Show that $ lim_{ntoinfty} int_{0}^{1} f_n $ exists












1












$begingroup$


Let $(X,d)= (C[0,1],d)$ where $C[0,1]$ is the set of real-valued continuous functions on $[0,1]$ and $d= int_{0}^{1} |f-g|$ is the Riemann Integral.



Suppose $(f_n)$ is a Cauchy sequence in $(X,d) $ , show that $ lim_{ntoinfty} int_{0}^{1} f_n $ exists.



My attempt: Given $epsilon>0$, $exists Ninmathbb{N}$ s.t $int_{0}^{1} |f_n-f_m|<epsilon$ for all $m>n>N$



$implies int_{0}^{1} |f_n|-int_{0}^{1}|f_m| <epsilon $ (Reverse triangle inequality)



But this only shows that $int_{0}^{1} |f_n|$ is Cauchy and not $int_{0}^{1} f_n$. Any hints would be appreciated.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Presumably $f_n :[0,1] to mathbb{R}$?
    $endgroup$
    – RRL
    Dec 9 '18 at 1:08










  • $begingroup$
    $C[0,1]$ is the set of real-valued continuous functions, so yes!
    $endgroup$
    – Abe
    Dec 9 '18 at 1:12










  • $begingroup$
    Great -- forget about reverse triangle inequality -- $left|int fright| leqslant int|f|$
    $endgroup$
    – RRL
    Dec 9 '18 at 1:13


















1












$begingroup$


Let $(X,d)= (C[0,1],d)$ where $C[0,1]$ is the set of real-valued continuous functions on $[0,1]$ and $d= int_{0}^{1} |f-g|$ is the Riemann Integral.



Suppose $(f_n)$ is a Cauchy sequence in $(X,d) $ , show that $ lim_{ntoinfty} int_{0}^{1} f_n $ exists.



My attempt: Given $epsilon>0$, $exists Ninmathbb{N}$ s.t $int_{0}^{1} |f_n-f_m|<epsilon$ for all $m>n>N$



$implies int_{0}^{1} |f_n|-int_{0}^{1}|f_m| <epsilon $ (Reverse triangle inequality)



But this only shows that $int_{0}^{1} |f_n|$ is Cauchy and not $int_{0}^{1} f_n$. Any hints would be appreciated.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Presumably $f_n :[0,1] to mathbb{R}$?
    $endgroup$
    – RRL
    Dec 9 '18 at 1:08










  • $begingroup$
    $C[0,1]$ is the set of real-valued continuous functions, so yes!
    $endgroup$
    – Abe
    Dec 9 '18 at 1:12










  • $begingroup$
    Great -- forget about reverse triangle inequality -- $left|int fright| leqslant int|f|$
    $endgroup$
    – RRL
    Dec 9 '18 at 1:13
















1












1








1





$begingroup$


Let $(X,d)= (C[0,1],d)$ where $C[0,1]$ is the set of real-valued continuous functions on $[0,1]$ and $d= int_{0}^{1} |f-g|$ is the Riemann Integral.



Suppose $(f_n)$ is a Cauchy sequence in $(X,d) $ , show that $ lim_{ntoinfty} int_{0}^{1} f_n $ exists.



My attempt: Given $epsilon>0$, $exists Ninmathbb{N}$ s.t $int_{0}^{1} |f_n-f_m|<epsilon$ for all $m>n>N$



$implies int_{0}^{1} |f_n|-int_{0}^{1}|f_m| <epsilon $ (Reverse triangle inequality)



But this only shows that $int_{0}^{1} |f_n|$ is Cauchy and not $int_{0}^{1} f_n$. Any hints would be appreciated.










share|cite|improve this question











$endgroup$




Let $(X,d)= (C[0,1],d)$ where $C[0,1]$ is the set of real-valued continuous functions on $[0,1]$ and $d= int_{0}^{1} |f-g|$ is the Riemann Integral.



Suppose $(f_n)$ is a Cauchy sequence in $(X,d) $ , show that $ lim_{ntoinfty} int_{0}^{1} f_n $ exists.



My attempt: Given $epsilon>0$, $exists Ninmathbb{N}$ s.t $int_{0}^{1} |f_n-f_m|<epsilon$ for all $m>n>N$



$implies int_{0}^{1} |f_n|-int_{0}^{1}|f_m| <epsilon $ (Reverse triangle inequality)



But this only shows that $int_{0}^{1} |f_n|$ is Cauchy and not $int_{0}^{1} f_n$. Any hints would be appreciated.







real-analysis continuity cauchy-sequences riemann-integration






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 9 '18 at 1:13







Abe

















asked Dec 9 '18 at 0:54









AbeAbe

195




195












  • $begingroup$
    Presumably $f_n :[0,1] to mathbb{R}$?
    $endgroup$
    – RRL
    Dec 9 '18 at 1:08










  • $begingroup$
    $C[0,1]$ is the set of real-valued continuous functions, so yes!
    $endgroup$
    – Abe
    Dec 9 '18 at 1:12










  • $begingroup$
    Great -- forget about reverse triangle inequality -- $left|int fright| leqslant int|f|$
    $endgroup$
    – RRL
    Dec 9 '18 at 1:13




















  • $begingroup$
    Presumably $f_n :[0,1] to mathbb{R}$?
    $endgroup$
    – RRL
    Dec 9 '18 at 1:08










  • $begingroup$
    $C[0,1]$ is the set of real-valued continuous functions, so yes!
    $endgroup$
    – Abe
    Dec 9 '18 at 1:12










  • $begingroup$
    Great -- forget about reverse triangle inequality -- $left|int fright| leqslant int|f|$
    $endgroup$
    – RRL
    Dec 9 '18 at 1:13


















$begingroup$
Presumably $f_n :[0,1] to mathbb{R}$?
$endgroup$
– RRL
Dec 9 '18 at 1:08




$begingroup$
Presumably $f_n :[0,1] to mathbb{R}$?
$endgroup$
– RRL
Dec 9 '18 at 1:08












$begingroup$
$C[0,1]$ is the set of real-valued continuous functions, so yes!
$endgroup$
– Abe
Dec 9 '18 at 1:12




$begingroup$
$C[0,1]$ is the set of real-valued continuous functions, so yes!
$endgroup$
– Abe
Dec 9 '18 at 1:12












$begingroup$
Great -- forget about reverse triangle inequality -- $left|int fright| leqslant int|f|$
$endgroup$
– RRL
Dec 9 '18 at 1:13






$begingroup$
Great -- forget about reverse triangle inequality -- $left|int fright| leqslant int|f|$
$endgroup$
– RRL
Dec 9 '18 at 1:13












1 Answer
1






active

oldest

votes


















1












$begingroup$

Hint: Show $int_0^1f_n$ forms a Cauchy sequence in $mathbb{R}$.



$$left| int_0^1f_n - int_0^1f_mright| = left| int_0^1(f_n - f_m)right| leqslant int_0^1 |f_n - f_m| = d(f_n,f_m)$$






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3031881%2fshow-that-lim-n-to-infty-int-01-f-n-exists%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    Hint: Show $int_0^1f_n$ forms a Cauchy sequence in $mathbb{R}$.



    $$left| int_0^1f_n - int_0^1f_mright| = left| int_0^1(f_n - f_m)right| leqslant int_0^1 |f_n - f_m| = d(f_n,f_m)$$






    share|cite|improve this answer











    $endgroup$


















      1












      $begingroup$

      Hint: Show $int_0^1f_n$ forms a Cauchy sequence in $mathbb{R}$.



      $$left| int_0^1f_n - int_0^1f_mright| = left| int_0^1(f_n - f_m)right| leqslant int_0^1 |f_n - f_m| = d(f_n,f_m)$$






      share|cite|improve this answer











      $endgroup$
















        1












        1








        1





        $begingroup$

        Hint: Show $int_0^1f_n$ forms a Cauchy sequence in $mathbb{R}$.



        $$left| int_0^1f_n - int_0^1f_mright| = left| int_0^1(f_n - f_m)right| leqslant int_0^1 |f_n - f_m| = d(f_n,f_m)$$






        share|cite|improve this answer











        $endgroup$



        Hint: Show $int_0^1f_n$ forms a Cauchy sequence in $mathbb{R}$.



        $$left| int_0^1f_n - int_0^1f_mright| = left| int_0^1(f_n - f_m)right| leqslant int_0^1 |f_n - f_m| = d(f_n,f_m)$$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Dec 9 '18 at 1:11

























        answered Dec 9 '18 at 1:04









        RRLRRL

        49.9k42573




        49.9k42573






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3031881%2fshow-that-lim-n-to-infty-int-01-f-n-exists%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Berounka

            Different font size/position of beamer's navigation symbols template's content depending on regular/plain...

            Sphinx de Gizeh