Integration of product of Associated Legendre Polynomial
$begingroup$
I am interested in the following integral $$I=int_{-1}^{1} P_s^t(x)P_u^v(x)mathrm{d}x~.$$ Does any one know if a closed form exist for a general $s, t, u, v$, and for $tneq v$ and $sneq u$?
integration definite-integrals legendre-polynomials
$endgroup$
add a comment |
$begingroup$
I am interested in the following integral $$I=int_{-1}^{1} P_s^t(x)P_u^v(x)mathrm{d}x~.$$ Does any one know if a closed form exist for a general $s, t, u, v$, and for $tneq v$ and $sneq u$?
integration definite-integrals legendre-polynomials
$endgroup$
$begingroup$
Legendre and Related Functions .
$endgroup$
– Felix Marin
Sep 17 '16 at 2:34
add a comment |
$begingroup$
I am interested in the following integral $$I=int_{-1}^{1} P_s^t(x)P_u^v(x)mathrm{d}x~.$$ Does any one know if a closed form exist for a general $s, t, u, v$, and for $tneq v$ and $sneq u$?
integration definite-integrals legendre-polynomials
$endgroup$
I am interested in the following integral $$I=int_{-1}^{1} P_s^t(x)P_u^v(x)mathrm{d}x~.$$ Does any one know if a closed form exist for a general $s, t, u, v$, and for $tneq v$ and $sneq u$?
integration definite-integrals legendre-polynomials
integration definite-integrals legendre-polynomials
asked Sep 16 '16 at 23:08
titaniumtitanium
320111
320111
$begingroup$
Legendre and Related Functions .
$endgroup$
– Felix Marin
Sep 17 '16 at 2:34
add a comment |
$begingroup$
Legendre and Related Functions .
$endgroup$
– Felix Marin
Sep 17 '16 at 2:34
$begingroup$
Legendre and Related Functions .
$endgroup$
– Felix Marin
Sep 17 '16 at 2:34
$begingroup$
Legendre and Related Functions .
$endgroup$
– Felix Marin
Sep 17 '16 at 2:34
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
I think your answer is in the paper, "The overlap integral of three associated Legendre polynomials" by Shi-Hai Dong and R. Lemus (2002) (https://www.sciencedirect.com/science/article/pii/S0893965902800040). The relevant expression is $I(s,t;u,v)$, given by equations (7-10), and yields
$$
int_{-1}^1 P^t_s(x) P^v_u(x)dx=(-1)^delta|v-t|2^{|v-t|-2}sqrt{frac{(s+t)!(u+v)!}{(s-t)!(u-v)!}}timessum_alpha (2alpha+1)left(1+(-1)^{alpha+|v-t|}right)sqrt{frac{(alpha-|v-t|)!}{(alpha+|v-t|)!}}frac{Gammaleft(frac{alpha}{2}right)Gammaleft(frac{alpha+|v-t|+1}{2}right)}{left(frac{alpha-|v-t|}{2}right)!Gammaleft(frac{alpha+3}{2}right)},
$$
with the phase
$$
delta=left{begin{matrix} m_1 & mbox{ if } & m_2geq m_1, \ m_2 & mbox{ if } & m_2<m_1,end{matrix}right.
$$
and this integral will only be non-zero if
$$
(|s-u|leqalphaleq s+u)wedge(alphageq|v-t|)wedge(alpha + s + umbox{ is even}).
$$
Note that there is nothing specifying that $tneq v$ or $sneq u$, so this formula may simplify a little under those assumption, I haven't checked.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1929772%2fintegration-of-product-of-associated-legendre-polynomial%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I think your answer is in the paper, "The overlap integral of three associated Legendre polynomials" by Shi-Hai Dong and R. Lemus (2002) (https://www.sciencedirect.com/science/article/pii/S0893965902800040). The relevant expression is $I(s,t;u,v)$, given by equations (7-10), and yields
$$
int_{-1}^1 P^t_s(x) P^v_u(x)dx=(-1)^delta|v-t|2^{|v-t|-2}sqrt{frac{(s+t)!(u+v)!}{(s-t)!(u-v)!}}timessum_alpha (2alpha+1)left(1+(-1)^{alpha+|v-t|}right)sqrt{frac{(alpha-|v-t|)!}{(alpha+|v-t|)!}}frac{Gammaleft(frac{alpha}{2}right)Gammaleft(frac{alpha+|v-t|+1}{2}right)}{left(frac{alpha-|v-t|}{2}right)!Gammaleft(frac{alpha+3}{2}right)},
$$
with the phase
$$
delta=left{begin{matrix} m_1 & mbox{ if } & m_2geq m_1, \ m_2 & mbox{ if } & m_2<m_1,end{matrix}right.
$$
and this integral will only be non-zero if
$$
(|s-u|leqalphaleq s+u)wedge(alphageq|v-t|)wedge(alpha + s + umbox{ is even}).
$$
Note that there is nothing specifying that $tneq v$ or $sneq u$, so this formula may simplify a little under those assumption, I haven't checked.
$endgroup$
add a comment |
$begingroup$
I think your answer is in the paper, "The overlap integral of three associated Legendre polynomials" by Shi-Hai Dong and R. Lemus (2002) (https://www.sciencedirect.com/science/article/pii/S0893965902800040). The relevant expression is $I(s,t;u,v)$, given by equations (7-10), and yields
$$
int_{-1}^1 P^t_s(x) P^v_u(x)dx=(-1)^delta|v-t|2^{|v-t|-2}sqrt{frac{(s+t)!(u+v)!}{(s-t)!(u-v)!}}timessum_alpha (2alpha+1)left(1+(-1)^{alpha+|v-t|}right)sqrt{frac{(alpha-|v-t|)!}{(alpha+|v-t|)!}}frac{Gammaleft(frac{alpha}{2}right)Gammaleft(frac{alpha+|v-t|+1}{2}right)}{left(frac{alpha-|v-t|}{2}right)!Gammaleft(frac{alpha+3}{2}right)},
$$
with the phase
$$
delta=left{begin{matrix} m_1 & mbox{ if } & m_2geq m_1, \ m_2 & mbox{ if } & m_2<m_1,end{matrix}right.
$$
and this integral will only be non-zero if
$$
(|s-u|leqalphaleq s+u)wedge(alphageq|v-t|)wedge(alpha + s + umbox{ is even}).
$$
Note that there is nothing specifying that $tneq v$ or $sneq u$, so this formula may simplify a little under those assumption, I haven't checked.
$endgroup$
add a comment |
$begingroup$
I think your answer is in the paper, "The overlap integral of three associated Legendre polynomials" by Shi-Hai Dong and R. Lemus (2002) (https://www.sciencedirect.com/science/article/pii/S0893965902800040). The relevant expression is $I(s,t;u,v)$, given by equations (7-10), and yields
$$
int_{-1}^1 P^t_s(x) P^v_u(x)dx=(-1)^delta|v-t|2^{|v-t|-2}sqrt{frac{(s+t)!(u+v)!}{(s-t)!(u-v)!}}timessum_alpha (2alpha+1)left(1+(-1)^{alpha+|v-t|}right)sqrt{frac{(alpha-|v-t|)!}{(alpha+|v-t|)!}}frac{Gammaleft(frac{alpha}{2}right)Gammaleft(frac{alpha+|v-t|+1}{2}right)}{left(frac{alpha-|v-t|}{2}right)!Gammaleft(frac{alpha+3}{2}right)},
$$
with the phase
$$
delta=left{begin{matrix} m_1 & mbox{ if } & m_2geq m_1, \ m_2 & mbox{ if } & m_2<m_1,end{matrix}right.
$$
and this integral will only be non-zero if
$$
(|s-u|leqalphaleq s+u)wedge(alphageq|v-t|)wedge(alpha + s + umbox{ is even}).
$$
Note that there is nothing specifying that $tneq v$ or $sneq u$, so this formula may simplify a little under those assumption, I haven't checked.
$endgroup$
I think your answer is in the paper, "The overlap integral of three associated Legendre polynomials" by Shi-Hai Dong and R. Lemus (2002) (https://www.sciencedirect.com/science/article/pii/S0893965902800040). The relevant expression is $I(s,t;u,v)$, given by equations (7-10), and yields
$$
int_{-1}^1 P^t_s(x) P^v_u(x)dx=(-1)^delta|v-t|2^{|v-t|-2}sqrt{frac{(s+t)!(u+v)!}{(s-t)!(u-v)!}}timessum_alpha (2alpha+1)left(1+(-1)^{alpha+|v-t|}right)sqrt{frac{(alpha-|v-t|)!}{(alpha+|v-t|)!}}frac{Gammaleft(frac{alpha}{2}right)Gammaleft(frac{alpha+|v-t|+1}{2}right)}{left(frac{alpha-|v-t|}{2}right)!Gammaleft(frac{alpha+3}{2}right)},
$$
with the phase
$$
delta=left{begin{matrix} m_1 & mbox{ if } & m_2geq m_1, \ m_2 & mbox{ if } & m_2<m_1,end{matrix}right.
$$
and this integral will only be non-zero if
$$
(|s-u|leqalphaleq s+u)wedge(alphageq|v-t|)wedge(alpha + s + umbox{ is even}).
$$
Note that there is nothing specifying that $tneq v$ or $sneq u$, so this formula may simplify a little under those assumption, I haven't checked.
answered Dec 9 '18 at 0:03
Pan DaemoniumPan Daemonium
526
526
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1929772%2fintegration-of-product-of-associated-legendre-polynomial%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Legendre and Related Functions .
$endgroup$
– Felix Marin
Sep 17 '16 at 2:34