Does Heun's differential equation have other known types confluent approach?











up vote
0
down vote

favorite
1












We know that the Heun's differential equation is



$dfrac{d^2y}{dx^2}+left(dfrac{gamma}{x}+dfrac{delta}{x-1}+dfrac{epsilon}{x-a}right)dfrac{dy}{dx}+dfrac{alphabeta x-q}{x(x-1)(x-a)}y=0$ , where $epsilon=alpha+beta-gamma-delta+1$ .



How about the other issues e.g.



$dfrac{d^2y}{dx^2}+left(dfrac{gamma}{x}+dfrac{delta}{x-1}+dfrac{epsilon}{x^2}right)dfrac{dy}{dx}+dfrac{alphabeta x-q}{x^2(x-1)}y=0$



$dfrac{d^2y}{dx^2}+left(dfrac{gamma}{x}+dfrac{delta}{x-1}+dfrac{epsilon}{(x-1)^2}right)dfrac{dy}{dx}+dfrac{alphabeta x-q}{x(x-1)^2}y=0$



$x^3dfrac{d^2y}{dx^2}+(ax^2+bx+c)dfrac{dy}{dx}+(px+q)y=0$










share|cite|improve this question


















  • 2




    What about them?
    – Robert Israel
    May 16 '17 at 4:20










  • @Robert Israel The first two consider $ato0$ and $1$ respectively
    – doraemonpaul
    Aug 15 '17 at 16:24















up vote
0
down vote

favorite
1












We know that the Heun's differential equation is



$dfrac{d^2y}{dx^2}+left(dfrac{gamma}{x}+dfrac{delta}{x-1}+dfrac{epsilon}{x-a}right)dfrac{dy}{dx}+dfrac{alphabeta x-q}{x(x-1)(x-a)}y=0$ , where $epsilon=alpha+beta-gamma-delta+1$ .



How about the other issues e.g.



$dfrac{d^2y}{dx^2}+left(dfrac{gamma}{x}+dfrac{delta}{x-1}+dfrac{epsilon}{x^2}right)dfrac{dy}{dx}+dfrac{alphabeta x-q}{x^2(x-1)}y=0$



$dfrac{d^2y}{dx^2}+left(dfrac{gamma}{x}+dfrac{delta}{x-1}+dfrac{epsilon}{(x-1)^2}right)dfrac{dy}{dx}+dfrac{alphabeta x-q}{x(x-1)^2}y=0$



$x^3dfrac{d^2y}{dx^2}+(ax^2+bx+c)dfrac{dy}{dx}+(px+q)y=0$










share|cite|improve this question


















  • 2




    What about them?
    – Robert Israel
    May 16 '17 at 4:20










  • @Robert Israel The first two consider $ato0$ and $1$ respectively
    – doraemonpaul
    Aug 15 '17 at 16:24













up vote
0
down vote

favorite
1









up vote
0
down vote

favorite
1






1





We know that the Heun's differential equation is



$dfrac{d^2y}{dx^2}+left(dfrac{gamma}{x}+dfrac{delta}{x-1}+dfrac{epsilon}{x-a}right)dfrac{dy}{dx}+dfrac{alphabeta x-q}{x(x-1)(x-a)}y=0$ , where $epsilon=alpha+beta-gamma-delta+1$ .



How about the other issues e.g.



$dfrac{d^2y}{dx^2}+left(dfrac{gamma}{x}+dfrac{delta}{x-1}+dfrac{epsilon}{x^2}right)dfrac{dy}{dx}+dfrac{alphabeta x-q}{x^2(x-1)}y=0$



$dfrac{d^2y}{dx^2}+left(dfrac{gamma}{x}+dfrac{delta}{x-1}+dfrac{epsilon}{(x-1)^2}right)dfrac{dy}{dx}+dfrac{alphabeta x-q}{x(x-1)^2}y=0$



$x^3dfrac{d^2y}{dx^2}+(ax^2+bx+c)dfrac{dy}{dx}+(px+q)y=0$










share|cite|improve this question













We know that the Heun's differential equation is



$dfrac{d^2y}{dx^2}+left(dfrac{gamma}{x}+dfrac{delta}{x-1}+dfrac{epsilon}{x-a}right)dfrac{dy}{dx}+dfrac{alphabeta x-q}{x(x-1)(x-a)}y=0$ , where $epsilon=alpha+beta-gamma-delta+1$ .



How about the other issues e.g.



$dfrac{d^2y}{dx^2}+left(dfrac{gamma}{x}+dfrac{delta}{x-1}+dfrac{epsilon}{x^2}right)dfrac{dy}{dx}+dfrac{alphabeta x-q}{x^2(x-1)}y=0$



$dfrac{d^2y}{dx^2}+left(dfrac{gamma}{x}+dfrac{delta}{x-1}+dfrac{epsilon}{(x-1)^2}right)dfrac{dy}{dx}+dfrac{alphabeta x-q}{x(x-1)^2}y=0$



$x^3dfrac{d^2y}{dx^2}+(ax^2+bx+c)dfrac{dy}{dx}+(px+q)y=0$







differential-equations






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked May 16 '17 at 1:41









doraemonpaul

12.4k31660




12.4k31660








  • 2




    What about them?
    – Robert Israel
    May 16 '17 at 4:20










  • @Robert Israel The first two consider $ato0$ and $1$ respectively
    – doraemonpaul
    Aug 15 '17 at 16:24














  • 2




    What about them?
    – Robert Israel
    May 16 '17 at 4:20










  • @Robert Israel The first two consider $ato0$ and $1$ respectively
    – doraemonpaul
    Aug 15 '17 at 16:24








2




2




What about them?
– Robert Israel
May 16 '17 at 4:20




What about them?
– Robert Israel
May 16 '17 at 4:20












@Robert Israel The first two consider $ato0$ and $1$ respectively
– doraemonpaul
Aug 15 '17 at 16:24




@Robert Israel The first two consider $ato0$ and $1$ respectively
– doraemonpaul
Aug 15 '17 at 16:24










2 Answers
2






active

oldest

votes

















up vote
0
down vote













Unfortunately this is not an answer to your question but I have found another broad class of ODEs, similar to those above, which are solved in terms of the doubly-confluent Heun functions. They are:
begin{equation}
left(p_2+q_2 x+r_2 x^2right)^2 y^{''}(x) + left(p_1 + q_1 xright) y^{'}(x) + p_0 y(x)=0
end{equation}

where both $p_2neq 0$ and $q_1 neq 0$ and $p_0 neq 0$.
By eliminating the coefficient at the 1st derivative, i.e. by writing:
begin{equation}
y(x)=expleft(-frac{1}{2} int frac{left(p_1 + q_1 xright)}{left(p_2+q_2 x+r_2 x^2right)^2} dx right) cdot v(x)
end{equation}



they are always reduced to the following ODE:
begin{eqnarray}
v^{''}(x) + frac{{mathfrak P}_0+{mathfrak P}_1 x + {mathfrak P_2} x^2 + {mathfrak P_3} x^3 + {mathfrak P_4} x^4}{(p_1 x+q_1)^4 (p_2 x+q_2)^4} cdot v(x)=0
end{eqnarray}

which in turn can be always solved in terms of the doubly confluent Heun functions as demonstrated in Algorithm for solving a large class of linear 2nd order ODEs with polynomial coefficients. .



See the following Mathematica code snippet for the illustration of that:



{p0, q0, r0} = RandomInteger[{1, 10}, 3];
{p1, q1, r1} = RandomInteger[{1, 10}, 3];
{p2, q2, r2} = RandomInteger[{1, 10}, 3];
Clear[y]; x =.; Clear[v];
myeqn = (p2 + q2 x + r2 x^2)^2 y''[x] + (p1 + q1 x) y'[x] + (p0) y[x];
myeqn = Collect[
myeqn/Coefficient[myeqn, y''[x]], {y[x], y'[x], y''[x]}, Simplify]
mycoeff = Coefficient[myeqn, y'[x]];
myparam = Coefficient[PowerExpand[Sqrt[Denominator[mycoeff]]], x^2]^2;
m[x_] = Simplify[
Exp[Total[(-1/2) Integrate[
List @@ Apart[
Numerator[
mycoeff]/(myparam Times @@ (x - # & /@ (x /.
Solve[Denominator[mycoeff] == 0, x]))), x], x]]]]
y[x_] = m[x] v[x];
Collect[Simplify[myeqn/m[x]], {v[x], v''[x]}, Simplify]


enter image description here






share|cite|improve this answer




























    up vote
    0
    down vote













    Again, this is not exactly an answer to your question but I found exact solutions to an ODE very similar to the one on the bottom of your question.
    Define:
    begin{eqnarray}
    p&:=&frac{b_1}{4}(-2+a_1-c_1)\
    q&:=&frac{a_1+c_1}{4}(-2+a_1-c_1)
    end{eqnarray}

    and consider the following ODE:
    begin{eqnarray}
    x(x-1)(x+1) frac{d^2 y(x)}{d x^2} + left( a_1 x^2+b_1 x+c_1right) frac{d y(x)}{d x} + (p+q x) y(x)=0
    end{eqnarray}

    Then we have:
    begin{eqnarray}
    y(x):=frac{1}{m(x)} left( C_1 F_{2,1} left[ a,b,c,f(x)right] + C_2 [f(x)]^{1-c} F_{2,1}left[a+1-c,b+1-c,2-c,f[x]right]right)
    end{eqnarray}

    where
    begin{eqnarray}
    m(x)&:=& x^{frac{1}{2} (-c-c_1)} (x+1)^{a+frac{1}{4} (a_1+4 b-b_1+c_1-2)} (1-x)^{frac{1}{4} (-4 a+a_1-4 b+b_1+4 c+c_1-2)}\
    f(x)&:=&frac{4 x}{(x+1)^2}
    end{eqnarray}

    and
    begin{eqnarray}
    left(
    begin{array}{r} a \ b \ c end{array}
    right) =
    left{
    left(
    begin{array}{r} frac{1}{4}(2-a_1-3 c_1) \ frac{1}{4}(-b_1-2 c_1) \ -c_1 end{array}
    right),
    left(
    begin{array}{r} frac{1}{4}(-2+a_1- c_1) \ frac{1}{4}(b_1-2 c_1) \ -c_1 end{array}
    right)
    right}
    end{eqnarray}



    In[2]:= a1 =.; b1 =.; c1 =.;
    a =.; b =.; c =.; x =.;
    f[x_] = 4 x/(x + 1)^2;
    m[x_] = (1 - x)^(1/4 (-2 - 4 a + a1 - 4 b + b1 + 4 c + c1)) x^(
    1/2 (-c - c1)) (1 + x)^(a + 1/4 (-2 + a1 + 4 b - b1 + c1));

    {p, q} = { b1 (-2 + a1 - c1), (-2 + a1 - c1) (a1 + c1)}/4;
    a = {1/4 (2 - a1 - 3 c1), 1/4 (-2 + a1 - c1)};
    b = {1/4 (-b1 - 2 c1), 1/4 (b1 - 2 c1)};
    c = {-c1, -c1};
    {b, c} = {(-2 b1 + a1 b1 - 8 a c1 + b1 c1 - 4 c1^2)/(
    8 (2 a + c1)), -c1};
    eX = (x (x - 1) (x + 1) D[#, {x, 2}] + (a1 x^2 + b1 x + c1) D[#,
    x] + (p + q x) #) & /@ {1/
    m[x] (C[1] Hypergeometric2F1[a, b, c, f[x]] +
    C[2] f[x]^(1 - c) Hypergeometric2F1[a + 1 - c, b + 1 - c,
    2 - c, f[x]])};


    {a1, b1, c1, x} = RandomReal[{0, 1}, 4, WorkingPrecision -> 50];
    Simplify[eX]

    Out[13]= {{0.*10^-47 C[1] + 0.*10^-48 C[2],
    0.*10^-47 C[1] + 0.*10^-48 C[2]}}


    This is a generalization of example 1.1 in page 3 in https://arxiv.org/abs/1606.01576 .






    share|cite|improve this answer





















      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














       

      draft saved


      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2282856%2fdoes-heuns-differential-equation-have-other-known-types-confluent-approach%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes








      up vote
      0
      down vote













      Unfortunately this is not an answer to your question but I have found another broad class of ODEs, similar to those above, which are solved in terms of the doubly-confluent Heun functions. They are:
      begin{equation}
      left(p_2+q_2 x+r_2 x^2right)^2 y^{''}(x) + left(p_1 + q_1 xright) y^{'}(x) + p_0 y(x)=0
      end{equation}

      where both $p_2neq 0$ and $q_1 neq 0$ and $p_0 neq 0$.
      By eliminating the coefficient at the 1st derivative, i.e. by writing:
      begin{equation}
      y(x)=expleft(-frac{1}{2} int frac{left(p_1 + q_1 xright)}{left(p_2+q_2 x+r_2 x^2right)^2} dx right) cdot v(x)
      end{equation}



      they are always reduced to the following ODE:
      begin{eqnarray}
      v^{''}(x) + frac{{mathfrak P}_0+{mathfrak P}_1 x + {mathfrak P_2} x^2 + {mathfrak P_3} x^3 + {mathfrak P_4} x^4}{(p_1 x+q_1)^4 (p_2 x+q_2)^4} cdot v(x)=0
      end{eqnarray}

      which in turn can be always solved in terms of the doubly confluent Heun functions as demonstrated in Algorithm for solving a large class of linear 2nd order ODEs with polynomial coefficients. .



      See the following Mathematica code snippet for the illustration of that:



      {p0, q0, r0} = RandomInteger[{1, 10}, 3];
      {p1, q1, r1} = RandomInteger[{1, 10}, 3];
      {p2, q2, r2} = RandomInteger[{1, 10}, 3];
      Clear[y]; x =.; Clear[v];
      myeqn = (p2 + q2 x + r2 x^2)^2 y''[x] + (p1 + q1 x) y'[x] + (p0) y[x];
      myeqn = Collect[
      myeqn/Coefficient[myeqn, y''[x]], {y[x], y'[x], y''[x]}, Simplify]
      mycoeff = Coefficient[myeqn, y'[x]];
      myparam = Coefficient[PowerExpand[Sqrt[Denominator[mycoeff]]], x^2]^2;
      m[x_] = Simplify[
      Exp[Total[(-1/2) Integrate[
      List @@ Apart[
      Numerator[
      mycoeff]/(myparam Times @@ (x - # & /@ (x /.
      Solve[Denominator[mycoeff] == 0, x]))), x], x]]]]
      y[x_] = m[x] v[x];
      Collect[Simplify[myeqn/m[x]], {v[x], v''[x]}, Simplify]


      enter image description here






      share|cite|improve this answer

























        up vote
        0
        down vote













        Unfortunately this is not an answer to your question but I have found another broad class of ODEs, similar to those above, which are solved in terms of the doubly-confluent Heun functions. They are:
        begin{equation}
        left(p_2+q_2 x+r_2 x^2right)^2 y^{''}(x) + left(p_1 + q_1 xright) y^{'}(x) + p_0 y(x)=0
        end{equation}

        where both $p_2neq 0$ and $q_1 neq 0$ and $p_0 neq 0$.
        By eliminating the coefficient at the 1st derivative, i.e. by writing:
        begin{equation}
        y(x)=expleft(-frac{1}{2} int frac{left(p_1 + q_1 xright)}{left(p_2+q_2 x+r_2 x^2right)^2} dx right) cdot v(x)
        end{equation}



        they are always reduced to the following ODE:
        begin{eqnarray}
        v^{''}(x) + frac{{mathfrak P}_0+{mathfrak P}_1 x + {mathfrak P_2} x^2 + {mathfrak P_3} x^3 + {mathfrak P_4} x^4}{(p_1 x+q_1)^4 (p_2 x+q_2)^4} cdot v(x)=0
        end{eqnarray}

        which in turn can be always solved in terms of the doubly confluent Heun functions as demonstrated in Algorithm for solving a large class of linear 2nd order ODEs with polynomial coefficients. .



        See the following Mathematica code snippet for the illustration of that:



        {p0, q0, r0} = RandomInteger[{1, 10}, 3];
        {p1, q1, r1} = RandomInteger[{1, 10}, 3];
        {p2, q2, r2} = RandomInteger[{1, 10}, 3];
        Clear[y]; x =.; Clear[v];
        myeqn = (p2 + q2 x + r2 x^2)^2 y''[x] + (p1 + q1 x) y'[x] + (p0) y[x];
        myeqn = Collect[
        myeqn/Coefficient[myeqn, y''[x]], {y[x], y'[x], y''[x]}, Simplify]
        mycoeff = Coefficient[myeqn, y'[x]];
        myparam = Coefficient[PowerExpand[Sqrt[Denominator[mycoeff]]], x^2]^2;
        m[x_] = Simplify[
        Exp[Total[(-1/2) Integrate[
        List @@ Apart[
        Numerator[
        mycoeff]/(myparam Times @@ (x - # & /@ (x /.
        Solve[Denominator[mycoeff] == 0, x]))), x], x]]]]
        y[x_] = m[x] v[x];
        Collect[Simplify[myeqn/m[x]], {v[x], v''[x]}, Simplify]


        enter image description here






        share|cite|improve this answer























          up vote
          0
          down vote










          up vote
          0
          down vote









          Unfortunately this is not an answer to your question but I have found another broad class of ODEs, similar to those above, which are solved in terms of the doubly-confluent Heun functions. They are:
          begin{equation}
          left(p_2+q_2 x+r_2 x^2right)^2 y^{''}(x) + left(p_1 + q_1 xright) y^{'}(x) + p_0 y(x)=0
          end{equation}

          where both $p_2neq 0$ and $q_1 neq 0$ and $p_0 neq 0$.
          By eliminating the coefficient at the 1st derivative, i.e. by writing:
          begin{equation}
          y(x)=expleft(-frac{1}{2} int frac{left(p_1 + q_1 xright)}{left(p_2+q_2 x+r_2 x^2right)^2} dx right) cdot v(x)
          end{equation}



          they are always reduced to the following ODE:
          begin{eqnarray}
          v^{''}(x) + frac{{mathfrak P}_0+{mathfrak P}_1 x + {mathfrak P_2} x^2 + {mathfrak P_3} x^3 + {mathfrak P_4} x^4}{(p_1 x+q_1)^4 (p_2 x+q_2)^4} cdot v(x)=0
          end{eqnarray}

          which in turn can be always solved in terms of the doubly confluent Heun functions as demonstrated in Algorithm for solving a large class of linear 2nd order ODEs with polynomial coefficients. .



          See the following Mathematica code snippet for the illustration of that:



          {p0, q0, r0} = RandomInteger[{1, 10}, 3];
          {p1, q1, r1} = RandomInteger[{1, 10}, 3];
          {p2, q2, r2} = RandomInteger[{1, 10}, 3];
          Clear[y]; x =.; Clear[v];
          myeqn = (p2 + q2 x + r2 x^2)^2 y''[x] + (p1 + q1 x) y'[x] + (p0) y[x];
          myeqn = Collect[
          myeqn/Coefficient[myeqn, y''[x]], {y[x], y'[x], y''[x]}, Simplify]
          mycoeff = Coefficient[myeqn, y'[x]];
          myparam = Coefficient[PowerExpand[Sqrt[Denominator[mycoeff]]], x^2]^2;
          m[x_] = Simplify[
          Exp[Total[(-1/2) Integrate[
          List @@ Apart[
          Numerator[
          mycoeff]/(myparam Times @@ (x - # & /@ (x /.
          Solve[Denominator[mycoeff] == 0, x]))), x], x]]]]
          y[x_] = m[x] v[x];
          Collect[Simplify[myeqn/m[x]], {v[x], v''[x]}, Simplify]


          enter image description here






          share|cite|improve this answer












          Unfortunately this is not an answer to your question but I have found another broad class of ODEs, similar to those above, which are solved in terms of the doubly-confluent Heun functions. They are:
          begin{equation}
          left(p_2+q_2 x+r_2 x^2right)^2 y^{''}(x) + left(p_1 + q_1 xright) y^{'}(x) + p_0 y(x)=0
          end{equation}

          where both $p_2neq 0$ and $q_1 neq 0$ and $p_0 neq 0$.
          By eliminating the coefficient at the 1st derivative, i.e. by writing:
          begin{equation}
          y(x)=expleft(-frac{1}{2} int frac{left(p_1 + q_1 xright)}{left(p_2+q_2 x+r_2 x^2right)^2} dx right) cdot v(x)
          end{equation}



          they are always reduced to the following ODE:
          begin{eqnarray}
          v^{''}(x) + frac{{mathfrak P}_0+{mathfrak P}_1 x + {mathfrak P_2} x^2 + {mathfrak P_3} x^3 + {mathfrak P_4} x^4}{(p_1 x+q_1)^4 (p_2 x+q_2)^4} cdot v(x)=0
          end{eqnarray}

          which in turn can be always solved in terms of the doubly confluent Heun functions as demonstrated in Algorithm for solving a large class of linear 2nd order ODEs with polynomial coefficients. .



          See the following Mathematica code snippet for the illustration of that:



          {p0, q0, r0} = RandomInteger[{1, 10}, 3];
          {p1, q1, r1} = RandomInteger[{1, 10}, 3];
          {p2, q2, r2} = RandomInteger[{1, 10}, 3];
          Clear[y]; x =.; Clear[v];
          myeqn = (p2 + q2 x + r2 x^2)^2 y''[x] + (p1 + q1 x) y'[x] + (p0) y[x];
          myeqn = Collect[
          myeqn/Coefficient[myeqn, y''[x]], {y[x], y'[x], y''[x]}, Simplify]
          mycoeff = Coefficient[myeqn, y'[x]];
          myparam = Coefficient[PowerExpand[Sqrt[Denominator[mycoeff]]], x^2]^2;
          m[x_] = Simplify[
          Exp[Total[(-1/2) Integrate[
          List @@ Apart[
          Numerator[
          mycoeff]/(myparam Times @@ (x - # & /@ (x /.
          Solve[Denominator[mycoeff] == 0, x]))), x], x]]]]
          y[x_] = m[x] v[x];
          Collect[Simplify[myeqn/m[x]], {v[x], v''[x]}, Simplify]


          enter image description here







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Oct 24 at 18:09









          Przemo

          4,1171928




          4,1171928






















              up vote
              0
              down vote













              Again, this is not exactly an answer to your question but I found exact solutions to an ODE very similar to the one on the bottom of your question.
              Define:
              begin{eqnarray}
              p&:=&frac{b_1}{4}(-2+a_1-c_1)\
              q&:=&frac{a_1+c_1}{4}(-2+a_1-c_1)
              end{eqnarray}

              and consider the following ODE:
              begin{eqnarray}
              x(x-1)(x+1) frac{d^2 y(x)}{d x^2} + left( a_1 x^2+b_1 x+c_1right) frac{d y(x)}{d x} + (p+q x) y(x)=0
              end{eqnarray}

              Then we have:
              begin{eqnarray}
              y(x):=frac{1}{m(x)} left( C_1 F_{2,1} left[ a,b,c,f(x)right] + C_2 [f(x)]^{1-c} F_{2,1}left[a+1-c,b+1-c,2-c,f[x]right]right)
              end{eqnarray}

              where
              begin{eqnarray}
              m(x)&:=& x^{frac{1}{2} (-c-c_1)} (x+1)^{a+frac{1}{4} (a_1+4 b-b_1+c_1-2)} (1-x)^{frac{1}{4} (-4 a+a_1-4 b+b_1+4 c+c_1-2)}\
              f(x)&:=&frac{4 x}{(x+1)^2}
              end{eqnarray}

              and
              begin{eqnarray}
              left(
              begin{array}{r} a \ b \ c end{array}
              right) =
              left{
              left(
              begin{array}{r} frac{1}{4}(2-a_1-3 c_1) \ frac{1}{4}(-b_1-2 c_1) \ -c_1 end{array}
              right),
              left(
              begin{array}{r} frac{1}{4}(-2+a_1- c_1) \ frac{1}{4}(b_1-2 c_1) \ -c_1 end{array}
              right)
              right}
              end{eqnarray}



              In[2]:= a1 =.; b1 =.; c1 =.;
              a =.; b =.; c =.; x =.;
              f[x_] = 4 x/(x + 1)^2;
              m[x_] = (1 - x)^(1/4 (-2 - 4 a + a1 - 4 b + b1 + 4 c + c1)) x^(
              1/2 (-c - c1)) (1 + x)^(a + 1/4 (-2 + a1 + 4 b - b1 + c1));

              {p, q} = { b1 (-2 + a1 - c1), (-2 + a1 - c1) (a1 + c1)}/4;
              a = {1/4 (2 - a1 - 3 c1), 1/4 (-2 + a1 - c1)};
              b = {1/4 (-b1 - 2 c1), 1/4 (b1 - 2 c1)};
              c = {-c1, -c1};
              {b, c} = {(-2 b1 + a1 b1 - 8 a c1 + b1 c1 - 4 c1^2)/(
              8 (2 a + c1)), -c1};
              eX = (x (x - 1) (x + 1) D[#, {x, 2}] + (a1 x^2 + b1 x + c1) D[#,
              x] + (p + q x) #) & /@ {1/
              m[x] (C[1] Hypergeometric2F1[a, b, c, f[x]] +
              C[2] f[x]^(1 - c) Hypergeometric2F1[a + 1 - c, b + 1 - c,
              2 - c, f[x]])};


              {a1, b1, c1, x} = RandomReal[{0, 1}, 4, WorkingPrecision -> 50];
              Simplify[eX]

              Out[13]= {{0.*10^-47 C[1] + 0.*10^-48 C[2],
              0.*10^-47 C[1] + 0.*10^-48 C[2]}}


              This is a generalization of example 1.1 in page 3 in https://arxiv.org/abs/1606.01576 .






              share|cite|improve this answer

























                up vote
                0
                down vote













                Again, this is not exactly an answer to your question but I found exact solutions to an ODE very similar to the one on the bottom of your question.
                Define:
                begin{eqnarray}
                p&:=&frac{b_1}{4}(-2+a_1-c_1)\
                q&:=&frac{a_1+c_1}{4}(-2+a_1-c_1)
                end{eqnarray}

                and consider the following ODE:
                begin{eqnarray}
                x(x-1)(x+1) frac{d^2 y(x)}{d x^2} + left( a_1 x^2+b_1 x+c_1right) frac{d y(x)}{d x} + (p+q x) y(x)=0
                end{eqnarray}

                Then we have:
                begin{eqnarray}
                y(x):=frac{1}{m(x)} left( C_1 F_{2,1} left[ a,b,c,f(x)right] + C_2 [f(x)]^{1-c} F_{2,1}left[a+1-c,b+1-c,2-c,f[x]right]right)
                end{eqnarray}

                where
                begin{eqnarray}
                m(x)&:=& x^{frac{1}{2} (-c-c_1)} (x+1)^{a+frac{1}{4} (a_1+4 b-b_1+c_1-2)} (1-x)^{frac{1}{4} (-4 a+a_1-4 b+b_1+4 c+c_1-2)}\
                f(x)&:=&frac{4 x}{(x+1)^2}
                end{eqnarray}

                and
                begin{eqnarray}
                left(
                begin{array}{r} a \ b \ c end{array}
                right) =
                left{
                left(
                begin{array}{r} frac{1}{4}(2-a_1-3 c_1) \ frac{1}{4}(-b_1-2 c_1) \ -c_1 end{array}
                right),
                left(
                begin{array}{r} frac{1}{4}(-2+a_1- c_1) \ frac{1}{4}(b_1-2 c_1) \ -c_1 end{array}
                right)
                right}
                end{eqnarray}



                In[2]:= a1 =.; b1 =.; c1 =.;
                a =.; b =.; c =.; x =.;
                f[x_] = 4 x/(x + 1)^2;
                m[x_] = (1 - x)^(1/4 (-2 - 4 a + a1 - 4 b + b1 + 4 c + c1)) x^(
                1/2 (-c - c1)) (1 + x)^(a + 1/4 (-2 + a1 + 4 b - b1 + c1));

                {p, q} = { b1 (-2 + a1 - c1), (-2 + a1 - c1) (a1 + c1)}/4;
                a = {1/4 (2 - a1 - 3 c1), 1/4 (-2 + a1 - c1)};
                b = {1/4 (-b1 - 2 c1), 1/4 (b1 - 2 c1)};
                c = {-c1, -c1};
                {b, c} = {(-2 b1 + a1 b1 - 8 a c1 + b1 c1 - 4 c1^2)/(
                8 (2 a + c1)), -c1};
                eX = (x (x - 1) (x + 1) D[#, {x, 2}] + (a1 x^2 + b1 x + c1) D[#,
                x] + (p + q x) #) & /@ {1/
                m[x] (C[1] Hypergeometric2F1[a, b, c, f[x]] +
                C[2] f[x]^(1 - c) Hypergeometric2F1[a + 1 - c, b + 1 - c,
                2 - c, f[x]])};


                {a1, b1, c1, x} = RandomReal[{0, 1}, 4, WorkingPrecision -> 50];
                Simplify[eX]

                Out[13]= {{0.*10^-47 C[1] + 0.*10^-48 C[2],
                0.*10^-47 C[1] + 0.*10^-48 C[2]}}


                This is a generalization of example 1.1 in page 3 in https://arxiv.org/abs/1606.01576 .






                share|cite|improve this answer























                  up vote
                  0
                  down vote










                  up vote
                  0
                  down vote









                  Again, this is not exactly an answer to your question but I found exact solutions to an ODE very similar to the one on the bottom of your question.
                  Define:
                  begin{eqnarray}
                  p&:=&frac{b_1}{4}(-2+a_1-c_1)\
                  q&:=&frac{a_1+c_1}{4}(-2+a_1-c_1)
                  end{eqnarray}

                  and consider the following ODE:
                  begin{eqnarray}
                  x(x-1)(x+1) frac{d^2 y(x)}{d x^2} + left( a_1 x^2+b_1 x+c_1right) frac{d y(x)}{d x} + (p+q x) y(x)=0
                  end{eqnarray}

                  Then we have:
                  begin{eqnarray}
                  y(x):=frac{1}{m(x)} left( C_1 F_{2,1} left[ a,b,c,f(x)right] + C_2 [f(x)]^{1-c} F_{2,1}left[a+1-c,b+1-c,2-c,f[x]right]right)
                  end{eqnarray}

                  where
                  begin{eqnarray}
                  m(x)&:=& x^{frac{1}{2} (-c-c_1)} (x+1)^{a+frac{1}{4} (a_1+4 b-b_1+c_1-2)} (1-x)^{frac{1}{4} (-4 a+a_1-4 b+b_1+4 c+c_1-2)}\
                  f(x)&:=&frac{4 x}{(x+1)^2}
                  end{eqnarray}

                  and
                  begin{eqnarray}
                  left(
                  begin{array}{r} a \ b \ c end{array}
                  right) =
                  left{
                  left(
                  begin{array}{r} frac{1}{4}(2-a_1-3 c_1) \ frac{1}{4}(-b_1-2 c_1) \ -c_1 end{array}
                  right),
                  left(
                  begin{array}{r} frac{1}{4}(-2+a_1- c_1) \ frac{1}{4}(b_1-2 c_1) \ -c_1 end{array}
                  right)
                  right}
                  end{eqnarray}



                  In[2]:= a1 =.; b1 =.; c1 =.;
                  a =.; b =.; c =.; x =.;
                  f[x_] = 4 x/(x + 1)^2;
                  m[x_] = (1 - x)^(1/4 (-2 - 4 a + a1 - 4 b + b1 + 4 c + c1)) x^(
                  1/2 (-c - c1)) (1 + x)^(a + 1/4 (-2 + a1 + 4 b - b1 + c1));

                  {p, q} = { b1 (-2 + a1 - c1), (-2 + a1 - c1) (a1 + c1)}/4;
                  a = {1/4 (2 - a1 - 3 c1), 1/4 (-2 + a1 - c1)};
                  b = {1/4 (-b1 - 2 c1), 1/4 (b1 - 2 c1)};
                  c = {-c1, -c1};
                  {b, c} = {(-2 b1 + a1 b1 - 8 a c1 + b1 c1 - 4 c1^2)/(
                  8 (2 a + c1)), -c1};
                  eX = (x (x - 1) (x + 1) D[#, {x, 2}] + (a1 x^2 + b1 x + c1) D[#,
                  x] + (p + q x) #) & /@ {1/
                  m[x] (C[1] Hypergeometric2F1[a, b, c, f[x]] +
                  C[2] f[x]^(1 - c) Hypergeometric2F1[a + 1 - c, b + 1 - c,
                  2 - c, f[x]])};


                  {a1, b1, c1, x} = RandomReal[{0, 1}, 4, WorkingPrecision -> 50];
                  Simplify[eX]

                  Out[13]= {{0.*10^-47 C[1] + 0.*10^-48 C[2],
                  0.*10^-47 C[1] + 0.*10^-48 C[2]}}


                  This is a generalization of example 1.1 in page 3 in https://arxiv.org/abs/1606.01576 .






                  share|cite|improve this answer












                  Again, this is not exactly an answer to your question but I found exact solutions to an ODE very similar to the one on the bottom of your question.
                  Define:
                  begin{eqnarray}
                  p&:=&frac{b_1}{4}(-2+a_1-c_1)\
                  q&:=&frac{a_1+c_1}{4}(-2+a_1-c_1)
                  end{eqnarray}

                  and consider the following ODE:
                  begin{eqnarray}
                  x(x-1)(x+1) frac{d^2 y(x)}{d x^2} + left( a_1 x^2+b_1 x+c_1right) frac{d y(x)}{d x} + (p+q x) y(x)=0
                  end{eqnarray}

                  Then we have:
                  begin{eqnarray}
                  y(x):=frac{1}{m(x)} left( C_1 F_{2,1} left[ a,b,c,f(x)right] + C_2 [f(x)]^{1-c} F_{2,1}left[a+1-c,b+1-c,2-c,f[x]right]right)
                  end{eqnarray}

                  where
                  begin{eqnarray}
                  m(x)&:=& x^{frac{1}{2} (-c-c_1)} (x+1)^{a+frac{1}{4} (a_1+4 b-b_1+c_1-2)} (1-x)^{frac{1}{4} (-4 a+a_1-4 b+b_1+4 c+c_1-2)}\
                  f(x)&:=&frac{4 x}{(x+1)^2}
                  end{eqnarray}

                  and
                  begin{eqnarray}
                  left(
                  begin{array}{r} a \ b \ c end{array}
                  right) =
                  left{
                  left(
                  begin{array}{r} frac{1}{4}(2-a_1-3 c_1) \ frac{1}{4}(-b_1-2 c_1) \ -c_1 end{array}
                  right),
                  left(
                  begin{array}{r} frac{1}{4}(-2+a_1- c_1) \ frac{1}{4}(b_1-2 c_1) \ -c_1 end{array}
                  right)
                  right}
                  end{eqnarray}



                  In[2]:= a1 =.; b1 =.; c1 =.;
                  a =.; b =.; c =.; x =.;
                  f[x_] = 4 x/(x + 1)^2;
                  m[x_] = (1 - x)^(1/4 (-2 - 4 a + a1 - 4 b + b1 + 4 c + c1)) x^(
                  1/2 (-c - c1)) (1 + x)^(a + 1/4 (-2 + a1 + 4 b - b1 + c1));

                  {p, q} = { b1 (-2 + a1 - c1), (-2 + a1 - c1) (a1 + c1)}/4;
                  a = {1/4 (2 - a1 - 3 c1), 1/4 (-2 + a1 - c1)};
                  b = {1/4 (-b1 - 2 c1), 1/4 (b1 - 2 c1)};
                  c = {-c1, -c1};
                  {b, c} = {(-2 b1 + a1 b1 - 8 a c1 + b1 c1 - 4 c1^2)/(
                  8 (2 a + c1)), -c1};
                  eX = (x (x - 1) (x + 1) D[#, {x, 2}] + (a1 x^2 + b1 x + c1) D[#,
                  x] + (p + q x) #) & /@ {1/
                  m[x] (C[1] Hypergeometric2F1[a, b, c, f[x]] +
                  C[2] f[x]^(1 - c) Hypergeometric2F1[a + 1 - c, b + 1 - c,
                  2 - c, f[x]])};


                  {a1, b1, c1, x} = RandomReal[{0, 1}, 4, WorkingPrecision -> 50];
                  Simplify[eX]

                  Out[13]= {{0.*10^-47 C[1] + 0.*10^-48 C[2],
                  0.*10^-47 C[1] + 0.*10^-48 C[2]}}


                  This is a generalization of example 1.1 in page 3 in https://arxiv.org/abs/1606.01576 .







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Nov 21 at 17:45









                  Przemo

                  4,1171928




                  4,1171928






























                       

                      draft saved


                      draft discarded



















































                       


                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2282856%2fdoes-heuns-differential-equation-have-other-known-types-confluent-approach%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Berounka

                      Different font size/position of beamer's navigation symbols template's content depending on regular/plain...

                      Sphinx de Gizeh