Calculate $sum_{k=1}^{2007} frac{5^{2008}}{25^k+5^{2008}}$











up vote
1
down vote

favorite
1












$sum_{k=1}^{2007} frac{5^{2008}}{25^k+5^{2008}}$. I know that solution is $frac{2007}{2}$ and that I can use a Gaussian method.



If I use Gaussian method I do not get some sum that help me. if I put $n=2008$, then $Sn=sum_{k=1}^n frac{5^{n+1}}{25^k+5^{n+1}}$. and $Sn=sum_{k=1}^n frac{5^{n}}{25^{k-n}+5^{n+1}}$. So then $2Sn=sum_{k=1}^n frac{5^{n+1}}{25^k+5^{n+1}}+frac{5^{n+1}}{25^{n-k}+5^{n+1}}$. do you have something better?










share|cite|improve this question
























  • What is the "Gaussian method"?
    – user587192
    Nov 21 at 17:52










  • gaus method for calculate for sum but i do not know is this good translation
    – Marko Škorić
    Nov 21 at 17:57






  • 3




    math.stackexchange.com/questions/2541131/…
    – lab bhattacharjee
    Nov 21 at 18:06















up vote
1
down vote

favorite
1












$sum_{k=1}^{2007} frac{5^{2008}}{25^k+5^{2008}}$. I know that solution is $frac{2007}{2}$ and that I can use a Gaussian method.



If I use Gaussian method I do not get some sum that help me. if I put $n=2008$, then $Sn=sum_{k=1}^n frac{5^{n+1}}{25^k+5^{n+1}}$. and $Sn=sum_{k=1}^n frac{5^{n}}{25^{k-n}+5^{n+1}}$. So then $2Sn=sum_{k=1}^n frac{5^{n+1}}{25^k+5^{n+1}}+frac{5^{n+1}}{25^{n-k}+5^{n+1}}$. do you have something better?










share|cite|improve this question
























  • What is the "Gaussian method"?
    – user587192
    Nov 21 at 17:52










  • gaus method for calculate for sum but i do not know is this good translation
    – Marko Škorić
    Nov 21 at 17:57






  • 3




    math.stackexchange.com/questions/2541131/…
    – lab bhattacharjee
    Nov 21 at 18:06













up vote
1
down vote

favorite
1









up vote
1
down vote

favorite
1






1





$sum_{k=1}^{2007} frac{5^{2008}}{25^k+5^{2008}}$. I know that solution is $frac{2007}{2}$ and that I can use a Gaussian method.



If I use Gaussian method I do not get some sum that help me. if I put $n=2008$, then $Sn=sum_{k=1}^n frac{5^{n+1}}{25^k+5^{n+1}}$. and $Sn=sum_{k=1}^n frac{5^{n}}{25^{k-n}+5^{n+1}}$. So then $2Sn=sum_{k=1}^n frac{5^{n+1}}{25^k+5^{n+1}}+frac{5^{n+1}}{25^{n-k}+5^{n+1}}$. do you have something better?










share|cite|improve this question















$sum_{k=1}^{2007} frac{5^{2008}}{25^k+5^{2008}}$. I know that solution is $frac{2007}{2}$ and that I can use a Gaussian method.



If I use Gaussian method I do not get some sum that help me. if I put $n=2008$, then $Sn=sum_{k=1}^n frac{5^{n+1}}{25^k+5^{n+1}}$. and $Sn=sum_{k=1}^n frac{5^{n}}{25^{k-n}+5^{n+1}}$. So then $2Sn=sum_{k=1}^n frac{5^{n+1}}{25^k+5^{n+1}}+frac{5^{n+1}}{25^{n-k}+5^{n+1}}$. do you have something better?







discrete-mathematics summation






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 21 at 17:57

























asked Nov 21 at 17:46









Marko Škorić

67910




67910












  • What is the "Gaussian method"?
    – user587192
    Nov 21 at 17:52










  • gaus method for calculate for sum but i do not know is this good translation
    – Marko Škorić
    Nov 21 at 17:57






  • 3




    math.stackexchange.com/questions/2541131/…
    – lab bhattacharjee
    Nov 21 at 18:06


















  • What is the "Gaussian method"?
    – user587192
    Nov 21 at 17:52










  • gaus method for calculate for sum but i do not know is this good translation
    – Marko Škorić
    Nov 21 at 17:57






  • 3




    math.stackexchange.com/questions/2541131/…
    – lab bhattacharjee
    Nov 21 at 18:06
















What is the "Gaussian method"?
– user587192
Nov 21 at 17:52




What is the "Gaussian method"?
– user587192
Nov 21 at 17:52












gaus method for calculate for sum but i do not know is this good translation
– Marko Škorić
Nov 21 at 17:57




gaus method for calculate for sum but i do not know is this good translation
– Marko Škorić
Nov 21 at 17:57




3




3




math.stackexchange.com/questions/2541131/…
– lab bhattacharjee
Nov 21 at 18:06




math.stackexchange.com/questions/2541131/…
– lab bhattacharjee
Nov 21 at 18:06










2 Answers
2






active

oldest

votes

















up vote
5
down vote



accepted










Using $frac{1}{1+q}+frac{1}{1+1/q}=1$, $$sum_{k=1}^nfrac{1}{1+5^{2k-n-1}}=frac{1}{2}sum_{k=1}^nbigg(frac{1}{1+5^{2k-n-1}}+frac{1}{1+5^{2(n+1-k)-n-1}}bigg)\=frac{1}{2}sum_{k=1}^nbigg(frac{1}{1+5^{2k-n-1}}+frac{1}{1+5^{n+1-2k}}bigg)=frac{1}{2}sum_{k=1}^n 1=frac{n}{2}.$$






share|cite|improve this answer




























    up vote
    0
    down vote













    Write $$sum_{k=1}^{2007} frac{5^{2008}}{25^k+5^{2008}}=sum_{k=1}^{2007}{25^{1004}over 25^k+25^{1004}} = sum_{k=1}^{2007}{1over 25^{k-1004}+1} =sum_{j=-1003}^{1003}{1over 2^{-j}+1}$$



    Now try your pairing strategy.






    share|cite|improve this answer





















      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














       

      draft saved


      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3008088%2fcalculate-sum-k-12007-frac5200825k52008%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes








      up vote
      5
      down vote



      accepted










      Using $frac{1}{1+q}+frac{1}{1+1/q}=1$, $$sum_{k=1}^nfrac{1}{1+5^{2k-n-1}}=frac{1}{2}sum_{k=1}^nbigg(frac{1}{1+5^{2k-n-1}}+frac{1}{1+5^{2(n+1-k)-n-1}}bigg)\=frac{1}{2}sum_{k=1}^nbigg(frac{1}{1+5^{2k-n-1}}+frac{1}{1+5^{n+1-2k}}bigg)=frac{1}{2}sum_{k=1}^n 1=frac{n}{2}.$$






      share|cite|improve this answer

























        up vote
        5
        down vote



        accepted










        Using $frac{1}{1+q}+frac{1}{1+1/q}=1$, $$sum_{k=1}^nfrac{1}{1+5^{2k-n-1}}=frac{1}{2}sum_{k=1}^nbigg(frac{1}{1+5^{2k-n-1}}+frac{1}{1+5^{2(n+1-k)-n-1}}bigg)\=frac{1}{2}sum_{k=1}^nbigg(frac{1}{1+5^{2k-n-1}}+frac{1}{1+5^{n+1-2k}}bigg)=frac{1}{2}sum_{k=1}^n 1=frac{n}{2}.$$






        share|cite|improve this answer























          up vote
          5
          down vote



          accepted







          up vote
          5
          down vote



          accepted






          Using $frac{1}{1+q}+frac{1}{1+1/q}=1$, $$sum_{k=1}^nfrac{1}{1+5^{2k-n-1}}=frac{1}{2}sum_{k=1}^nbigg(frac{1}{1+5^{2k-n-1}}+frac{1}{1+5^{2(n+1-k)-n-1}}bigg)\=frac{1}{2}sum_{k=1}^nbigg(frac{1}{1+5^{2k-n-1}}+frac{1}{1+5^{n+1-2k}}bigg)=frac{1}{2}sum_{k=1}^n 1=frac{n}{2}.$$






          share|cite|improve this answer












          Using $frac{1}{1+q}+frac{1}{1+1/q}=1$, $$sum_{k=1}^nfrac{1}{1+5^{2k-n-1}}=frac{1}{2}sum_{k=1}^nbigg(frac{1}{1+5^{2k-n-1}}+frac{1}{1+5^{2(n+1-k)-n-1}}bigg)\=frac{1}{2}sum_{k=1}^nbigg(frac{1}{1+5^{2k-n-1}}+frac{1}{1+5^{n+1-2k}}bigg)=frac{1}{2}sum_{k=1}^n 1=frac{n}{2}.$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Nov 21 at 18:10









          J.G.

          18.7k21932




          18.7k21932






















              up vote
              0
              down vote













              Write $$sum_{k=1}^{2007} frac{5^{2008}}{25^k+5^{2008}}=sum_{k=1}^{2007}{25^{1004}over 25^k+25^{1004}} = sum_{k=1}^{2007}{1over 25^{k-1004}+1} =sum_{j=-1003}^{1003}{1over 2^{-j}+1}$$



              Now try your pairing strategy.






              share|cite|improve this answer

























                up vote
                0
                down vote













                Write $$sum_{k=1}^{2007} frac{5^{2008}}{25^k+5^{2008}}=sum_{k=1}^{2007}{25^{1004}over 25^k+25^{1004}} = sum_{k=1}^{2007}{1over 25^{k-1004}+1} =sum_{j=-1003}^{1003}{1over 2^{-j}+1}$$



                Now try your pairing strategy.






                share|cite|improve this answer























                  up vote
                  0
                  down vote










                  up vote
                  0
                  down vote









                  Write $$sum_{k=1}^{2007} frac{5^{2008}}{25^k+5^{2008}}=sum_{k=1}^{2007}{25^{1004}over 25^k+25^{1004}} = sum_{k=1}^{2007}{1over 25^{k-1004}+1} =sum_{j=-1003}^{1003}{1over 2^{-j}+1}$$



                  Now try your pairing strategy.






                  share|cite|improve this answer












                  Write $$sum_{k=1}^{2007} frac{5^{2008}}{25^k+5^{2008}}=sum_{k=1}^{2007}{25^{1004}over 25^k+25^{1004}} = sum_{k=1}^{2007}{1over 25^{k-1004}+1} =sum_{j=-1003}^{1003}{1over 2^{-j}+1}$$



                  Now try your pairing strategy.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Nov 21 at 18:11









                  saulspatz

                  12.9k21327




                  12.9k21327






























                       

                      draft saved


                      draft discarded



















































                       


                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3008088%2fcalculate-sum-k-12007-frac5200825k52008%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Berounka

                      Different font size/position of beamer's navigation symbols template's content depending on regular/plain...

                      Sphinx de Gizeh