Gauge transformation of differential equations I
This is a follow-up question to Gauge transformation of differential equations. .
Let $y(x)$ be a solution to the following ODE:
begin{eqnarray}
y^{''}(x) + a_1(x) y^{'}(x)+a_0(x) y(x)=0
end{eqnarray}
Now define:
begin{equation}
g(x):= frac{y(x)+ r(x) y^{'}(x)}{r(x) sqrt{a_0(x)} exp(-1/2 int a_1(x) dx)}
end{equation}
where
begin{equation}
r^{'}(x) + 1 - a_1(x) r(x)=0
end{equation}
Then:
begin{eqnarray}
&&g^{''}(x) + \
&&!!!!!!!!!!!!!!!!!! frac{1}{4} left(frac{2 a_0''(x)}{a_0(x)}+frac{a_0'(x) left(frac{4}{r(x)}-2 a_1(x)right)}{a_0(x)}-frac{3 a_0'(x)^2}{a_0(x)^2}+4 a_0(x)+2
a_1'(x)+frac{8 a_1(x)}{r(x)}-a_1(x)^2-frac{8}{r(x)^2}right)g(x)=0
end{eqnarray}
In[7]:=
Clear[a0]; Clear[a1]; Clear[y]; Clear[r]; Clear[g]; Clear[m]; x =.;
x0 =.;
r[x_] = Exp[Integrate[a1[x], x]] C[1] -
Exp[Integrate[a1[x], x]] Integrate[ Exp[-Integrate[a1[x], x]], x];
Simplify[r'[x] + 1 - a1[x] r[x]]
g[x_] = (y[x] + r[x] y'[x])/(
r[x] Sqrt[a0[x]] Exp[-1/2 Integrate[a1[x], x]]);
Collect[(g''[x] +
1/4 (4 a0[x] + Derivative[1][a0][x]/a0[x] (4/r[x] - 2 a1[x]) - (
3 Derivative[1][a0][x]^2)/a0[x]^2 + (
2 (a0^[Prime][Prime])[x])/a0[x] - a1[x]^2 + (8 a1[x])/r[x] +
2 Derivative[1][a1][x] - 8/r[x]^2) g[x]) //. {Derivative[2][y][
x] :> -a1[x] y'[x] - a0[x] y[x],
Derivative[3][y][x] :> -a1'[x] y'[x] - a1[x] y''[x] - a0'[x] y[x] -
a0[x] y'[x]}, {y[x], y'[x]}, Simplify]
Out[9]= 0
Out[11]= 0
Note that the result above can be used to generate ODEs whose solutions are known. For example let us take $j=1$ and $B=C x_1$, $A=C x_1/x_2$ and :
begin{eqnarray}
a_0(x)&=& (B C - A D)^2 frac{x^{j-1}}{4(B+A x)^2 (B-D+(A-C) x)^2(D+C x)^2}\
a_1(x)&=& frac{2}{x}\
Longrightarrow\
r(x)&=& frac{x^2}{x_0} +x
end{eqnarray}
then define:
begin{eqnarray}
{mathfrak P}_0&:=&x_0^2 x_2^2\
{mathfrak P}_1&:=&2 x_0 x_2 left(x_2-4 C^2 x_1 (x_0 (x_1+x_2)-x_1 x_2)right)\
{mathfrak P}_2&:=&x_2^2-8 C^2 x_0 left(x_0
left(x_1^2+5 x_1 x_2+x_2^2right)-x_1 x_2 (x_1+x_2)right)\
{mathfrak P}_3&:=&-16 C^2 x_0 (2 x_0 (x_1+x_2)+x_1 x_2)\
{mathfrak P}_4&=&-8
C^2 left(3 x_0^2+3 x_0 (x_1+x_2)+x_1 x_2right)\
{mathfrak P}_5&=&-8 C^2 (3 x_0+x_1+x_2)\
{mathfrak P}_6&=&-8 C^2
end{eqnarray}
then we have:
begin{equation}
g(x):= xcdot frac{y(x)+ r(x) y^{'}(x)}{r(x) sqrt{a_0(x)}}
end{equation}
Since from my answer to Looking for closed form solutions to linear ordinary differential equations with time dependent coefficients. we know that $y(x)$ is expressed through hypergeometric functions we automaticaly know the solution to the following rather complicated ODE:
begin{eqnarray}
g^{''}(x) + left( frac{sum_{j=0}^6 {mathfrak P}_j x^j}{4 C^2 x^2 (x+x_0)^2 (x+x_1)^2 (x+x_2)^2}right) g(x)=0
end{eqnarray}
Again my question in here would be find other cases where we can find close form solutions to ODEs which are too complicated to be handled using other methods.
differential-equations special-functions
add a comment |
This is a follow-up question to Gauge transformation of differential equations. .
Let $y(x)$ be a solution to the following ODE:
begin{eqnarray}
y^{''}(x) + a_1(x) y^{'}(x)+a_0(x) y(x)=0
end{eqnarray}
Now define:
begin{equation}
g(x):= frac{y(x)+ r(x) y^{'}(x)}{r(x) sqrt{a_0(x)} exp(-1/2 int a_1(x) dx)}
end{equation}
where
begin{equation}
r^{'}(x) + 1 - a_1(x) r(x)=0
end{equation}
Then:
begin{eqnarray}
&&g^{''}(x) + \
&&!!!!!!!!!!!!!!!!!! frac{1}{4} left(frac{2 a_0''(x)}{a_0(x)}+frac{a_0'(x) left(frac{4}{r(x)}-2 a_1(x)right)}{a_0(x)}-frac{3 a_0'(x)^2}{a_0(x)^2}+4 a_0(x)+2
a_1'(x)+frac{8 a_1(x)}{r(x)}-a_1(x)^2-frac{8}{r(x)^2}right)g(x)=0
end{eqnarray}
In[7]:=
Clear[a0]; Clear[a1]; Clear[y]; Clear[r]; Clear[g]; Clear[m]; x =.;
x0 =.;
r[x_] = Exp[Integrate[a1[x], x]] C[1] -
Exp[Integrate[a1[x], x]] Integrate[ Exp[-Integrate[a1[x], x]], x];
Simplify[r'[x] + 1 - a1[x] r[x]]
g[x_] = (y[x] + r[x] y'[x])/(
r[x] Sqrt[a0[x]] Exp[-1/2 Integrate[a1[x], x]]);
Collect[(g''[x] +
1/4 (4 a0[x] + Derivative[1][a0][x]/a0[x] (4/r[x] - 2 a1[x]) - (
3 Derivative[1][a0][x]^2)/a0[x]^2 + (
2 (a0^[Prime][Prime])[x])/a0[x] - a1[x]^2 + (8 a1[x])/r[x] +
2 Derivative[1][a1][x] - 8/r[x]^2) g[x]) //. {Derivative[2][y][
x] :> -a1[x] y'[x] - a0[x] y[x],
Derivative[3][y][x] :> -a1'[x] y'[x] - a1[x] y''[x] - a0'[x] y[x] -
a0[x] y'[x]}, {y[x], y'[x]}, Simplify]
Out[9]= 0
Out[11]= 0
Note that the result above can be used to generate ODEs whose solutions are known. For example let us take $j=1$ and $B=C x_1$, $A=C x_1/x_2$ and :
begin{eqnarray}
a_0(x)&=& (B C - A D)^2 frac{x^{j-1}}{4(B+A x)^2 (B-D+(A-C) x)^2(D+C x)^2}\
a_1(x)&=& frac{2}{x}\
Longrightarrow\
r(x)&=& frac{x^2}{x_0} +x
end{eqnarray}
then define:
begin{eqnarray}
{mathfrak P}_0&:=&x_0^2 x_2^2\
{mathfrak P}_1&:=&2 x_0 x_2 left(x_2-4 C^2 x_1 (x_0 (x_1+x_2)-x_1 x_2)right)\
{mathfrak P}_2&:=&x_2^2-8 C^2 x_0 left(x_0
left(x_1^2+5 x_1 x_2+x_2^2right)-x_1 x_2 (x_1+x_2)right)\
{mathfrak P}_3&:=&-16 C^2 x_0 (2 x_0 (x_1+x_2)+x_1 x_2)\
{mathfrak P}_4&=&-8
C^2 left(3 x_0^2+3 x_0 (x_1+x_2)+x_1 x_2right)\
{mathfrak P}_5&=&-8 C^2 (3 x_0+x_1+x_2)\
{mathfrak P}_6&=&-8 C^2
end{eqnarray}
then we have:
begin{equation}
g(x):= xcdot frac{y(x)+ r(x) y^{'}(x)}{r(x) sqrt{a_0(x)}}
end{equation}
Since from my answer to Looking for closed form solutions to linear ordinary differential equations with time dependent coefficients. we know that $y(x)$ is expressed through hypergeometric functions we automaticaly know the solution to the following rather complicated ODE:
begin{eqnarray}
g^{''}(x) + left( frac{sum_{j=0}^6 {mathfrak P}_j x^j}{4 C^2 x^2 (x+x_0)^2 (x+x_1)^2 (x+x_2)^2}right) g(x)=0
end{eqnarray}
Again my question in here would be find other cases where we can find close form solutions to ODEs which are too complicated to be handled using other methods.
differential-equations special-functions
add a comment |
This is a follow-up question to Gauge transformation of differential equations. .
Let $y(x)$ be a solution to the following ODE:
begin{eqnarray}
y^{''}(x) + a_1(x) y^{'}(x)+a_0(x) y(x)=0
end{eqnarray}
Now define:
begin{equation}
g(x):= frac{y(x)+ r(x) y^{'}(x)}{r(x) sqrt{a_0(x)} exp(-1/2 int a_1(x) dx)}
end{equation}
where
begin{equation}
r^{'}(x) + 1 - a_1(x) r(x)=0
end{equation}
Then:
begin{eqnarray}
&&g^{''}(x) + \
&&!!!!!!!!!!!!!!!!!! frac{1}{4} left(frac{2 a_0''(x)}{a_0(x)}+frac{a_0'(x) left(frac{4}{r(x)}-2 a_1(x)right)}{a_0(x)}-frac{3 a_0'(x)^2}{a_0(x)^2}+4 a_0(x)+2
a_1'(x)+frac{8 a_1(x)}{r(x)}-a_1(x)^2-frac{8}{r(x)^2}right)g(x)=0
end{eqnarray}
In[7]:=
Clear[a0]; Clear[a1]; Clear[y]; Clear[r]; Clear[g]; Clear[m]; x =.;
x0 =.;
r[x_] = Exp[Integrate[a1[x], x]] C[1] -
Exp[Integrate[a1[x], x]] Integrate[ Exp[-Integrate[a1[x], x]], x];
Simplify[r'[x] + 1 - a1[x] r[x]]
g[x_] = (y[x] + r[x] y'[x])/(
r[x] Sqrt[a0[x]] Exp[-1/2 Integrate[a1[x], x]]);
Collect[(g''[x] +
1/4 (4 a0[x] + Derivative[1][a0][x]/a0[x] (4/r[x] - 2 a1[x]) - (
3 Derivative[1][a0][x]^2)/a0[x]^2 + (
2 (a0^[Prime][Prime])[x])/a0[x] - a1[x]^2 + (8 a1[x])/r[x] +
2 Derivative[1][a1][x] - 8/r[x]^2) g[x]) //. {Derivative[2][y][
x] :> -a1[x] y'[x] - a0[x] y[x],
Derivative[3][y][x] :> -a1'[x] y'[x] - a1[x] y''[x] - a0'[x] y[x] -
a0[x] y'[x]}, {y[x], y'[x]}, Simplify]
Out[9]= 0
Out[11]= 0
Note that the result above can be used to generate ODEs whose solutions are known. For example let us take $j=1$ and $B=C x_1$, $A=C x_1/x_2$ and :
begin{eqnarray}
a_0(x)&=& (B C - A D)^2 frac{x^{j-1}}{4(B+A x)^2 (B-D+(A-C) x)^2(D+C x)^2}\
a_1(x)&=& frac{2}{x}\
Longrightarrow\
r(x)&=& frac{x^2}{x_0} +x
end{eqnarray}
then define:
begin{eqnarray}
{mathfrak P}_0&:=&x_0^2 x_2^2\
{mathfrak P}_1&:=&2 x_0 x_2 left(x_2-4 C^2 x_1 (x_0 (x_1+x_2)-x_1 x_2)right)\
{mathfrak P}_2&:=&x_2^2-8 C^2 x_0 left(x_0
left(x_1^2+5 x_1 x_2+x_2^2right)-x_1 x_2 (x_1+x_2)right)\
{mathfrak P}_3&:=&-16 C^2 x_0 (2 x_0 (x_1+x_2)+x_1 x_2)\
{mathfrak P}_4&=&-8
C^2 left(3 x_0^2+3 x_0 (x_1+x_2)+x_1 x_2right)\
{mathfrak P}_5&=&-8 C^2 (3 x_0+x_1+x_2)\
{mathfrak P}_6&=&-8 C^2
end{eqnarray}
then we have:
begin{equation}
g(x):= xcdot frac{y(x)+ r(x) y^{'}(x)}{r(x) sqrt{a_0(x)}}
end{equation}
Since from my answer to Looking for closed form solutions to linear ordinary differential equations with time dependent coefficients. we know that $y(x)$ is expressed through hypergeometric functions we automaticaly know the solution to the following rather complicated ODE:
begin{eqnarray}
g^{''}(x) + left( frac{sum_{j=0}^6 {mathfrak P}_j x^j}{4 C^2 x^2 (x+x_0)^2 (x+x_1)^2 (x+x_2)^2}right) g(x)=0
end{eqnarray}
Again my question in here would be find other cases where we can find close form solutions to ODEs which are too complicated to be handled using other methods.
differential-equations special-functions
This is a follow-up question to Gauge transformation of differential equations. .
Let $y(x)$ be a solution to the following ODE:
begin{eqnarray}
y^{''}(x) + a_1(x) y^{'}(x)+a_0(x) y(x)=0
end{eqnarray}
Now define:
begin{equation}
g(x):= frac{y(x)+ r(x) y^{'}(x)}{r(x) sqrt{a_0(x)} exp(-1/2 int a_1(x) dx)}
end{equation}
where
begin{equation}
r^{'}(x) + 1 - a_1(x) r(x)=0
end{equation}
Then:
begin{eqnarray}
&&g^{''}(x) + \
&&!!!!!!!!!!!!!!!!!! frac{1}{4} left(frac{2 a_0''(x)}{a_0(x)}+frac{a_0'(x) left(frac{4}{r(x)}-2 a_1(x)right)}{a_0(x)}-frac{3 a_0'(x)^2}{a_0(x)^2}+4 a_0(x)+2
a_1'(x)+frac{8 a_1(x)}{r(x)}-a_1(x)^2-frac{8}{r(x)^2}right)g(x)=0
end{eqnarray}
In[7]:=
Clear[a0]; Clear[a1]; Clear[y]; Clear[r]; Clear[g]; Clear[m]; x =.;
x0 =.;
r[x_] = Exp[Integrate[a1[x], x]] C[1] -
Exp[Integrate[a1[x], x]] Integrate[ Exp[-Integrate[a1[x], x]], x];
Simplify[r'[x] + 1 - a1[x] r[x]]
g[x_] = (y[x] + r[x] y'[x])/(
r[x] Sqrt[a0[x]] Exp[-1/2 Integrate[a1[x], x]]);
Collect[(g''[x] +
1/4 (4 a0[x] + Derivative[1][a0][x]/a0[x] (4/r[x] - 2 a1[x]) - (
3 Derivative[1][a0][x]^2)/a0[x]^2 + (
2 (a0^[Prime][Prime])[x])/a0[x] - a1[x]^2 + (8 a1[x])/r[x] +
2 Derivative[1][a1][x] - 8/r[x]^2) g[x]) //. {Derivative[2][y][
x] :> -a1[x] y'[x] - a0[x] y[x],
Derivative[3][y][x] :> -a1'[x] y'[x] - a1[x] y''[x] - a0'[x] y[x] -
a0[x] y'[x]}, {y[x], y'[x]}, Simplify]
Out[9]= 0
Out[11]= 0
Note that the result above can be used to generate ODEs whose solutions are known. For example let us take $j=1$ and $B=C x_1$, $A=C x_1/x_2$ and :
begin{eqnarray}
a_0(x)&=& (B C - A D)^2 frac{x^{j-1}}{4(B+A x)^2 (B-D+(A-C) x)^2(D+C x)^2}\
a_1(x)&=& frac{2}{x}\
Longrightarrow\
r(x)&=& frac{x^2}{x_0} +x
end{eqnarray}
then define:
begin{eqnarray}
{mathfrak P}_0&:=&x_0^2 x_2^2\
{mathfrak P}_1&:=&2 x_0 x_2 left(x_2-4 C^2 x_1 (x_0 (x_1+x_2)-x_1 x_2)right)\
{mathfrak P}_2&:=&x_2^2-8 C^2 x_0 left(x_0
left(x_1^2+5 x_1 x_2+x_2^2right)-x_1 x_2 (x_1+x_2)right)\
{mathfrak P}_3&:=&-16 C^2 x_0 (2 x_0 (x_1+x_2)+x_1 x_2)\
{mathfrak P}_4&=&-8
C^2 left(3 x_0^2+3 x_0 (x_1+x_2)+x_1 x_2right)\
{mathfrak P}_5&=&-8 C^2 (3 x_0+x_1+x_2)\
{mathfrak P}_6&=&-8 C^2
end{eqnarray}
then we have:
begin{equation}
g(x):= xcdot frac{y(x)+ r(x) y^{'}(x)}{r(x) sqrt{a_0(x)}}
end{equation}
Since from my answer to Looking for closed form solutions to linear ordinary differential equations with time dependent coefficients. we know that $y(x)$ is expressed through hypergeometric functions we automaticaly know the solution to the following rather complicated ODE:
begin{eqnarray}
g^{''}(x) + left( frac{sum_{j=0}^6 {mathfrak P}_j x^j}{4 C^2 x^2 (x+x_0)^2 (x+x_1)^2 (x+x_2)^2}right) g(x)=0
end{eqnarray}
Again my question in here would be find other cases where we can find close form solutions to ODEs which are too complicated to be handled using other methods.
differential-equations special-functions
differential-equations special-functions
asked Nov 16 at 19:11
Przemo
4,1521928
4,1521928
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
Here is another example which is a generalization of Example 1.3 in page 5 in https://arxiv.org/pdf/1606.01576.pdf .
Let $a$,$b$,$c$,$a_1$,$a_2$,$a_3$,$b_2$,$b_4$ and $A$ be real parameters.
Then let:
begin{eqnarray}
a_3&:=&-2 a A^2 b_2\
b_4&:=&-A^2 b_2
end{eqnarray}
Now define:
begin{eqnarray}
p_0&:=&a_1 (a_1-2 b_2 (c-1))\
p_1&:=&a_2 (2 a_1-2 b_2 c+b_2)\
p_2&:=&a_2^2-2 A^2 b_2 (a_1 (a-b+1)+2 a b_2 (b-c))\
p_3&:=&A^2 a_2 b_2 (-2 a+2 b-1)
end{eqnarray}
and
begin{eqnarray}
P_0&:=&a_1 (2 c-3) (a_1-2 b_2 (c-1))\
P_1&:=&2 a_2 (c-2) (2 a_1-2 b_2 c+b_2)\
P_2&:=&A^2 left(a_1^2 (-2 a-2 b+1)+2 a_1 b_2 (3 a+4 b c-7 b-3 c+6)-4 a b_2^2 (2 c-5)
(b-c)right)+a_2^2 (2 c-5)\
P_3&:=&2 A^2 a_2 (b_2 (5 a+4 b c-7 b-3 c+4)-2 a_1 (a+b-1))\
P_4&:=&A^2 (2 a+2 b-3) left(2 A^2 b_2 (a_1 (a-b+1)+2 a b_2 (b-c))-a_2^2right)\
P_5&:=&2 A^4 a_2
b_2 (2 a-2 b+1) (a+b-2)
end{eqnarray}
and
begin{eqnarray}
Q_0&:=&a_1 (2 c-3) (a_1-2 b_2 (c-1))\
Q_1&:=&a_2 (2 c-3) (3 a_1+b_2 (2-4 c))\
Q_2&:=&A^2 left((2 a-1) a_1^2 (2 b-1)-2 a_1 b_2 (a (4 b (c-2)+4 c-3)-4 b c+7 b+3 c-6)-12 a b_2^2 (2
c-3) (b-c)right)+4 a_2^2 (c-2)\
Q_3&:=&A^2 a_2 (a_1 (a (8 b-6)-6 b+3)+2 b_2 (a (-4 b c+2 b-2 c+9)+2 (2 b-1) (2 c-3)))\
Q_4&:=&-2 A^2 left((2 a-1) A^2 (2 b-3) b_2 (a_1 (a-b+1)+2 a b_2 (b-c))+2
a_2^2 (a (-b)+a+b-1)right)\
Q_5&:=&2 (1-a) A^4 a_2 (2 b-3) b_2 (2 a-2 b+1)
end{eqnarray}
and
begin{equation}
y(x):=F_{2,1}left[a,b,c,A^2 x^2right]
end{equation}
Then the ODE:
begin{eqnarray}
g^{''}(x) - frac{sumlimits_{j=0}^5 P_j x^j}{x(A x-1)(A x+1) (sumlimits_{j=0}^3 p_j x^j)} g^{'}(x) + frac{sumlimits_{j=0}^5 Q_j x^j}{x^2(A x-1)(A x+1) (sumlimits_{j=0}^3 p_j x^j)} g(x)=0
end{eqnarray}
is solved by
begin{eqnarray}
g(x)&:=& (a_3 x^3+a_2 x^2+a_1 x) y(x) + (b_4 x^4+b_2 x^2) y^{'}(x)
end{eqnarray}
In[14]:= a =.; b =.; c =.; a1 =.; a2 =.; a3 =.; b2 =.; b4 =.; A =.; x
=.;
p0 =.; p1 =.; p2 =.; p3 =.;
P0 =.; P1 =.; P2 =.; P3 =.; P4 =.; P5 =.;
Q0 =.; Q1 =.; Q2 =.; Q3 =.; Q4 =.; Q5 =.; Clear[y];
{a3, b4} = {-2 a A^2 b2, -A^2 b2};
{p0, p1, p2, p3} = {a1 (a1 - 2 b2 (-1 + c)), a2 (2 a1 + b2 - 2 b2 c),
a2^2 - 2 A^2 b2 (a1 (1 + a - b) + 2 a b2 (b - c)),
A^2 a2 (-1 - 2 a + 2 b) b2};
{P0, P1, P2, P3, P4, P5} = {a1 (a1 - 2 b2 (-1 + c)) (-3 + 2 c),
2 a2 (-2 + c) (2 a1 + b2 - 2 b2 c),
a2^2 (-5 + 2 c) +
A^2 (a1^2 (1 - 2 a - 2 b) - 4 a b2^2 (b - c) (-5 + 2 c) +
2 a1 b2 (6 + 3 a - 7 b - 3 c + 4 b c)),
2 A^2 a2 (-2 a1 (-1 + a + b) + b2 (4 + 5 a - 7 b - 3 c + 4 b c)),
A^2 (-3 + 2 a + 2 b) (-a2^2 +
2 A^2 b2 (a1 (1 + a - b) + 2 a b2 (b - c))),
2 A^4 a2 (1 + 2 a - 2 b) (-2 + a + b) b2};
{Q0, Q1, Q2, Q3, Q4, Q5} = {a1 (a1 - 2 b2 (-1 + c)) (-3 + 2 c),
a2 (3 a1 + b2 (2 - 4 c)) (-3 + 2 c),
4 a2^2 (-2 + c) +
A^2 ((-1 + 2 a) a1^2 (-1 + 2 b) - 12 a b2^2 (b - c) (-3 + 2 c) -
2 a1 b2 (-6 + 7 b + 3 c - 4 b c +
a (-3 + 4 b (-2 + c) + 4 c))),
A^2 a2 (a1 (3 - 6 b + a (-6 + 8 b)) +
2 b2 (2 (-1 + 2 b) (-3 + 2 c) +
a (9 + 2 b - 2 c - 4 b c))), -2 A^2 (2 a2^2 (-1 + a + b -
a b) + (-1 + 2 a) A^2 (-3 + 2 b) b2 (a1 (1 + a - b) +
2 a b2 (b - c))),
2 A^4 a2 (1 + 2 a - 2 b) (1 - a) (-3 + 2 b) b2};
y[x_] = Hypergeometric2F1[a, b, c, (A x)^2];
eX = (D[#, {x, 2}] - (
P5 x^5 + P4 x^4 + P3 x^3 + P2 x^2 + P1 x^1 + P0)/(
x (-1 + A x) (1 + A x) (p3 x^3 + p2 x^2 + p1 x^1 + p0))
D[#, x] + (Q5 x^5 + Q4 x^4 + Q3 x^3 + Q2 x^2 + Q1 x^1 + Q0)/(
x ^2 (-1 + A x) (1 + A x) (p3 x^3 + p2 x^2 + p1 x^1 +
p0)) #) & /@ {(a3 x^3 + a2 x^2 + a1 x) y[
x] + (b4 x^4 + b2 x^2) y'[x]};
{a, b, c, a1, a2, b2, A, x} =
RandomReal[{0, 1}, 8, WorkingPrecision -> 50];
Simplify[eX]
Out[25]= {0.*10^-48}
Update: The ODE above is a seven parameter family.
Now, note that if in the example above we add three additional constraints and as such reduce the number of adjustable parameters to four we get another neat example:
Firstly define:
begin{eqnarray}
a_1&:=& c-frac{1}{2}\
a_2&:=& A frac{1}{sqrt{2}} sqrt{-1+4 a+8 a^2+2 c-8 a c}\
a_3&:=&-2 a A^2\
hline \
b_2&:=& 1\
b_4&:=&-A^2 \
hline \
b&:=&a+frac{1}{2}
end{eqnarray}
Then the ODE below:
begin{eqnarray}
&&!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!g^{''}(x) + frac{3-2 c+4 a A^2 x^2}{x(A x-1)(A x+1)} g^{'}(x) + frac{(-3+2 c) + sqrt{2} A sqrt{-1+4 a+8 a^2+2 c-8 a c} x+2(-1-a+2 a^2) x^2}{x^2(A x-1)(A x+1)} g(x)=0
end{eqnarray}
is solved by
begin{eqnarray}
g(x)&:=& (a_3 x^3+a_2 x^2+a_1 x) y(x) + (b_4 x^4+b_2 x^2) y^{'}(x)
end{eqnarray}
In[18]:= a =.; b =.; c =.; a1 =.; a2 =.; a3 =.; b2 =.; b4 =.; A =.; x
=.;
{a1, a2, a3} = {(-(1/2) + c),
A Sqrt[1/2 (-1 + 4 a + 8 a^2 + 2 c - 8 a c)], -2 a A^2};
{b2, b4} = {1, -A^2};
b = a + 1/2;
y[x_] = Hypergeometric2F1[a, b, c, (A x)^2];
eX = (D[#, {x, 2}] + (3 - 2 c + 4 a A^2 x^2)/(x (-1 + A x) (1 + A x))
D[#, x] + ( (-3 + 2 c) +
Sqrt[2] A Sqrt[(-1 + 4 a + 8 a^2 + 2 c - 8 a c)] x +
2 (-1 - a + 2 a^2) A^2 x^2)/(
x ^2 (-1 + A x) (1 + A x)) #) & /@ {(a3 x^3 + a2 x^2 + a1 x) y[
x] + (b4 x^4 + b2 x^2) y'[x]};
{b2, a, c, A, x} = RandomReal[{0, 1}, 5, WorkingPrecision -> 50];
Simplify[eX]
Out[25]= {0.*10^-49}
Secondly define:
begin{eqnarray}
a_1&:=& 2c-1\
a_2&:=& A sqrt{2} sqrt{(-1+2 a)(-1+b)}\
a_3&:=&-2 a A^2\
hline \
b_2&:=& 1\
b_4&:=&-A^2 \
hline \
c&:=&frac{3}{2}
end{eqnarray}
Then the ODE below:
begin{eqnarray}
&&!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!g^{''}(x) +
frac{3+2 A^2(-2+a+b)x^2}{x(A x-1)(A x+1)} g^{'}(x) +
frac{-3-sqrt{2} A sqrt{(-1+2 a)(-1+b)} x+2(-1+a)(-3+2 b) A^2 x^2}{x^2(A x-1)(A x+1)} g(x)=0
end{eqnarray}
is solved by
begin{eqnarray}
g(x)&:=& (a_3 x^3+a_2 x^2+a_1 x) y(x) + (b_4 x^4+b_2 x^2) y^{'}(x)
end{eqnarray}
In[567]:= a =.; b =.; c =.; a1 =.; a2 =.; a3 =.; b2 =.; b4 =.; A =.;
x =.;
{b2, b4} = {1, -A^2};
{a1, a2, a3} = {2 (c - 1),
Sqrt[2] Sqrt[-1 + 2 a] A Sqrt[-1 + b], -2 a A^2};
c = 3/2;
y[x_] = Hypergeometric2F1[a, b, c, (A x)^2];
eX = (D[#, {x, 2}] + (3 + 2 A^2 (-2 + a + b) x^2)/(
x (-1 + A x) (1 + A x))
D[#, x] + ( -3 - Sqrt[2] A (Sqrt[-1 + 2 a] Sqrt[-1 + b]) x +
2 (-1 + a) (-3 + 2 b) A^2 x^2)/(
x^2 (-1 + A x) (1 + A x)) #) & /@ {(a3 x^3 + a2 x^2 + a1 x) y[
x] + (b4 x^4 + b2 x^2) y'[x]};
{a, b, A, x} = RandomReal[{0, 1}, 4, WorkingPrecision -> 50];
Simplify[eX]
Out[574]= {0.*10^-47 + 0.*10^-49 I}
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3001530%2fgauge-transformation-of-differential-equations-i%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
Here is another example which is a generalization of Example 1.3 in page 5 in https://arxiv.org/pdf/1606.01576.pdf .
Let $a$,$b$,$c$,$a_1$,$a_2$,$a_3$,$b_2$,$b_4$ and $A$ be real parameters.
Then let:
begin{eqnarray}
a_3&:=&-2 a A^2 b_2\
b_4&:=&-A^2 b_2
end{eqnarray}
Now define:
begin{eqnarray}
p_0&:=&a_1 (a_1-2 b_2 (c-1))\
p_1&:=&a_2 (2 a_1-2 b_2 c+b_2)\
p_2&:=&a_2^2-2 A^2 b_2 (a_1 (a-b+1)+2 a b_2 (b-c))\
p_3&:=&A^2 a_2 b_2 (-2 a+2 b-1)
end{eqnarray}
and
begin{eqnarray}
P_0&:=&a_1 (2 c-3) (a_1-2 b_2 (c-1))\
P_1&:=&2 a_2 (c-2) (2 a_1-2 b_2 c+b_2)\
P_2&:=&A^2 left(a_1^2 (-2 a-2 b+1)+2 a_1 b_2 (3 a+4 b c-7 b-3 c+6)-4 a b_2^2 (2 c-5)
(b-c)right)+a_2^2 (2 c-5)\
P_3&:=&2 A^2 a_2 (b_2 (5 a+4 b c-7 b-3 c+4)-2 a_1 (a+b-1))\
P_4&:=&A^2 (2 a+2 b-3) left(2 A^2 b_2 (a_1 (a-b+1)+2 a b_2 (b-c))-a_2^2right)\
P_5&:=&2 A^4 a_2
b_2 (2 a-2 b+1) (a+b-2)
end{eqnarray}
and
begin{eqnarray}
Q_0&:=&a_1 (2 c-3) (a_1-2 b_2 (c-1))\
Q_1&:=&a_2 (2 c-3) (3 a_1+b_2 (2-4 c))\
Q_2&:=&A^2 left((2 a-1) a_1^2 (2 b-1)-2 a_1 b_2 (a (4 b (c-2)+4 c-3)-4 b c+7 b+3 c-6)-12 a b_2^2 (2
c-3) (b-c)right)+4 a_2^2 (c-2)\
Q_3&:=&A^2 a_2 (a_1 (a (8 b-6)-6 b+3)+2 b_2 (a (-4 b c+2 b-2 c+9)+2 (2 b-1) (2 c-3)))\
Q_4&:=&-2 A^2 left((2 a-1) A^2 (2 b-3) b_2 (a_1 (a-b+1)+2 a b_2 (b-c))+2
a_2^2 (a (-b)+a+b-1)right)\
Q_5&:=&2 (1-a) A^4 a_2 (2 b-3) b_2 (2 a-2 b+1)
end{eqnarray}
and
begin{equation}
y(x):=F_{2,1}left[a,b,c,A^2 x^2right]
end{equation}
Then the ODE:
begin{eqnarray}
g^{''}(x) - frac{sumlimits_{j=0}^5 P_j x^j}{x(A x-1)(A x+1) (sumlimits_{j=0}^3 p_j x^j)} g^{'}(x) + frac{sumlimits_{j=0}^5 Q_j x^j}{x^2(A x-1)(A x+1) (sumlimits_{j=0}^3 p_j x^j)} g(x)=0
end{eqnarray}
is solved by
begin{eqnarray}
g(x)&:=& (a_3 x^3+a_2 x^2+a_1 x) y(x) + (b_4 x^4+b_2 x^2) y^{'}(x)
end{eqnarray}
In[14]:= a =.; b =.; c =.; a1 =.; a2 =.; a3 =.; b2 =.; b4 =.; A =.; x
=.;
p0 =.; p1 =.; p2 =.; p3 =.;
P0 =.; P1 =.; P2 =.; P3 =.; P4 =.; P5 =.;
Q0 =.; Q1 =.; Q2 =.; Q3 =.; Q4 =.; Q5 =.; Clear[y];
{a3, b4} = {-2 a A^2 b2, -A^2 b2};
{p0, p1, p2, p3} = {a1 (a1 - 2 b2 (-1 + c)), a2 (2 a1 + b2 - 2 b2 c),
a2^2 - 2 A^2 b2 (a1 (1 + a - b) + 2 a b2 (b - c)),
A^2 a2 (-1 - 2 a + 2 b) b2};
{P0, P1, P2, P3, P4, P5} = {a1 (a1 - 2 b2 (-1 + c)) (-3 + 2 c),
2 a2 (-2 + c) (2 a1 + b2 - 2 b2 c),
a2^2 (-5 + 2 c) +
A^2 (a1^2 (1 - 2 a - 2 b) - 4 a b2^2 (b - c) (-5 + 2 c) +
2 a1 b2 (6 + 3 a - 7 b - 3 c + 4 b c)),
2 A^2 a2 (-2 a1 (-1 + a + b) + b2 (4 + 5 a - 7 b - 3 c + 4 b c)),
A^2 (-3 + 2 a + 2 b) (-a2^2 +
2 A^2 b2 (a1 (1 + a - b) + 2 a b2 (b - c))),
2 A^4 a2 (1 + 2 a - 2 b) (-2 + a + b) b2};
{Q0, Q1, Q2, Q3, Q4, Q5} = {a1 (a1 - 2 b2 (-1 + c)) (-3 + 2 c),
a2 (3 a1 + b2 (2 - 4 c)) (-3 + 2 c),
4 a2^2 (-2 + c) +
A^2 ((-1 + 2 a) a1^2 (-1 + 2 b) - 12 a b2^2 (b - c) (-3 + 2 c) -
2 a1 b2 (-6 + 7 b + 3 c - 4 b c +
a (-3 + 4 b (-2 + c) + 4 c))),
A^2 a2 (a1 (3 - 6 b + a (-6 + 8 b)) +
2 b2 (2 (-1 + 2 b) (-3 + 2 c) +
a (9 + 2 b - 2 c - 4 b c))), -2 A^2 (2 a2^2 (-1 + a + b -
a b) + (-1 + 2 a) A^2 (-3 + 2 b) b2 (a1 (1 + a - b) +
2 a b2 (b - c))),
2 A^4 a2 (1 + 2 a - 2 b) (1 - a) (-3 + 2 b) b2};
y[x_] = Hypergeometric2F1[a, b, c, (A x)^2];
eX = (D[#, {x, 2}] - (
P5 x^5 + P4 x^4 + P3 x^3 + P2 x^2 + P1 x^1 + P0)/(
x (-1 + A x) (1 + A x) (p3 x^3 + p2 x^2 + p1 x^1 + p0))
D[#, x] + (Q5 x^5 + Q4 x^4 + Q3 x^3 + Q2 x^2 + Q1 x^1 + Q0)/(
x ^2 (-1 + A x) (1 + A x) (p3 x^3 + p2 x^2 + p1 x^1 +
p0)) #) & /@ {(a3 x^3 + a2 x^2 + a1 x) y[
x] + (b4 x^4 + b2 x^2) y'[x]};
{a, b, c, a1, a2, b2, A, x} =
RandomReal[{0, 1}, 8, WorkingPrecision -> 50];
Simplify[eX]
Out[25]= {0.*10^-48}
Update: The ODE above is a seven parameter family.
Now, note that if in the example above we add three additional constraints and as such reduce the number of adjustable parameters to four we get another neat example:
Firstly define:
begin{eqnarray}
a_1&:=& c-frac{1}{2}\
a_2&:=& A frac{1}{sqrt{2}} sqrt{-1+4 a+8 a^2+2 c-8 a c}\
a_3&:=&-2 a A^2\
hline \
b_2&:=& 1\
b_4&:=&-A^2 \
hline \
b&:=&a+frac{1}{2}
end{eqnarray}
Then the ODE below:
begin{eqnarray}
&&!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!g^{''}(x) + frac{3-2 c+4 a A^2 x^2}{x(A x-1)(A x+1)} g^{'}(x) + frac{(-3+2 c) + sqrt{2} A sqrt{-1+4 a+8 a^2+2 c-8 a c} x+2(-1-a+2 a^2) x^2}{x^2(A x-1)(A x+1)} g(x)=0
end{eqnarray}
is solved by
begin{eqnarray}
g(x)&:=& (a_3 x^3+a_2 x^2+a_1 x) y(x) + (b_4 x^4+b_2 x^2) y^{'}(x)
end{eqnarray}
In[18]:= a =.; b =.; c =.; a1 =.; a2 =.; a3 =.; b2 =.; b4 =.; A =.; x
=.;
{a1, a2, a3} = {(-(1/2) + c),
A Sqrt[1/2 (-1 + 4 a + 8 a^2 + 2 c - 8 a c)], -2 a A^2};
{b2, b4} = {1, -A^2};
b = a + 1/2;
y[x_] = Hypergeometric2F1[a, b, c, (A x)^2];
eX = (D[#, {x, 2}] + (3 - 2 c + 4 a A^2 x^2)/(x (-1 + A x) (1 + A x))
D[#, x] + ( (-3 + 2 c) +
Sqrt[2] A Sqrt[(-1 + 4 a + 8 a^2 + 2 c - 8 a c)] x +
2 (-1 - a + 2 a^2) A^2 x^2)/(
x ^2 (-1 + A x) (1 + A x)) #) & /@ {(a3 x^3 + a2 x^2 + a1 x) y[
x] + (b4 x^4 + b2 x^2) y'[x]};
{b2, a, c, A, x} = RandomReal[{0, 1}, 5, WorkingPrecision -> 50];
Simplify[eX]
Out[25]= {0.*10^-49}
Secondly define:
begin{eqnarray}
a_1&:=& 2c-1\
a_2&:=& A sqrt{2} sqrt{(-1+2 a)(-1+b)}\
a_3&:=&-2 a A^2\
hline \
b_2&:=& 1\
b_4&:=&-A^2 \
hline \
c&:=&frac{3}{2}
end{eqnarray}
Then the ODE below:
begin{eqnarray}
&&!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!g^{''}(x) +
frac{3+2 A^2(-2+a+b)x^2}{x(A x-1)(A x+1)} g^{'}(x) +
frac{-3-sqrt{2} A sqrt{(-1+2 a)(-1+b)} x+2(-1+a)(-3+2 b) A^2 x^2}{x^2(A x-1)(A x+1)} g(x)=0
end{eqnarray}
is solved by
begin{eqnarray}
g(x)&:=& (a_3 x^3+a_2 x^2+a_1 x) y(x) + (b_4 x^4+b_2 x^2) y^{'}(x)
end{eqnarray}
In[567]:= a =.; b =.; c =.; a1 =.; a2 =.; a3 =.; b2 =.; b4 =.; A =.;
x =.;
{b2, b4} = {1, -A^2};
{a1, a2, a3} = {2 (c - 1),
Sqrt[2] Sqrt[-1 + 2 a] A Sqrt[-1 + b], -2 a A^2};
c = 3/2;
y[x_] = Hypergeometric2F1[a, b, c, (A x)^2];
eX = (D[#, {x, 2}] + (3 + 2 A^2 (-2 + a + b) x^2)/(
x (-1 + A x) (1 + A x))
D[#, x] + ( -3 - Sqrt[2] A (Sqrt[-1 + 2 a] Sqrt[-1 + b]) x +
2 (-1 + a) (-3 + 2 b) A^2 x^2)/(
x^2 (-1 + A x) (1 + A x)) #) & /@ {(a3 x^3 + a2 x^2 + a1 x) y[
x] + (b4 x^4 + b2 x^2) y'[x]};
{a, b, A, x} = RandomReal[{0, 1}, 4, WorkingPrecision -> 50];
Simplify[eX]
Out[574]= {0.*10^-47 + 0.*10^-49 I}
add a comment |
Here is another example which is a generalization of Example 1.3 in page 5 in https://arxiv.org/pdf/1606.01576.pdf .
Let $a$,$b$,$c$,$a_1$,$a_2$,$a_3$,$b_2$,$b_4$ and $A$ be real parameters.
Then let:
begin{eqnarray}
a_3&:=&-2 a A^2 b_2\
b_4&:=&-A^2 b_2
end{eqnarray}
Now define:
begin{eqnarray}
p_0&:=&a_1 (a_1-2 b_2 (c-1))\
p_1&:=&a_2 (2 a_1-2 b_2 c+b_2)\
p_2&:=&a_2^2-2 A^2 b_2 (a_1 (a-b+1)+2 a b_2 (b-c))\
p_3&:=&A^2 a_2 b_2 (-2 a+2 b-1)
end{eqnarray}
and
begin{eqnarray}
P_0&:=&a_1 (2 c-3) (a_1-2 b_2 (c-1))\
P_1&:=&2 a_2 (c-2) (2 a_1-2 b_2 c+b_2)\
P_2&:=&A^2 left(a_1^2 (-2 a-2 b+1)+2 a_1 b_2 (3 a+4 b c-7 b-3 c+6)-4 a b_2^2 (2 c-5)
(b-c)right)+a_2^2 (2 c-5)\
P_3&:=&2 A^2 a_2 (b_2 (5 a+4 b c-7 b-3 c+4)-2 a_1 (a+b-1))\
P_4&:=&A^2 (2 a+2 b-3) left(2 A^2 b_2 (a_1 (a-b+1)+2 a b_2 (b-c))-a_2^2right)\
P_5&:=&2 A^4 a_2
b_2 (2 a-2 b+1) (a+b-2)
end{eqnarray}
and
begin{eqnarray}
Q_0&:=&a_1 (2 c-3) (a_1-2 b_2 (c-1))\
Q_1&:=&a_2 (2 c-3) (3 a_1+b_2 (2-4 c))\
Q_2&:=&A^2 left((2 a-1) a_1^2 (2 b-1)-2 a_1 b_2 (a (4 b (c-2)+4 c-3)-4 b c+7 b+3 c-6)-12 a b_2^2 (2
c-3) (b-c)right)+4 a_2^2 (c-2)\
Q_3&:=&A^2 a_2 (a_1 (a (8 b-6)-6 b+3)+2 b_2 (a (-4 b c+2 b-2 c+9)+2 (2 b-1) (2 c-3)))\
Q_4&:=&-2 A^2 left((2 a-1) A^2 (2 b-3) b_2 (a_1 (a-b+1)+2 a b_2 (b-c))+2
a_2^2 (a (-b)+a+b-1)right)\
Q_5&:=&2 (1-a) A^4 a_2 (2 b-3) b_2 (2 a-2 b+1)
end{eqnarray}
and
begin{equation}
y(x):=F_{2,1}left[a,b,c,A^2 x^2right]
end{equation}
Then the ODE:
begin{eqnarray}
g^{''}(x) - frac{sumlimits_{j=0}^5 P_j x^j}{x(A x-1)(A x+1) (sumlimits_{j=0}^3 p_j x^j)} g^{'}(x) + frac{sumlimits_{j=0}^5 Q_j x^j}{x^2(A x-1)(A x+1) (sumlimits_{j=0}^3 p_j x^j)} g(x)=0
end{eqnarray}
is solved by
begin{eqnarray}
g(x)&:=& (a_3 x^3+a_2 x^2+a_1 x) y(x) + (b_4 x^4+b_2 x^2) y^{'}(x)
end{eqnarray}
In[14]:= a =.; b =.; c =.; a1 =.; a2 =.; a3 =.; b2 =.; b4 =.; A =.; x
=.;
p0 =.; p1 =.; p2 =.; p3 =.;
P0 =.; P1 =.; P2 =.; P3 =.; P4 =.; P5 =.;
Q0 =.; Q1 =.; Q2 =.; Q3 =.; Q4 =.; Q5 =.; Clear[y];
{a3, b4} = {-2 a A^2 b2, -A^2 b2};
{p0, p1, p2, p3} = {a1 (a1 - 2 b2 (-1 + c)), a2 (2 a1 + b2 - 2 b2 c),
a2^2 - 2 A^2 b2 (a1 (1 + a - b) + 2 a b2 (b - c)),
A^2 a2 (-1 - 2 a + 2 b) b2};
{P0, P1, P2, P3, P4, P5} = {a1 (a1 - 2 b2 (-1 + c)) (-3 + 2 c),
2 a2 (-2 + c) (2 a1 + b2 - 2 b2 c),
a2^2 (-5 + 2 c) +
A^2 (a1^2 (1 - 2 a - 2 b) - 4 a b2^2 (b - c) (-5 + 2 c) +
2 a1 b2 (6 + 3 a - 7 b - 3 c + 4 b c)),
2 A^2 a2 (-2 a1 (-1 + a + b) + b2 (4 + 5 a - 7 b - 3 c + 4 b c)),
A^2 (-3 + 2 a + 2 b) (-a2^2 +
2 A^2 b2 (a1 (1 + a - b) + 2 a b2 (b - c))),
2 A^4 a2 (1 + 2 a - 2 b) (-2 + a + b) b2};
{Q0, Q1, Q2, Q3, Q4, Q5} = {a1 (a1 - 2 b2 (-1 + c)) (-3 + 2 c),
a2 (3 a1 + b2 (2 - 4 c)) (-3 + 2 c),
4 a2^2 (-2 + c) +
A^2 ((-1 + 2 a) a1^2 (-1 + 2 b) - 12 a b2^2 (b - c) (-3 + 2 c) -
2 a1 b2 (-6 + 7 b + 3 c - 4 b c +
a (-3 + 4 b (-2 + c) + 4 c))),
A^2 a2 (a1 (3 - 6 b + a (-6 + 8 b)) +
2 b2 (2 (-1 + 2 b) (-3 + 2 c) +
a (9 + 2 b - 2 c - 4 b c))), -2 A^2 (2 a2^2 (-1 + a + b -
a b) + (-1 + 2 a) A^2 (-3 + 2 b) b2 (a1 (1 + a - b) +
2 a b2 (b - c))),
2 A^4 a2 (1 + 2 a - 2 b) (1 - a) (-3 + 2 b) b2};
y[x_] = Hypergeometric2F1[a, b, c, (A x)^2];
eX = (D[#, {x, 2}] - (
P5 x^5 + P4 x^4 + P3 x^3 + P2 x^2 + P1 x^1 + P0)/(
x (-1 + A x) (1 + A x) (p3 x^3 + p2 x^2 + p1 x^1 + p0))
D[#, x] + (Q5 x^5 + Q4 x^4 + Q3 x^3 + Q2 x^2 + Q1 x^1 + Q0)/(
x ^2 (-1 + A x) (1 + A x) (p3 x^3 + p2 x^2 + p1 x^1 +
p0)) #) & /@ {(a3 x^3 + a2 x^2 + a1 x) y[
x] + (b4 x^4 + b2 x^2) y'[x]};
{a, b, c, a1, a2, b2, A, x} =
RandomReal[{0, 1}, 8, WorkingPrecision -> 50];
Simplify[eX]
Out[25]= {0.*10^-48}
Update: The ODE above is a seven parameter family.
Now, note that if in the example above we add three additional constraints and as such reduce the number of adjustable parameters to four we get another neat example:
Firstly define:
begin{eqnarray}
a_1&:=& c-frac{1}{2}\
a_2&:=& A frac{1}{sqrt{2}} sqrt{-1+4 a+8 a^2+2 c-8 a c}\
a_3&:=&-2 a A^2\
hline \
b_2&:=& 1\
b_4&:=&-A^2 \
hline \
b&:=&a+frac{1}{2}
end{eqnarray}
Then the ODE below:
begin{eqnarray}
&&!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!g^{''}(x) + frac{3-2 c+4 a A^2 x^2}{x(A x-1)(A x+1)} g^{'}(x) + frac{(-3+2 c) + sqrt{2} A sqrt{-1+4 a+8 a^2+2 c-8 a c} x+2(-1-a+2 a^2) x^2}{x^2(A x-1)(A x+1)} g(x)=0
end{eqnarray}
is solved by
begin{eqnarray}
g(x)&:=& (a_3 x^3+a_2 x^2+a_1 x) y(x) + (b_4 x^4+b_2 x^2) y^{'}(x)
end{eqnarray}
In[18]:= a =.; b =.; c =.; a1 =.; a2 =.; a3 =.; b2 =.; b4 =.; A =.; x
=.;
{a1, a2, a3} = {(-(1/2) + c),
A Sqrt[1/2 (-1 + 4 a + 8 a^2 + 2 c - 8 a c)], -2 a A^2};
{b2, b4} = {1, -A^2};
b = a + 1/2;
y[x_] = Hypergeometric2F1[a, b, c, (A x)^2];
eX = (D[#, {x, 2}] + (3 - 2 c + 4 a A^2 x^2)/(x (-1 + A x) (1 + A x))
D[#, x] + ( (-3 + 2 c) +
Sqrt[2] A Sqrt[(-1 + 4 a + 8 a^2 + 2 c - 8 a c)] x +
2 (-1 - a + 2 a^2) A^2 x^2)/(
x ^2 (-1 + A x) (1 + A x)) #) & /@ {(a3 x^3 + a2 x^2 + a1 x) y[
x] + (b4 x^4 + b2 x^2) y'[x]};
{b2, a, c, A, x} = RandomReal[{0, 1}, 5, WorkingPrecision -> 50];
Simplify[eX]
Out[25]= {0.*10^-49}
Secondly define:
begin{eqnarray}
a_1&:=& 2c-1\
a_2&:=& A sqrt{2} sqrt{(-1+2 a)(-1+b)}\
a_3&:=&-2 a A^2\
hline \
b_2&:=& 1\
b_4&:=&-A^2 \
hline \
c&:=&frac{3}{2}
end{eqnarray}
Then the ODE below:
begin{eqnarray}
&&!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!g^{''}(x) +
frac{3+2 A^2(-2+a+b)x^2}{x(A x-1)(A x+1)} g^{'}(x) +
frac{-3-sqrt{2} A sqrt{(-1+2 a)(-1+b)} x+2(-1+a)(-3+2 b) A^2 x^2}{x^2(A x-1)(A x+1)} g(x)=0
end{eqnarray}
is solved by
begin{eqnarray}
g(x)&:=& (a_3 x^3+a_2 x^2+a_1 x) y(x) + (b_4 x^4+b_2 x^2) y^{'}(x)
end{eqnarray}
In[567]:= a =.; b =.; c =.; a1 =.; a2 =.; a3 =.; b2 =.; b4 =.; A =.;
x =.;
{b2, b4} = {1, -A^2};
{a1, a2, a3} = {2 (c - 1),
Sqrt[2] Sqrt[-1 + 2 a] A Sqrt[-1 + b], -2 a A^2};
c = 3/2;
y[x_] = Hypergeometric2F1[a, b, c, (A x)^2];
eX = (D[#, {x, 2}] + (3 + 2 A^2 (-2 + a + b) x^2)/(
x (-1 + A x) (1 + A x))
D[#, x] + ( -3 - Sqrt[2] A (Sqrt[-1 + 2 a] Sqrt[-1 + b]) x +
2 (-1 + a) (-3 + 2 b) A^2 x^2)/(
x^2 (-1 + A x) (1 + A x)) #) & /@ {(a3 x^3 + a2 x^2 + a1 x) y[
x] + (b4 x^4 + b2 x^2) y'[x]};
{a, b, A, x} = RandomReal[{0, 1}, 4, WorkingPrecision -> 50];
Simplify[eX]
Out[574]= {0.*10^-47 + 0.*10^-49 I}
add a comment |
Here is another example which is a generalization of Example 1.3 in page 5 in https://arxiv.org/pdf/1606.01576.pdf .
Let $a$,$b$,$c$,$a_1$,$a_2$,$a_3$,$b_2$,$b_4$ and $A$ be real parameters.
Then let:
begin{eqnarray}
a_3&:=&-2 a A^2 b_2\
b_4&:=&-A^2 b_2
end{eqnarray}
Now define:
begin{eqnarray}
p_0&:=&a_1 (a_1-2 b_2 (c-1))\
p_1&:=&a_2 (2 a_1-2 b_2 c+b_2)\
p_2&:=&a_2^2-2 A^2 b_2 (a_1 (a-b+1)+2 a b_2 (b-c))\
p_3&:=&A^2 a_2 b_2 (-2 a+2 b-1)
end{eqnarray}
and
begin{eqnarray}
P_0&:=&a_1 (2 c-3) (a_1-2 b_2 (c-1))\
P_1&:=&2 a_2 (c-2) (2 a_1-2 b_2 c+b_2)\
P_2&:=&A^2 left(a_1^2 (-2 a-2 b+1)+2 a_1 b_2 (3 a+4 b c-7 b-3 c+6)-4 a b_2^2 (2 c-5)
(b-c)right)+a_2^2 (2 c-5)\
P_3&:=&2 A^2 a_2 (b_2 (5 a+4 b c-7 b-3 c+4)-2 a_1 (a+b-1))\
P_4&:=&A^2 (2 a+2 b-3) left(2 A^2 b_2 (a_1 (a-b+1)+2 a b_2 (b-c))-a_2^2right)\
P_5&:=&2 A^4 a_2
b_2 (2 a-2 b+1) (a+b-2)
end{eqnarray}
and
begin{eqnarray}
Q_0&:=&a_1 (2 c-3) (a_1-2 b_2 (c-1))\
Q_1&:=&a_2 (2 c-3) (3 a_1+b_2 (2-4 c))\
Q_2&:=&A^2 left((2 a-1) a_1^2 (2 b-1)-2 a_1 b_2 (a (4 b (c-2)+4 c-3)-4 b c+7 b+3 c-6)-12 a b_2^2 (2
c-3) (b-c)right)+4 a_2^2 (c-2)\
Q_3&:=&A^2 a_2 (a_1 (a (8 b-6)-6 b+3)+2 b_2 (a (-4 b c+2 b-2 c+9)+2 (2 b-1) (2 c-3)))\
Q_4&:=&-2 A^2 left((2 a-1) A^2 (2 b-3) b_2 (a_1 (a-b+1)+2 a b_2 (b-c))+2
a_2^2 (a (-b)+a+b-1)right)\
Q_5&:=&2 (1-a) A^4 a_2 (2 b-3) b_2 (2 a-2 b+1)
end{eqnarray}
and
begin{equation}
y(x):=F_{2,1}left[a,b,c,A^2 x^2right]
end{equation}
Then the ODE:
begin{eqnarray}
g^{''}(x) - frac{sumlimits_{j=0}^5 P_j x^j}{x(A x-1)(A x+1) (sumlimits_{j=0}^3 p_j x^j)} g^{'}(x) + frac{sumlimits_{j=0}^5 Q_j x^j}{x^2(A x-1)(A x+1) (sumlimits_{j=0}^3 p_j x^j)} g(x)=0
end{eqnarray}
is solved by
begin{eqnarray}
g(x)&:=& (a_3 x^3+a_2 x^2+a_1 x) y(x) + (b_4 x^4+b_2 x^2) y^{'}(x)
end{eqnarray}
In[14]:= a =.; b =.; c =.; a1 =.; a2 =.; a3 =.; b2 =.; b4 =.; A =.; x
=.;
p0 =.; p1 =.; p2 =.; p3 =.;
P0 =.; P1 =.; P2 =.; P3 =.; P4 =.; P5 =.;
Q0 =.; Q1 =.; Q2 =.; Q3 =.; Q4 =.; Q5 =.; Clear[y];
{a3, b4} = {-2 a A^2 b2, -A^2 b2};
{p0, p1, p2, p3} = {a1 (a1 - 2 b2 (-1 + c)), a2 (2 a1 + b2 - 2 b2 c),
a2^2 - 2 A^2 b2 (a1 (1 + a - b) + 2 a b2 (b - c)),
A^2 a2 (-1 - 2 a + 2 b) b2};
{P0, P1, P2, P3, P4, P5} = {a1 (a1 - 2 b2 (-1 + c)) (-3 + 2 c),
2 a2 (-2 + c) (2 a1 + b2 - 2 b2 c),
a2^2 (-5 + 2 c) +
A^2 (a1^2 (1 - 2 a - 2 b) - 4 a b2^2 (b - c) (-5 + 2 c) +
2 a1 b2 (6 + 3 a - 7 b - 3 c + 4 b c)),
2 A^2 a2 (-2 a1 (-1 + a + b) + b2 (4 + 5 a - 7 b - 3 c + 4 b c)),
A^2 (-3 + 2 a + 2 b) (-a2^2 +
2 A^2 b2 (a1 (1 + a - b) + 2 a b2 (b - c))),
2 A^4 a2 (1 + 2 a - 2 b) (-2 + a + b) b2};
{Q0, Q1, Q2, Q3, Q4, Q5} = {a1 (a1 - 2 b2 (-1 + c)) (-3 + 2 c),
a2 (3 a1 + b2 (2 - 4 c)) (-3 + 2 c),
4 a2^2 (-2 + c) +
A^2 ((-1 + 2 a) a1^2 (-1 + 2 b) - 12 a b2^2 (b - c) (-3 + 2 c) -
2 a1 b2 (-6 + 7 b + 3 c - 4 b c +
a (-3 + 4 b (-2 + c) + 4 c))),
A^2 a2 (a1 (3 - 6 b + a (-6 + 8 b)) +
2 b2 (2 (-1 + 2 b) (-3 + 2 c) +
a (9 + 2 b - 2 c - 4 b c))), -2 A^2 (2 a2^2 (-1 + a + b -
a b) + (-1 + 2 a) A^2 (-3 + 2 b) b2 (a1 (1 + a - b) +
2 a b2 (b - c))),
2 A^4 a2 (1 + 2 a - 2 b) (1 - a) (-3 + 2 b) b2};
y[x_] = Hypergeometric2F1[a, b, c, (A x)^2];
eX = (D[#, {x, 2}] - (
P5 x^5 + P4 x^4 + P3 x^3 + P2 x^2 + P1 x^1 + P0)/(
x (-1 + A x) (1 + A x) (p3 x^3 + p2 x^2 + p1 x^1 + p0))
D[#, x] + (Q5 x^5 + Q4 x^4 + Q3 x^3 + Q2 x^2 + Q1 x^1 + Q0)/(
x ^2 (-1 + A x) (1 + A x) (p3 x^3 + p2 x^2 + p1 x^1 +
p0)) #) & /@ {(a3 x^3 + a2 x^2 + a1 x) y[
x] + (b4 x^4 + b2 x^2) y'[x]};
{a, b, c, a1, a2, b2, A, x} =
RandomReal[{0, 1}, 8, WorkingPrecision -> 50];
Simplify[eX]
Out[25]= {0.*10^-48}
Update: The ODE above is a seven parameter family.
Now, note that if in the example above we add three additional constraints and as such reduce the number of adjustable parameters to four we get another neat example:
Firstly define:
begin{eqnarray}
a_1&:=& c-frac{1}{2}\
a_2&:=& A frac{1}{sqrt{2}} sqrt{-1+4 a+8 a^2+2 c-8 a c}\
a_3&:=&-2 a A^2\
hline \
b_2&:=& 1\
b_4&:=&-A^2 \
hline \
b&:=&a+frac{1}{2}
end{eqnarray}
Then the ODE below:
begin{eqnarray}
&&!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!g^{''}(x) + frac{3-2 c+4 a A^2 x^2}{x(A x-1)(A x+1)} g^{'}(x) + frac{(-3+2 c) + sqrt{2} A sqrt{-1+4 a+8 a^2+2 c-8 a c} x+2(-1-a+2 a^2) x^2}{x^2(A x-1)(A x+1)} g(x)=0
end{eqnarray}
is solved by
begin{eqnarray}
g(x)&:=& (a_3 x^3+a_2 x^2+a_1 x) y(x) + (b_4 x^4+b_2 x^2) y^{'}(x)
end{eqnarray}
In[18]:= a =.; b =.; c =.; a1 =.; a2 =.; a3 =.; b2 =.; b4 =.; A =.; x
=.;
{a1, a2, a3} = {(-(1/2) + c),
A Sqrt[1/2 (-1 + 4 a + 8 a^2 + 2 c - 8 a c)], -2 a A^2};
{b2, b4} = {1, -A^2};
b = a + 1/2;
y[x_] = Hypergeometric2F1[a, b, c, (A x)^2];
eX = (D[#, {x, 2}] + (3 - 2 c + 4 a A^2 x^2)/(x (-1 + A x) (1 + A x))
D[#, x] + ( (-3 + 2 c) +
Sqrt[2] A Sqrt[(-1 + 4 a + 8 a^2 + 2 c - 8 a c)] x +
2 (-1 - a + 2 a^2) A^2 x^2)/(
x ^2 (-1 + A x) (1 + A x)) #) & /@ {(a3 x^3 + a2 x^2 + a1 x) y[
x] + (b4 x^4 + b2 x^2) y'[x]};
{b2, a, c, A, x} = RandomReal[{0, 1}, 5, WorkingPrecision -> 50];
Simplify[eX]
Out[25]= {0.*10^-49}
Secondly define:
begin{eqnarray}
a_1&:=& 2c-1\
a_2&:=& A sqrt{2} sqrt{(-1+2 a)(-1+b)}\
a_3&:=&-2 a A^2\
hline \
b_2&:=& 1\
b_4&:=&-A^2 \
hline \
c&:=&frac{3}{2}
end{eqnarray}
Then the ODE below:
begin{eqnarray}
&&!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!g^{''}(x) +
frac{3+2 A^2(-2+a+b)x^2}{x(A x-1)(A x+1)} g^{'}(x) +
frac{-3-sqrt{2} A sqrt{(-1+2 a)(-1+b)} x+2(-1+a)(-3+2 b) A^2 x^2}{x^2(A x-1)(A x+1)} g(x)=0
end{eqnarray}
is solved by
begin{eqnarray}
g(x)&:=& (a_3 x^3+a_2 x^2+a_1 x) y(x) + (b_4 x^4+b_2 x^2) y^{'}(x)
end{eqnarray}
In[567]:= a =.; b =.; c =.; a1 =.; a2 =.; a3 =.; b2 =.; b4 =.; A =.;
x =.;
{b2, b4} = {1, -A^2};
{a1, a2, a3} = {2 (c - 1),
Sqrt[2] Sqrt[-1 + 2 a] A Sqrt[-1 + b], -2 a A^2};
c = 3/2;
y[x_] = Hypergeometric2F1[a, b, c, (A x)^2];
eX = (D[#, {x, 2}] + (3 + 2 A^2 (-2 + a + b) x^2)/(
x (-1 + A x) (1 + A x))
D[#, x] + ( -3 - Sqrt[2] A (Sqrt[-1 + 2 a] Sqrt[-1 + b]) x +
2 (-1 + a) (-3 + 2 b) A^2 x^2)/(
x^2 (-1 + A x) (1 + A x)) #) & /@ {(a3 x^3 + a2 x^2 + a1 x) y[
x] + (b4 x^4 + b2 x^2) y'[x]};
{a, b, A, x} = RandomReal[{0, 1}, 4, WorkingPrecision -> 50];
Simplify[eX]
Out[574]= {0.*10^-47 + 0.*10^-49 I}
Here is another example which is a generalization of Example 1.3 in page 5 in https://arxiv.org/pdf/1606.01576.pdf .
Let $a$,$b$,$c$,$a_1$,$a_2$,$a_3$,$b_2$,$b_4$ and $A$ be real parameters.
Then let:
begin{eqnarray}
a_3&:=&-2 a A^2 b_2\
b_4&:=&-A^2 b_2
end{eqnarray}
Now define:
begin{eqnarray}
p_0&:=&a_1 (a_1-2 b_2 (c-1))\
p_1&:=&a_2 (2 a_1-2 b_2 c+b_2)\
p_2&:=&a_2^2-2 A^2 b_2 (a_1 (a-b+1)+2 a b_2 (b-c))\
p_3&:=&A^2 a_2 b_2 (-2 a+2 b-1)
end{eqnarray}
and
begin{eqnarray}
P_0&:=&a_1 (2 c-3) (a_1-2 b_2 (c-1))\
P_1&:=&2 a_2 (c-2) (2 a_1-2 b_2 c+b_2)\
P_2&:=&A^2 left(a_1^2 (-2 a-2 b+1)+2 a_1 b_2 (3 a+4 b c-7 b-3 c+6)-4 a b_2^2 (2 c-5)
(b-c)right)+a_2^2 (2 c-5)\
P_3&:=&2 A^2 a_2 (b_2 (5 a+4 b c-7 b-3 c+4)-2 a_1 (a+b-1))\
P_4&:=&A^2 (2 a+2 b-3) left(2 A^2 b_2 (a_1 (a-b+1)+2 a b_2 (b-c))-a_2^2right)\
P_5&:=&2 A^4 a_2
b_2 (2 a-2 b+1) (a+b-2)
end{eqnarray}
and
begin{eqnarray}
Q_0&:=&a_1 (2 c-3) (a_1-2 b_2 (c-1))\
Q_1&:=&a_2 (2 c-3) (3 a_1+b_2 (2-4 c))\
Q_2&:=&A^2 left((2 a-1) a_1^2 (2 b-1)-2 a_1 b_2 (a (4 b (c-2)+4 c-3)-4 b c+7 b+3 c-6)-12 a b_2^2 (2
c-3) (b-c)right)+4 a_2^2 (c-2)\
Q_3&:=&A^2 a_2 (a_1 (a (8 b-6)-6 b+3)+2 b_2 (a (-4 b c+2 b-2 c+9)+2 (2 b-1) (2 c-3)))\
Q_4&:=&-2 A^2 left((2 a-1) A^2 (2 b-3) b_2 (a_1 (a-b+1)+2 a b_2 (b-c))+2
a_2^2 (a (-b)+a+b-1)right)\
Q_5&:=&2 (1-a) A^4 a_2 (2 b-3) b_2 (2 a-2 b+1)
end{eqnarray}
and
begin{equation}
y(x):=F_{2,1}left[a,b,c,A^2 x^2right]
end{equation}
Then the ODE:
begin{eqnarray}
g^{''}(x) - frac{sumlimits_{j=0}^5 P_j x^j}{x(A x-1)(A x+1) (sumlimits_{j=0}^3 p_j x^j)} g^{'}(x) + frac{sumlimits_{j=0}^5 Q_j x^j}{x^2(A x-1)(A x+1) (sumlimits_{j=0}^3 p_j x^j)} g(x)=0
end{eqnarray}
is solved by
begin{eqnarray}
g(x)&:=& (a_3 x^3+a_2 x^2+a_1 x) y(x) + (b_4 x^4+b_2 x^2) y^{'}(x)
end{eqnarray}
In[14]:= a =.; b =.; c =.; a1 =.; a2 =.; a3 =.; b2 =.; b4 =.; A =.; x
=.;
p0 =.; p1 =.; p2 =.; p3 =.;
P0 =.; P1 =.; P2 =.; P3 =.; P4 =.; P5 =.;
Q0 =.; Q1 =.; Q2 =.; Q3 =.; Q4 =.; Q5 =.; Clear[y];
{a3, b4} = {-2 a A^2 b2, -A^2 b2};
{p0, p1, p2, p3} = {a1 (a1 - 2 b2 (-1 + c)), a2 (2 a1 + b2 - 2 b2 c),
a2^2 - 2 A^2 b2 (a1 (1 + a - b) + 2 a b2 (b - c)),
A^2 a2 (-1 - 2 a + 2 b) b2};
{P0, P1, P2, P3, P4, P5} = {a1 (a1 - 2 b2 (-1 + c)) (-3 + 2 c),
2 a2 (-2 + c) (2 a1 + b2 - 2 b2 c),
a2^2 (-5 + 2 c) +
A^2 (a1^2 (1 - 2 a - 2 b) - 4 a b2^2 (b - c) (-5 + 2 c) +
2 a1 b2 (6 + 3 a - 7 b - 3 c + 4 b c)),
2 A^2 a2 (-2 a1 (-1 + a + b) + b2 (4 + 5 a - 7 b - 3 c + 4 b c)),
A^2 (-3 + 2 a + 2 b) (-a2^2 +
2 A^2 b2 (a1 (1 + a - b) + 2 a b2 (b - c))),
2 A^4 a2 (1 + 2 a - 2 b) (-2 + a + b) b2};
{Q0, Q1, Q2, Q3, Q4, Q5} = {a1 (a1 - 2 b2 (-1 + c)) (-3 + 2 c),
a2 (3 a1 + b2 (2 - 4 c)) (-3 + 2 c),
4 a2^2 (-2 + c) +
A^2 ((-1 + 2 a) a1^2 (-1 + 2 b) - 12 a b2^2 (b - c) (-3 + 2 c) -
2 a1 b2 (-6 + 7 b + 3 c - 4 b c +
a (-3 + 4 b (-2 + c) + 4 c))),
A^2 a2 (a1 (3 - 6 b + a (-6 + 8 b)) +
2 b2 (2 (-1 + 2 b) (-3 + 2 c) +
a (9 + 2 b - 2 c - 4 b c))), -2 A^2 (2 a2^2 (-1 + a + b -
a b) + (-1 + 2 a) A^2 (-3 + 2 b) b2 (a1 (1 + a - b) +
2 a b2 (b - c))),
2 A^4 a2 (1 + 2 a - 2 b) (1 - a) (-3 + 2 b) b2};
y[x_] = Hypergeometric2F1[a, b, c, (A x)^2];
eX = (D[#, {x, 2}] - (
P5 x^5 + P4 x^4 + P3 x^3 + P2 x^2 + P1 x^1 + P0)/(
x (-1 + A x) (1 + A x) (p3 x^3 + p2 x^2 + p1 x^1 + p0))
D[#, x] + (Q5 x^5 + Q4 x^4 + Q3 x^3 + Q2 x^2 + Q1 x^1 + Q0)/(
x ^2 (-1 + A x) (1 + A x) (p3 x^3 + p2 x^2 + p1 x^1 +
p0)) #) & /@ {(a3 x^3 + a2 x^2 + a1 x) y[
x] + (b4 x^4 + b2 x^2) y'[x]};
{a, b, c, a1, a2, b2, A, x} =
RandomReal[{0, 1}, 8, WorkingPrecision -> 50];
Simplify[eX]
Out[25]= {0.*10^-48}
Update: The ODE above is a seven parameter family.
Now, note that if in the example above we add three additional constraints and as such reduce the number of adjustable parameters to four we get another neat example:
Firstly define:
begin{eqnarray}
a_1&:=& c-frac{1}{2}\
a_2&:=& A frac{1}{sqrt{2}} sqrt{-1+4 a+8 a^2+2 c-8 a c}\
a_3&:=&-2 a A^2\
hline \
b_2&:=& 1\
b_4&:=&-A^2 \
hline \
b&:=&a+frac{1}{2}
end{eqnarray}
Then the ODE below:
begin{eqnarray}
&&!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!g^{''}(x) + frac{3-2 c+4 a A^2 x^2}{x(A x-1)(A x+1)} g^{'}(x) + frac{(-3+2 c) + sqrt{2} A sqrt{-1+4 a+8 a^2+2 c-8 a c} x+2(-1-a+2 a^2) x^2}{x^2(A x-1)(A x+1)} g(x)=0
end{eqnarray}
is solved by
begin{eqnarray}
g(x)&:=& (a_3 x^3+a_2 x^2+a_1 x) y(x) + (b_4 x^4+b_2 x^2) y^{'}(x)
end{eqnarray}
In[18]:= a =.; b =.; c =.; a1 =.; a2 =.; a3 =.; b2 =.; b4 =.; A =.; x
=.;
{a1, a2, a3} = {(-(1/2) + c),
A Sqrt[1/2 (-1 + 4 a + 8 a^2 + 2 c - 8 a c)], -2 a A^2};
{b2, b4} = {1, -A^2};
b = a + 1/2;
y[x_] = Hypergeometric2F1[a, b, c, (A x)^2];
eX = (D[#, {x, 2}] + (3 - 2 c + 4 a A^2 x^2)/(x (-1 + A x) (1 + A x))
D[#, x] + ( (-3 + 2 c) +
Sqrt[2] A Sqrt[(-1 + 4 a + 8 a^2 + 2 c - 8 a c)] x +
2 (-1 - a + 2 a^2) A^2 x^2)/(
x ^2 (-1 + A x) (1 + A x)) #) & /@ {(a3 x^3 + a2 x^2 + a1 x) y[
x] + (b4 x^4 + b2 x^2) y'[x]};
{b2, a, c, A, x} = RandomReal[{0, 1}, 5, WorkingPrecision -> 50];
Simplify[eX]
Out[25]= {0.*10^-49}
Secondly define:
begin{eqnarray}
a_1&:=& 2c-1\
a_2&:=& A sqrt{2} sqrt{(-1+2 a)(-1+b)}\
a_3&:=&-2 a A^2\
hline \
b_2&:=& 1\
b_4&:=&-A^2 \
hline \
c&:=&frac{3}{2}
end{eqnarray}
Then the ODE below:
begin{eqnarray}
&&!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!g^{''}(x) +
frac{3+2 A^2(-2+a+b)x^2}{x(A x-1)(A x+1)} g^{'}(x) +
frac{-3-sqrt{2} A sqrt{(-1+2 a)(-1+b)} x+2(-1+a)(-3+2 b) A^2 x^2}{x^2(A x-1)(A x+1)} g(x)=0
end{eqnarray}
is solved by
begin{eqnarray}
g(x)&:=& (a_3 x^3+a_2 x^2+a_1 x) y(x) + (b_4 x^4+b_2 x^2) y^{'}(x)
end{eqnarray}
In[567]:= a =.; b =.; c =.; a1 =.; a2 =.; a3 =.; b2 =.; b4 =.; A =.;
x =.;
{b2, b4} = {1, -A^2};
{a1, a2, a3} = {2 (c - 1),
Sqrt[2] Sqrt[-1 + 2 a] A Sqrt[-1 + b], -2 a A^2};
c = 3/2;
y[x_] = Hypergeometric2F1[a, b, c, (A x)^2];
eX = (D[#, {x, 2}] + (3 + 2 A^2 (-2 + a + b) x^2)/(
x (-1 + A x) (1 + A x))
D[#, x] + ( -3 - Sqrt[2] A (Sqrt[-1 + 2 a] Sqrt[-1 + b]) x +
2 (-1 + a) (-3 + 2 b) A^2 x^2)/(
x^2 (-1 + A x) (1 + A x)) #) & /@ {(a3 x^3 + a2 x^2 + a1 x) y[
x] + (b4 x^4 + b2 x^2) y'[x]};
{a, b, A, x} = RandomReal[{0, 1}, 4, WorkingPrecision -> 50];
Simplify[eX]
Out[574]= {0.*10^-47 + 0.*10^-49 I}
edited Nov 29 at 15:42
answered Nov 29 at 12:37
Przemo
4,1521928
4,1521928
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3001530%2fgauge-transformation-of-differential-equations-i%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown