Calculate $sum_{k=1}^{2007} frac{5^{2008}}{25^k+5^{2008}}$
up vote
1
down vote
favorite
$sum_{k=1}^{2007} frac{5^{2008}}{25^k+5^{2008}}$. I know that solution is $frac{2007}{2}$ and that I can use a Gaussian method.
If I use Gaussian method I do not get some sum that help me. if I put $n=2008$, then $Sn=sum_{k=1}^n frac{5^{n+1}}{25^k+5^{n+1}}$. and $Sn=sum_{k=1}^n frac{5^{n}}{25^{k-n}+5^{n+1}}$. So then $2Sn=sum_{k=1}^n frac{5^{n+1}}{25^k+5^{n+1}}+frac{5^{n+1}}{25^{n-k}+5^{n+1}}$. do you have something better?
discrete-mathematics summation
add a comment |
up vote
1
down vote
favorite
$sum_{k=1}^{2007} frac{5^{2008}}{25^k+5^{2008}}$. I know that solution is $frac{2007}{2}$ and that I can use a Gaussian method.
If I use Gaussian method I do not get some sum that help me. if I put $n=2008$, then $Sn=sum_{k=1}^n frac{5^{n+1}}{25^k+5^{n+1}}$. and $Sn=sum_{k=1}^n frac{5^{n}}{25^{k-n}+5^{n+1}}$. So then $2Sn=sum_{k=1}^n frac{5^{n+1}}{25^k+5^{n+1}}+frac{5^{n+1}}{25^{n-k}+5^{n+1}}$. do you have something better?
discrete-mathematics summation
What is the "Gaussian method"?
– user587192
Nov 21 at 17:52
gaus method for calculate for sum but i do not know is this good translation
– Marko Škorić
Nov 21 at 17:57
3
math.stackexchange.com/questions/2541131/…
– lab bhattacharjee
Nov 21 at 18:06
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
$sum_{k=1}^{2007} frac{5^{2008}}{25^k+5^{2008}}$. I know that solution is $frac{2007}{2}$ and that I can use a Gaussian method.
If I use Gaussian method I do not get some sum that help me. if I put $n=2008$, then $Sn=sum_{k=1}^n frac{5^{n+1}}{25^k+5^{n+1}}$. and $Sn=sum_{k=1}^n frac{5^{n}}{25^{k-n}+5^{n+1}}$. So then $2Sn=sum_{k=1}^n frac{5^{n+1}}{25^k+5^{n+1}}+frac{5^{n+1}}{25^{n-k}+5^{n+1}}$. do you have something better?
discrete-mathematics summation
$sum_{k=1}^{2007} frac{5^{2008}}{25^k+5^{2008}}$. I know that solution is $frac{2007}{2}$ and that I can use a Gaussian method.
If I use Gaussian method I do not get some sum that help me. if I put $n=2008$, then $Sn=sum_{k=1}^n frac{5^{n+1}}{25^k+5^{n+1}}$. and $Sn=sum_{k=1}^n frac{5^{n}}{25^{k-n}+5^{n+1}}$. So then $2Sn=sum_{k=1}^n frac{5^{n+1}}{25^k+5^{n+1}}+frac{5^{n+1}}{25^{n-k}+5^{n+1}}$. do you have something better?
discrete-mathematics summation
discrete-mathematics summation
edited Nov 21 at 17:57
asked Nov 21 at 17:46
Marko Škorić
67910
67910
What is the "Gaussian method"?
– user587192
Nov 21 at 17:52
gaus method for calculate for sum but i do not know is this good translation
– Marko Škorić
Nov 21 at 17:57
3
math.stackexchange.com/questions/2541131/…
– lab bhattacharjee
Nov 21 at 18:06
add a comment |
What is the "Gaussian method"?
– user587192
Nov 21 at 17:52
gaus method for calculate for sum but i do not know is this good translation
– Marko Škorić
Nov 21 at 17:57
3
math.stackexchange.com/questions/2541131/…
– lab bhattacharjee
Nov 21 at 18:06
What is the "Gaussian method"?
– user587192
Nov 21 at 17:52
What is the "Gaussian method"?
– user587192
Nov 21 at 17:52
gaus method for calculate for sum but i do not know is this good translation
– Marko Škorić
Nov 21 at 17:57
gaus method for calculate for sum but i do not know is this good translation
– Marko Škorić
Nov 21 at 17:57
3
3
math.stackexchange.com/questions/2541131/…
– lab bhattacharjee
Nov 21 at 18:06
math.stackexchange.com/questions/2541131/…
– lab bhattacharjee
Nov 21 at 18:06
add a comment |
2 Answers
2
active
oldest
votes
up vote
5
down vote
accepted
Using $frac{1}{1+q}+frac{1}{1+1/q}=1$, $$sum_{k=1}^nfrac{1}{1+5^{2k-n-1}}=frac{1}{2}sum_{k=1}^nbigg(frac{1}{1+5^{2k-n-1}}+frac{1}{1+5^{2(n+1-k)-n-1}}bigg)\=frac{1}{2}sum_{k=1}^nbigg(frac{1}{1+5^{2k-n-1}}+frac{1}{1+5^{n+1-2k}}bigg)=frac{1}{2}sum_{k=1}^n 1=frac{n}{2}.$$
add a comment |
up vote
0
down vote
Write $$sum_{k=1}^{2007} frac{5^{2008}}{25^k+5^{2008}}=sum_{k=1}^{2007}{25^{1004}over 25^k+25^{1004}} = sum_{k=1}^{2007}{1over 25^{k-1004}+1} =sum_{j=-1003}^{1003}{1over 2^{-j}+1}$$
Now try your pairing strategy.
add a comment |
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
5
down vote
accepted
Using $frac{1}{1+q}+frac{1}{1+1/q}=1$, $$sum_{k=1}^nfrac{1}{1+5^{2k-n-1}}=frac{1}{2}sum_{k=1}^nbigg(frac{1}{1+5^{2k-n-1}}+frac{1}{1+5^{2(n+1-k)-n-1}}bigg)\=frac{1}{2}sum_{k=1}^nbigg(frac{1}{1+5^{2k-n-1}}+frac{1}{1+5^{n+1-2k}}bigg)=frac{1}{2}sum_{k=1}^n 1=frac{n}{2}.$$
add a comment |
up vote
5
down vote
accepted
Using $frac{1}{1+q}+frac{1}{1+1/q}=1$, $$sum_{k=1}^nfrac{1}{1+5^{2k-n-1}}=frac{1}{2}sum_{k=1}^nbigg(frac{1}{1+5^{2k-n-1}}+frac{1}{1+5^{2(n+1-k)-n-1}}bigg)\=frac{1}{2}sum_{k=1}^nbigg(frac{1}{1+5^{2k-n-1}}+frac{1}{1+5^{n+1-2k}}bigg)=frac{1}{2}sum_{k=1}^n 1=frac{n}{2}.$$
add a comment |
up vote
5
down vote
accepted
up vote
5
down vote
accepted
Using $frac{1}{1+q}+frac{1}{1+1/q}=1$, $$sum_{k=1}^nfrac{1}{1+5^{2k-n-1}}=frac{1}{2}sum_{k=1}^nbigg(frac{1}{1+5^{2k-n-1}}+frac{1}{1+5^{2(n+1-k)-n-1}}bigg)\=frac{1}{2}sum_{k=1}^nbigg(frac{1}{1+5^{2k-n-1}}+frac{1}{1+5^{n+1-2k}}bigg)=frac{1}{2}sum_{k=1}^n 1=frac{n}{2}.$$
Using $frac{1}{1+q}+frac{1}{1+1/q}=1$, $$sum_{k=1}^nfrac{1}{1+5^{2k-n-1}}=frac{1}{2}sum_{k=1}^nbigg(frac{1}{1+5^{2k-n-1}}+frac{1}{1+5^{2(n+1-k)-n-1}}bigg)\=frac{1}{2}sum_{k=1}^nbigg(frac{1}{1+5^{2k-n-1}}+frac{1}{1+5^{n+1-2k}}bigg)=frac{1}{2}sum_{k=1}^n 1=frac{n}{2}.$$
answered Nov 21 at 18:10
J.G.
18.7k21932
18.7k21932
add a comment |
add a comment |
up vote
0
down vote
Write $$sum_{k=1}^{2007} frac{5^{2008}}{25^k+5^{2008}}=sum_{k=1}^{2007}{25^{1004}over 25^k+25^{1004}} = sum_{k=1}^{2007}{1over 25^{k-1004}+1} =sum_{j=-1003}^{1003}{1over 2^{-j}+1}$$
Now try your pairing strategy.
add a comment |
up vote
0
down vote
Write $$sum_{k=1}^{2007} frac{5^{2008}}{25^k+5^{2008}}=sum_{k=1}^{2007}{25^{1004}over 25^k+25^{1004}} = sum_{k=1}^{2007}{1over 25^{k-1004}+1} =sum_{j=-1003}^{1003}{1over 2^{-j}+1}$$
Now try your pairing strategy.
add a comment |
up vote
0
down vote
up vote
0
down vote
Write $$sum_{k=1}^{2007} frac{5^{2008}}{25^k+5^{2008}}=sum_{k=1}^{2007}{25^{1004}over 25^k+25^{1004}} = sum_{k=1}^{2007}{1over 25^{k-1004}+1} =sum_{j=-1003}^{1003}{1over 2^{-j}+1}$$
Now try your pairing strategy.
Write $$sum_{k=1}^{2007} frac{5^{2008}}{25^k+5^{2008}}=sum_{k=1}^{2007}{25^{1004}over 25^k+25^{1004}} = sum_{k=1}^{2007}{1over 25^{k-1004}+1} =sum_{j=-1003}^{1003}{1over 2^{-j}+1}$$
Now try your pairing strategy.
answered Nov 21 at 18:11
saulspatz
12.9k21327
12.9k21327
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3008088%2fcalculate-sum-k-12007-frac5200825k52008%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
What is the "Gaussian method"?
– user587192
Nov 21 at 17:52
gaus method for calculate for sum but i do not know is this good translation
– Marko Škorić
Nov 21 at 17:57
3
math.stackexchange.com/questions/2541131/…
– lab bhattacharjee
Nov 21 at 18:06