If $f(z)=z+a_2z^2+…+a_nz^n$ is injective on the unit disk, then $|a_2|≤frac12(n-1)$












7












$begingroup$



Suppose $f(z)=z+a_2z^2+...+a_nz^n$ is injective in $D:={z:|z|<1}$. Show that $|a_2|≤(n-1)/2$ and $|a_n|≤1/n$.




Partial Solution



Assume without loss of generality that $a_nne0$. If $f$ is injective, then $f'(z)≠0$ in $D$. Now, $$f'(z)=1+2a_2z+...+na_nz^{n-1}$$ By the fundamental theorem of algebra, $$f'(z)=na_n(z-r_1)...(z-r_{n-1})$$ where $r_1,...,r_{n-1}$ are the roots of $f'(z)$, and $$f'(0)=1=na_n(-1)^nr_1r_2...r_{n-1}$$ Note that $|r_i|geq1$ for each $i=1,...,n-1$, hence $$|r_1r_2...r_{n-1}|geq1$$ and, finally, $$|a_n|=frac1{n,|r_1r_2...r_{n-1}|}leqfrac{1}{n}$$



What I cannot figure out, though, is how to prove that $|a_2|≤(n-1)/2$. I have tried similar arguments, but cannot seem to get it. Any hints would be greatly appreciated.










share|cite|improve this question











$endgroup$

















    7












    $begingroup$



    Suppose $f(z)=z+a_2z^2+...+a_nz^n$ is injective in $D:={z:|z|<1}$. Show that $|a_2|≤(n-1)/2$ and $|a_n|≤1/n$.




    Partial Solution



    Assume without loss of generality that $a_nne0$. If $f$ is injective, then $f'(z)≠0$ in $D$. Now, $$f'(z)=1+2a_2z+...+na_nz^{n-1}$$ By the fundamental theorem of algebra, $$f'(z)=na_n(z-r_1)...(z-r_{n-1})$$ where $r_1,...,r_{n-1}$ are the roots of $f'(z)$, and $$f'(0)=1=na_n(-1)^nr_1r_2...r_{n-1}$$ Note that $|r_i|geq1$ for each $i=1,...,n-1$, hence $$|r_1r_2...r_{n-1}|geq1$$ and, finally, $$|a_n|=frac1{n,|r_1r_2...r_{n-1}|}leqfrac{1}{n}$$



    What I cannot figure out, though, is how to prove that $|a_2|≤(n-1)/2$. I have tried similar arguments, but cannot seem to get it. Any hints would be greatly appreciated.










    share|cite|improve this question











    $endgroup$















      7












      7








      7


      1



      $begingroup$



      Suppose $f(z)=z+a_2z^2+...+a_nz^n$ is injective in $D:={z:|z|<1}$. Show that $|a_2|≤(n-1)/2$ and $|a_n|≤1/n$.




      Partial Solution



      Assume without loss of generality that $a_nne0$. If $f$ is injective, then $f'(z)≠0$ in $D$. Now, $$f'(z)=1+2a_2z+...+na_nz^{n-1}$$ By the fundamental theorem of algebra, $$f'(z)=na_n(z-r_1)...(z-r_{n-1})$$ where $r_1,...,r_{n-1}$ are the roots of $f'(z)$, and $$f'(0)=1=na_n(-1)^nr_1r_2...r_{n-1}$$ Note that $|r_i|geq1$ for each $i=1,...,n-1$, hence $$|r_1r_2...r_{n-1}|geq1$$ and, finally, $$|a_n|=frac1{n,|r_1r_2...r_{n-1}|}leqfrac{1}{n}$$



      What I cannot figure out, though, is how to prove that $|a_2|≤(n-1)/2$. I have tried similar arguments, but cannot seem to get it. Any hints would be greatly appreciated.










      share|cite|improve this question











      $endgroup$





      Suppose $f(z)=z+a_2z^2+...+a_nz^n$ is injective in $D:={z:|z|<1}$. Show that $|a_2|≤(n-1)/2$ and $|a_n|≤1/n$.




      Partial Solution



      Assume without loss of generality that $a_nne0$. If $f$ is injective, then $f'(z)≠0$ in $D$. Now, $$f'(z)=1+2a_2z+...+na_nz^{n-1}$$ By the fundamental theorem of algebra, $$f'(z)=na_n(z-r_1)...(z-r_{n-1})$$ where $r_1,...,r_{n-1}$ are the roots of $f'(z)$, and $$f'(0)=1=na_n(-1)^nr_1r_2...r_{n-1}$$ Note that $|r_i|geq1$ for each $i=1,...,n-1$, hence $$|r_1r_2...r_{n-1}|geq1$$ and, finally, $$|a_n|=frac1{n,|r_1r_2...r_{n-1}|}leqfrac{1}{n}$$



      What I cannot figure out, though, is how to prove that $|a_2|≤(n-1)/2$. I have tried similar arguments, but cannot seem to get it. Any hints would be greatly appreciated.







      complex-analysis polynomials






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 7 '18 at 19:04









      Did

      247k23222457




      247k23222457










      asked Dec 6 '18 at 23:54









      greeliousgreelious

      19410




      19410






















          1 Answer
          1






          active

          oldest

          votes


















          5












          $begingroup$

          Figured it out. Just to answer my own question: $$f'(z)=1+2a_2z+ ... +na_nz^{n-1}=na_n(z-r_1)...(z-r_{n-1})$$
          $$implies2a_2=na_n(r_2r_3...r_{n-1}(-1)^{n-2}+r_1r_3...r_{n-1}(-1)^{n-2}+ ... +r_1r_2...r_{n-2}(-1)^{n-2})$$
          $$begin{align}
          implies|2a_2| & = n|a_n||r_2r_3...r_{n-1}(-1)^{n-2}+r_1r_3...r_{n-1}(-1)^{n-2}+ ... +r_1r_2...r_{n-2}(-1)^{n-2}|\
          & leq nbigl(frac{1}{n}bigr)bigl(|r_2r_3...r_{n-1}(-1)^{n-2}|+|r_1r_3...r_{n-1}(-1)^{n-2}|+ ... +|r_1r_2...r_{n-2}(-1)^{n-2}|bigr)\
          end{align}$$

          $$implies |2a_2|leq1+1+ ... +1=n-1$$
          $$implies |a_2|leqfrac{n-1}{2}$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            More simply, $$2a_2=-sum_{k=1}^{n-1}frac1{r_k}$$
            $endgroup$
            – Did
            Dec 7 '18 at 14:40











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3029239%2fif-fz-za-2z2-a-nzn-is-injective-on-the-unit-disk-then-a-2%25e2%2589%25a4-frac12%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          5












          $begingroup$

          Figured it out. Just to answer my own question: $$f'(z)=1+2a_2z+ ... +na_nz^{n-1}=na_n(z-r_1)...(z-r_{n-1})$$
          $$implies2a_2=na_n(r_2r_3...r_{n-1}(-1)^{n-2}+r_1r_3...r_{n-1}(-1)^{n-2}+ ... +r_1r_2...r_{n-2}(-1)^{n-2})$$
          $$begin{align}
          implies|2a_2| & = n|a_n||r_2r_3...r_{n-1}(-1)^{n-2}+r_1r_3...r_{n-1}(-1)^{n-2}+ ... +r_1r_2...r_{n-2}(-1)^{n-2}|\
          & leq nbigl(frac{1}{n}bigr)bigl(|r_2r_3...r_{n-1}(-1)^{n-2}|+|r_1r_3...r_{n-1}(-1)^{n-2}|+ ... +|r_1r_2...r_{n-2}(-1)^{n-2}|bigr)\
          end{align}$$

          $$implies |2a_2|leq1+1+ ... +1=n-1$$
          $$implies |a_2|leqfrac{n-1}{2}$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            More simply, $$2a_2=-sum_{k=1}^{n-1}frac1{r_k}$$
            $endgroup$
            – Did
            Dec 7 '18 at 14:40
















          5












          $begingroup$

          Figured it out. Just to answer my own question: $$f'(z)=1+2a_2z+ ... +na_nz^{n-1}=na_n(z-r_1)...(z-r_{n-1})$$
          $$implies2a_2=na_n(r_2r_3...r_{n-1}(-1)^{n-2}+r_1r_3...r_{n-1}(-1)^{n-2}+ ... +r_1r_2...r_{n-2}(-1)^{n-2})$$
          $$begin{align}
          implies|2a_2| & = n|a_n||r_2r_3...r_{n-1}(-1)^{n-2}+r_1r_3...r_{n-1}(-1)^{n-2}+ ... +r_1r_2...r_{n-2}(-1)^{n-2}|\
          & leq nbigl(frac{1}{n}bigr)bigl(|r_2r_3...r_{n-1}(-1)^{n-2}|+|r_1r_3...r_{n-1}(-1)^{n-2}|+ ... +|r_1r_2...r_{n-2}(-1)^{n-2}|bigr)\
          end{align}$$

          $$implies |2a_2|leq1+1+ ... +1=n-1$$
          $$implies |a_2|leqfrac{n-1}{2}$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            More simply, $$2a_2=-sum_{k=1}^{n-1}frac1{r_k}$$
            $endgroup$
            – Did
            Dec 7 '18 at 14:40














          5












          5








          5





          $begingroup$

          Figured it out. Just to answer my own question: $$f'(z)=1+2a_2z+ ... +na_nz^{n-1}=na_n(z-r_1)...(z-r_{n-1})$$
          $$implies2a_2=na_n(r_2r_3...r_{n-1}(-1)^{n-2}+r_1r_3...r_{n-1}(-1)^{n-2}+ ... +r_1r_2...r_{n-2}(-1)^{n-2})$$
          $$begin{align}
          implies|2a_2| & = n|a_n||r_2r_3...r_{n-1}(-1)^{n-2}+r_1r_3...r_{n-1}(-1)^{n-2}+ ... +r_1r_2...r_{n-2}(-1)^{n-2}|\
          & leq nbigl(frac{1}{n}bigr)bigl(|r_2r_3...r_{n-1}(-1)^{n-2}|+|r_1r_3...r_{n-1}(-1)^{n-2}|+ ... +|r_1r_2...r_{n-2}(-1)^{n-2}|bigr)\
          end{align}$$

          $$implies |2a_2|leq1+1+ ... +1=n-1$$
          $$implies |a_2|leqfrac{n-1}{2}$$






          share|cite|improve this answer











          $endgroup$



          Figured it out. Just to answer my own question: $$f'(z)=1+2a_2z+ ... +na_nz^{n-1}=na_n(z-r_1)...(z-r_{n-1})$$
          $$implies2a_2=na_n(r_2r_3...r_{n-1}(-1)^{n-2}+r_1r_3...r_{n-1}(-1)^{n-2}+ ... +r_1r_2...r_{n-2}(-1)^{n-2})$$
          $$begin{align}
          implies|2a_2| & = n|a_n||r_2r_3...r_{n-1}(-1)^{n-2}+r_1r_3...r_{n-1}(-1)^{n-2}+ ... +r_1r_2...r_{n-2}(-1)^{n-2}|\
          & leq nbigl(frac{1}{n}bigr)bigl(|r_2r_3...r_{n-1}(-1)^{n-2}|+|r_1r_3...r_{n-1}(-1)^{n-2}|+ ... +|r_1r_2...r_{n-2}(-1)^{n-2}|bigr)\
          end{align}$$

          $$implies |2a_2|leq1+1+ ... +1=n-1$$
          $$implies |a_2|leqfrac{n-1}{2}$$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Dec 7 '18 at 14:07

























          answered Dec 7 '18 at 0:14









          greeliousgreelious

          19410




          19410












          • $begingroup$
            More simply, $$2a_2=-sum_{k=1}^{n-1}frac1{r_k}$$
            $endgroup$
            – Did
            Dec 7 '18 at 14:40


















          • $begingroup$
            More simply, $$2a_2=-sum_{k=1}^{n-1}frac1{r_k}$$
            $endgroup$
            – Did
            Dec 7 '18 at 14:40
















          $begingroup$
          More simply, $$2a_2=-sum_{k=1}^{n-1}frac1{r_k}$$
          $endgroup$
          – Did
          Dec 7 '18 at 14:40




          $begingroup$
          More simply, $$2a_2=-sum_{k=1}^{n-1}frac1{r_k}$$
          $endgroup$
          – Did
          Dec 7 '18 at 14:40


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3029239%2fif-fz-za-2z2-a-nzn-is-injective-on-the-unit-disk-then-a-2%25e2%2589%25a4-frac12%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Berounka

          Different font size/position of beamer's navigation symbols template's content depending on regular/plain...

          Sphinx de Gizeh