction.
My proof is quite short and I wonder if it contains any logical flaw/gap. Thank you for your help!
proof-verification elementary-set-theory ordinals
proof-verification elementary-set-theory ordinals
asked Dec 9 '18 at 1:24
Le Anh DungLe Anh Dung
1,1111521
1,1111521
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Yes your argument follows. In general, any infinite cardinal is a limit ordinal.
$endgroup$
$begingroup$
Oh i forget that. Many thanks!
$endgroup$
– Le Anh Dung
Dec 9 '18 at 1:29
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3031898%2fif-aleph-alpha-alpha-then-alpha-is-a-limit-ordinal%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Yes your argument follows. In general, any infinite cardinal is a limit ordinal.
$endgroup$
$begingroup$
Oh i forget that. Many thanks!
$endgroup$
– Le Anh Dung
Dec 9 '18 at 1:29
add a comment |
$begingroup$
Yes your argument follows. In general, any infinite cardinal is a limit ordinal.
$endgroup$
$begingroup$
Oh i forget that. Many thanks!
$endgroup$
– Le Anh Dung
Dec 9 '18 at 1:29
add a comment |
$begingroup$
Yes your argument follows. In general, any infinite cardinal is a limit ordinal.
$endgroup$
Yes your argument follows. In general, any infinite cardinal is a limit ordinal.
answered Dec 9 '18 at 1:28
Alberto TakaseAlberto Takase
1,773414
1,773414
$begingroup$
Oh i forget that. Many thanks!
$endgroup$
– Le Anh Dung
Dec 9 '18 at 1:29
add a comment |
$begingroup$
Oh i forget that. Many thanks!
$endgroup$
– Le Anh Dung
Dec 9 '18 at 1:29
$begingroup$
Oh i forget that. Many thanks!
$endgroup$
– Le Anh Dung
Dec 9 '18 at 1:29
$begingroup$
Oh i forget that. Many thanks!
$endgroup$
– Le Anh Dung
Dec 9 '18 at 1:29
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3031898%2fif-aleph-alpha-alpha-then-alpha-is-a-limit-ordinal%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown