Show that $ lim_{ntoinfty} int_{0}^{1} f_n $ exists
$begingroup$
Let $(X,d)= (C[0,1],d)$ where $C[0,1]$ is the set of real-valued continuous functions on $[0,1]$ and $d= int_{0}^{1} |f-g|$ is the Riemann Integral.
Suppose $(f_n)$ is a Cauchy sequence in $(X,d) $ , show that $ lim_{ntoinfty} int_{0}^{1} f_n $ exists.
My attempt: Given $epsilon>0$, $exists Ninmathbb{N}$ s.t $int_{0}^{1} |f_n-f_m|<epsilon$ for all $m>n>N$
$implies int_{0}^{1} |f_n|-int_{0}^{1}|f_m| <epsilon $ (Reverse triangle inequality)
But this only shows that $int_{0}^{1} |f_n|$ is Cauchy and not $int_{0}^{1} f_n$. Any hints would be appreciated.
real-analysis continuity cauchy-sequences riemann-integration
$endgroup$
add a comment |
$begingroup$
Let $(X,d)= (C[0,1],d)$ where $C[0,1]$ is the set of real-valued continuous functions on $[0,1]$ and $d= int_{0}^{1} |f-g|$ is the Riemann Integral.
Suppose $(f_n)$ is a Cauchy sequence in $(X,d) $ , show that $ lim_{ntoinfty} int_{0}^{1} f_n $ exists.
My attempt: Given $epsilon>0$, $exists Ninmathbb{N}$ s.t $int_{0}^{1} |f_n-f_m|<epsilon$ for all $m>n>N$
$implies int_{0}^{1} |f_n|-int_{0}^{1}|f_m| <epsilon $ (Reverse triangle inequality)
But this only shows that $int_{0}^{1} |f_n|$ is Cauchy and not $int_{0}^{1} f_n$. Any hints would be appreciated.
real-analysis continuity cauchy-sequences riemann-integration
$endgroup$
$begingroup$
Presumably $f_n :[0,1] to mathbb{R}$?
$endgroup$
– RRL
Dec 9 '18 at 1:08
$begingroup$
$C[0,1]$ is the set of real-valued continuous functions, so yes!
$endgroup$
– Abe
Dec 9 '18 at 1:12
$begingroup$
Great -- forget about reverse triangle inequality -- $left|int fright| leqslant int|f|$
$endgroup$
– RRL
Dec 9 '18 at 1:13
add a comment |
$begingroup$
Let $(X,d)= (C[0,1],d)$ where $C[0,1]$ is the set of real-valued continuous functions on $[0,1]$ and $d= int_{0}^{1} |f-g|$ is the Riemann Integral.
Suppose $(f_n)$ is a Cauchy sequence in $(X,d) $ , show that $ lim_{ntoinfty} int_{0}^{1} f_n $ exists.
My attempt: Given $epsilon>0$, $exists Ninmathbb{N}$ s.t $int_{0}^{1} |f_n-f_m|<epsilon$ for all $m>n>N$
$implies int_{0}^{1} |f_n|-int_{0}^{1}|f_m| <epsilon $ (Reverse triangle inequality)
But this only shows that $int_{0}^{1} |f_n|$ is Cauchy and not $int_{0}^{1} f_n$. Any hints would be appreciated.
real-analysis continuity cauchy-sequences riemann-integration
$endgroup$
Let $(X,d)= (C[0,1],d)$ where $C[0,1]$ is the set of real-valued continuous functions on $[0,1]$ and $d= int_{0}^{1} |f-g|$ is the Riemann Integral.
Suppose $(f_n)$ is a Cauchy sequence in $(X,d) $ , show that $ lim_{ntoinfty} int_{0}^{1} f_n $ exists.
My attempt: Given $epsilon>0$, $exists Ninmathbb{N}$ s.t $int_{0}^{1} |f_n-f_m|<epsilon$ for all $m>n>N$
$implies int_{0}^{1} |f_n|-int_{0}^{1}|f_m| <epsilon $ (Reverse triangle inequality)
But this only shows that $int_{0}^{1} |f_n|$ is Cauchy and not $int_{0}^{1} f_n$. Any hints would be appreciated.
real-analysis continuity cauchy-sequences riemann-integration
real-analysis continuity cauchy-sequences riemann-integration
edited Dec 9 '18 at 1:13
Abe
asked Dec 9 '18 at 0:54
AbeAbe
195
195
$begingroup$
Presumably $f_n :[0,1] to mathbb{R}$?
$endgroup$
– RRL
Dec 9 '18 at 1:08
$begingroup$
$C[0,1]$ is the set of real-valued continuous functions, so yes!
$endgroup$
– Abe
Dec 9 '18 at 1:12
$begingroup$
Great -- forget about reverse triangle inequality -- $left|int fright| leqslant int|f|$
$endgroup$
– RRL
Dec 9 '18 at 1:13
add a comment |
$begingroup$
Presumably $f_n :[0,1] to mathbb{R}$?
$endgroup$
– RRL
Dec 9 '18 at 1:08
$begingroup$
$C[0,1]$ is the set of real-valued continuous functions, so yes!
$endgroup$
– Abe
Dec 9 '18 at 1:12
$begingroup$
Great -- forget about reverse triangle inequality -- $left|int fright| leqslant int|f|$
$endgroup$
– RRL
Dec 9 '18 at 1:13
$begingroup$
Presumably $f_n :[0,1] to mathbb{R}$?
$endgroup$
– RRL
Dec 9 '18 at 1:08
$begingroup$
Presumably $f_n :[0,1] to mathbb{R}$?
$endgroup$
– RRL
Dec 9 '18 at 1:08
$begingroup$
$C[0,1]$ is the set of real-valued continuous functions, so yes!
$endgroup$
– Abe
Dec 9 '18 at 1:12
$begingroup$
$C[0,1]$ is the set of real-valued continuous functions, so yes!
$endgroup$
– Abe
Dec 9 '18 at 1:12
$begingroup$
Great -- forget about reverse triangle inequality -- $left|int fright| leqslant int|f|$
$endgroup$
– RRL
Dec 9 '18 at 1:13
$begingroup$
Great -- forget about reverse triangle inequality -- $left|int fright| leqslant int|f|$
$endgroup$
– RRL
Dec 9 '18 at 1:13
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Hint: Show $int_0^1f_n$ forms a Cauchy sequence in $mathbb{R}$.
$$left| int_0^1f_n - int_0^1f_mright| = left| int_0^1(f_n - f_m)right| leqslant int_0^1 |f_n - f_m| = d(f_n,f_m)$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3031881%2fshow-that-lim-n-to-infty-int-01-f-n-exists%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint: Show $int_0^1f_n$ forms a Cauchy sequence in $mathbb{R}$.
$$left| int_0^1f_n - int_0^1f_mright| = left| int_0^1(f_n - f_m)right| leqslant int_0^1 |f_n - f_m| = d(f_n,f_m)$$
$endgroup$
add a comment |
$begingroup$
Hint: Show $int_0^1f_n$ forms a Cauchy sequence in $mathbb{R}$.
$$left| int_0^1f_n - int_0^1f_mright| = left| int_0^1(f_n - f_m)right| leqslant int_0^1 |f_n - f_m| = d(f_n,f_m)$$
$endgroup$
add a comment |
$begingroup$
Hint: Show $int_0^1f_n$ forms a Cauchy sequence in $mathbb{R}$.
$$left| int_0^1f_n - int_0^1f_mright| = left| int_0^1(f_n - f_m)right| leqslant int_0^1 |f_n - f_m| = d(f_n,f_m)$$
$endgroup$
Hint: Show $int_0^1f_n$ forms a Cauchy sequence in $mathbb{R}$.
$$left| int_0^1f_n - int_0^1f_mright| = left| int_0^1(f_n - f_m)right| leqslant int_0^1 |f_n - f_m| = d(f_n,f_m)$$
edited Dec 9 '18 at 1:11
answered Dec 9 '18 at 1:04
RRLRRL
49.9k42573
49.9k42573
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3031881%2fshow-that-lim-n-to-infty-int-01-f-n-exists%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Presumably $f_n :[0,1] to mathbb{R}$?
$endgroup$
– RRL
Dec 9 '18 at 1:08
$begingroup$
$C[0,1]$ is the set of real-valued continuous functions, so yes!
$endgroup$
– Abe
Dec 9 '18 at 1:12
$begingroup$
Great -- forget about reverse triangle inequality -- $left|int fright| leqslant int|f|$
$endgroup$
– RRL
Dec 9 '18 at 1:13