Integration of product of Associated Legendre Polynomial












2












$begingroup$


I am interested in the following integral $$I=int_{-1}^{1} P_s^t(x)P_u^v(x)mathrm{d}x~.$$ Does any one know if a closed form exist for a general $s, t, u, v$, and for $tneq v$ and $sneq u$?










share|cite|improve this question









$endgroup$












  • $begingroup$
    Legendre and Related Functions .
    $endgroup$
    – Felix Marin
    Sep 17 '16 at 2:34
















2












$begingroup$


I am interested in the following integral $$I=int_{-1}^{1} P_s^t(x)P_u^v(x)mathrm{d}x~.$$ Does any one know if a closed form exist for a general $s, t, u, v$, and for $tneq v$ and $sneq u$?










share|cite|improve this question









$endgroup$












  • $begingroup$
    Legendre and Related Functions .
    $endgroup$
    – Felix Marin
    Sep 17 '16 at 2:34














2












2








2





$begingroup$


I am interested in the following integral $$I=int_{-1}^{1} P_s^t(x)P_u^v(x)mathrm{d}x~.$$ Does any one know if a closed form exist for a general $s, t, u, v$, and for $tneq v$ and $sneq u$?










share|cite|improve this question









$endgroup$




I am interested in the following integral $$I=int_{-1}^{1} P_s^t(x)P_u^v(x)mathrm{d}x~.$$ Does any one know if a closed form exist for a general $s, t, u, v$, and for $tneq v$ and $sneq u$?







integration definite-integrals legendre-polynomials






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Sep 16 '16 at 23:08









titaniumtitanium

320111




320111












  • $begingroup$
    Legendre and Related Functions .
    $endgroup$
    – Felix Marin
    Sep 17 '16 at 2:34


















  • $begingroup$
    Legendre and Related Functions .
    $endgroup$
    – Felix Marin
    Sep 17 '16 at 2:34
















$begingroup$
Legendre and Related Functions .
$endgroup$
– Felix Marin
Sep 17 '16 at 2:34




$begingroup$
Legendre and Related Functions .
$endgroup$
– Felix Marin
Sep 17 '16 at 2:34










1 Answer
1






active

oldest

votes


















0












$begingroup$

I think your answer is in the paper, "The overlap integral of three associated Legendre polynomials" by Shi-Hai Dong and R. Lemus (2002) (https://www.sciencedirect.com/science/article/pii/S0893965902800040). The relevant expression is $I(s,t;u,v)$, given by equations (7-10), and yields



$$
int_{-1}^1 P^t_s(x) P^v_u(x)dx=(-1)^delta|v-t|2^{|v-t|-2}sqrt{frac{(s+t)!(u+v)!}{(s-t)!(u-v)!}}timessum_alpha (2alpha+1)left(1+(-1)^{alpha+|v-t|}right)sqrt{frac{(alpha-|v-t|)!}{(alpha+|v-t|)!}}frac{Gammaleft(frac{alpha}{2}right)Gammaleft(frac{alpha+|v-t|+1}{2}right)}{left(frac{alpha-|v-t|}{2}right)!Gammaleft(frac{alpha+3}{2}right)},
$$



with the phase



$$
delta=left{begin{matrix} m_1 & mbox{ if } & m_2geq m_1, \ m_2 & mbox{ if } & m_2<m_1,end{matrix}right.
$$



and this integral will only be non-zero if
$$
(|s-u|leqalphaleq s+u)wedge(alphageq|v-t|)wedge(alpha + s + umbox{ is even}).
$$



Note that there is nothing specifying that $tneq v$ or $sneq u$, so this formula may simplify a little under those assumption, I haven't checked.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1929772%2fintegration-of-product-of-associated-legendre-polynomial%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    I think your answer is in the paper, "The overlap integral of three associated Legendre polynomials" by Shi-Hai Dong and R. Lemus (2002) (https://www.sciencedirect.com/science/article/pii/S0893965902800040). The relevant expression is $I(s,t;u,v)$, given by equations (7-10), and yields



    $$
    int_{-1}^1 P^t_s(x) P^v_u(x)dx=(-1)^delta|v-t|2^{|v-t|-2}sqrt{frac{(s+t)!(u+v)!}{(s-t)!(u-v)!}}timessum_alpha (2alpha+1)left(1+(-1)^{alpha+|v-t|}right)sqrt{frac{(alpha-|v-t|)!}{(alpha+|v-t|)!}}frac{Gammaleft(frac{alpha}{2}right)Gammaleft(frac{alpha+|v-t|+1}{2}right)}{left(frac{alpha-|v-t|}{2}right)!Gammaleft(frac{alpha+3}{2}right)},
    $$



    with the phase



    $$
    delta=left{begin{matrix} m_1 & mbox{ if } & m_2geq m_1, \ m_2 & mbox{ if } & m_2<m_1,end{matrix}right.
    $$



    and this integral will only be non-zero if
    $$
    (|s-u|leqalphaleq s+u)wedge(alphageq|v-t|)wedge(alpha + s + umbox{ is even}).
    $$



    Note that there is nothing specifying that $tneq v$ or $sneq u$, so this formula may simplify a little under those assumption, I haven't checked.






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      I think your answer is in the paper, "The overlap integral of three associated Legendre polynomials" by Shi-Hai Dong and R. Lemus (2002) (https://www.sciencedirect.com/science/article/pii/S0893965902800040). The relevant expression is $I(s,t;u,v)$, given by equations (7-10), and yields



      $$
      int_{-1}^1 P^t_s(x) P^v_u(x)dx=(-1)^delta|v-t|2^{|v-t|-2}sqrt{frac{(s+t)!(u+v)!}{(s-t)!(u-v)!}}timessum_alpha (2alpha+1)left(1+(-1)^{alpha+|v-t|}right)sqrt{frac{(alpha-|v-t|)!}{(alpha+|v-t|)!}}frac{Gammaleft(frac{alpha}{2}right)Gammaleft(frac{alpha+|v-t|+1}{2}right)}{left(frac{alpha-|v-t|}{2}right)!Gammaleft(frac{alpha+3}{2}right)},
      $$



      with the phase



      $$
      delta=left{begin{matrix} m_1 & mbox{ if } & m_2geq m_1, \ m_2 & mbox{ if } & m_2<m_1,end{matrix}right.
      $$



      and this integral will only be non-zero if
      $$
      (|s-u|leqalphaleq s+u)wedge(alphageq|v-t|)wedge(alpha + s + umbox{ is even}).
      $$



      Note that there is nothing specifying that $tneq v$ or $sneq u$, so this formula may simplify a little under those assumption, I haven't checked.






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        I think your answer is in the paper, "The overlap integral of three associated Legendre polynomials" by Shi-Hai Dong and R. Lemus (2002) (https://www.sciencedirect.com/science/article/pii/S0893965902800040). The relevant expression is $I(s,t;u,v)$, given by equations (7-10), and yields



        $$
        int_{-1}^1 P^t_s(x) P^v_u(x)dx=(-1)^delta|v-t|2^{|v-t|-2}sqrt{frac{(s+t)!(u+v)!}{(s-t)!(u-v)!}}timessum_alpha (2alpha+1)left(1+(-1)^{alpha+|v-t|}right)sqrt{frac{(alpha-|v-t|)!}{(alpha+|v-t|)!}}frac{Gammaleft(frac{alpha}{2}right)Gammaleft(frac{alpha+|v-t|+1}{2}right)}{left(frac{alpha-|v-t|}{2}right)!Gammaleft(frac{alpha+3}{2}right)},
        $$



        with the phase



        $$
        delta=left{begin{matrix} m_1 & mbox{ if } & m_2geq m_1, \ m_2 & mbox{ if } & m_2<m_1,end{matrix}right.
        $$



        and this integral will only be non-zero if
        $$
        (|s-u|leqalphaleq s+u)wedge(alphageq|v-t|)wedge(alpha + s + umbox{ is even}).
        $$



        Note that there is nothing specifying that $tneq v$ or $sneq u$, so this formula may simplify a little under those assumption, I haven't checked.






        share|cite|improve this answer









        $endgroup$



        I think your answer is in the paper, "The overlap integral of three associated Legendre polynomials" by Shi-Hai Dong and R. Lemus (2002) (https://www.sciencedirect.com/science/article/pii/S0893965902800040). The relevant expression is $I(s,t;u,v)$, given by equations (7-10), and yields



        $$
        int_{-1}^1 P^t_s(x) P^v_u(x)dx=(-1)^delta|v-t|2^{|v-t|-2}sqrt{frac{(s+t)!(u+v)!}{(s-t)!(u-v)!}}timessum_alpha (2alpha+1)left(1+(-1)^{alpha+|v-t|}right)sqrt{frac{(alpha-|v-t|)!}{(alpha+|v-t|)!}}frac{Gammaleft(frac{alpha}{2}right)Gammaleft(frac{alpha+|v-t|+1}{2}right)}{left(frac{alpha-|v-t|}{2}right)!Gammaleft(frac{alpha+3}{2}right)},
        $$



        with the phase



        $$
        delta=left{begin{matrix} m_1 & mbox{ if } & m_2geq m_1, \ m_2 & mbox{ if } & m_2<m_1,end{matrix}right.
        $$



        and this integral will only be non-zero if
        $$
        (|s-u|leqalphaleq s+u)wedge(alphageq|v-t|)wedge(alpha + s + umbox{ is even}).
        $$



        Note that there is nothing specifying that $tneq v$ or $sneq u$, so this formula may simplify a little under those assumption, I haven't checked.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 9 '18 at 0:03









        Pan DaemoniumPan Daemonium

        526




        526






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1929772%2fintegration-of-product-of-associated-legendre-polynomial%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Berounka

            Different font size/position of beamer's navigation symbols template's content depending on regular/plain...

            Sphinx de Gizeh