Does Heun's differential equation have other known types confluent approach?
up vote
0
down vote
favorite
We know that the Heun's differential equation is
$dfrac{d^2y}{dx^2}+left(dfrac{gamma}{x}+dfrac{delta}{x-1}+dfrac{epsilon}{x-a}right)dfrac{dy}{dx}+dfrac{alphabeta x-q}{x(x-1)(x-a)}y=0$ , where $epsilon=alpha+beta-gamma-delta+1$ .
How about the other issues e.g.
$dfrac{d^2y}{dx^2}+left(dfrac{gamma}{x}+dfrac{delta}{x-1}+dfrac{epsilon}{x^2}right)dfrac{dy}{dx}+dfrac{alphabeta x-q}{x^2(x-1)}y=0$
$dfrac{d^2y}{dx^2}+left(dfrac{gamma}{x}+dfrac{delta}{x-1}+dfrac{epsilon}{(x-1)^2}right)dfrac{dy}{dx}+dfrac{alphabeta x-q}{x(x-1)^2}y=0$
$x^3dfrac{d^2y}{dx^2}+(ax^2+bx+c)dfrac{dy}{dx}+(px+q)y=0$
differential-equations
add a comment |
up vote
0
down vote
favorite
We know that the Heun's differential equation is
$dfrac{d^2y}{dx^2}+left(dfrac{gamma}{x}+dfrac{delta}{x-1}+dfrac{epsilon}{x-a}right)dfrac{dy}{dx}+dfrac{alphabeta x-q}{x(x-1)(x-a)}y=0$ , where $epsilon=alpha+beta-gamma-delta+1$ .
How about the other issues e.g.
$dfrac{d^2y}{dx^2}+left(dfrac{gamma}{x}+dfrac{delta}{x-1}+dfrac{epsilon}{x^2}right)dfrac{dy}{dx}+dfrac{alphabeta x-q}{x^2(x-1)}y=0$
$dfrac{d^2y}{dx^2}+left(dfrac{gamma}{x}+dfrac{delta}{x-1}+dfrac{epsilon}{(x-1)^2}right)dfrac{dy}{dx}+dfrac{alphabeta x-q}{x(x-1)^2}y=0$
$x^3dfrac{d^2y}{dx^2}+(ax^2+bx+c)dfrac{dy}{dx}+(px+q)y=0$
differential-equations
2
What about them?
– Robert Israel
May 16 '17 at 4:20
@Robert Israel The first two consider $ato0$ and $1$ respectively
– doraemonpaul
Aug 15 '17 at 16:24
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
We know that the Heun's differential equation is
$dfrac{d^2y}{dx^2}+left(dfrac{gamma}{x}+dfrac{delta}{x-1}+dfrac{epsilon}{x-a}right)dfrac{dy}{dx}+dfrac{alphabeta x-q}{x(x-1)(x-a)}y=0$ , where $epsilon=alpha+beta-gamma-delta+1$ .
How about the other issues e.g.
$dfrac{d^2y}{dx^2}+left(dfrac{gamma}{x}+dfrac{delta}{x-1}+dfrac{epsilon}{x^2}right)dfrac{dy}{dx}+dfrac{alphabeta x-q}{x^2(x-1)}y=0$
$dfrac{d^2y}{dx^2}+left(dfrac{gamma}{x}+dfrac{delta}{x-1}+dfrac{epsilon}{(x-1)^2}right)dfrac{dy}{dx}+dfrac{alphabeta x-q}{x(x-1)^2}y=0$
$x^3dfrac{d^2y}{dx^2}+(ax^2+bx+c)dfrac{dy}{dx}+(px+q)y=0$
differential-equations
We know that the Heun's differential equation is
$dfrac{d^2y}{dx^2}+left(dfrac{gamma}{x}+dfrac{delta}{x-1}+dfrac{epsilon}{x-a}right)dfrac{dy}{dx}+dfrac{alphabeta x-q}{x(x-1)(x-a)}y=0$ , where $epsilon=alpha+beta-gamma-delta+1$ .
How about the other issues e.g.
$dfrac{d^2y}{dx^2}+left(dfrac{gamma}{x}+dfrac{delta}{x-1}+dfrac{epsilon}{x^2}right)dfrac{dy}{dx}+dfrac{alphabeta x-q}{x^2(x-1)}y=0$
$dfrac{d^2y}{dx^2}+left(dfrac{gamma}{x}+dfrac{delta}{x-1}+dfrac{epsilon}{(x-1)^2}right)dfrac{dy}{dx}+dfrac{alphabeta x-q}{x(x-1)^2}y=0$
$x^3dfrac{d^2y}{dx^2}+(ax^2+bx+c)dfrac{dy}{dx}+(px+q)y=0$
differential-equations
differential-equations
asked May 16 '17 at 1:41
doraemonpaul
12.4k31660
12.4k31660
2
What about them?
– Robert Israel
May 16 '17 at 4:20
@Robert Israel The first two consider $ato0$ and $1$ respectively
– doraemonpaul
Aug 15 '17 at 16:24
add a comment |
2
What about them?
– Robert Israel
May 16 '17 at 4:20
@Robert Israel The first two consider $ato0$ and $1$ respectively
– doraemonpaul
Aug 15 '17 at 16:24
2
2
What about them?
– Robert Israel
May 16 '17 at 4:20
What about them?
– Robert Israel
May 16 '17 at 4:20
@Robert Israel The first two consider $ato0$ and $1$ respectively
– doraemonpaul
Aug 15 '17 at 16:24
@Robert Israel The first two consider $ato0$ and $1$ respectively
– doraemonpaul
Aug 15 '17 at 16:24
add a comment |
2 Answers
2
active
oldest
votes
up vote
0
down vote
Unfortunately this is not an answer to your question but I have found another broad class of ODEs, similar to those above, which are solved in terms of the doubly-confluent Heun functions. They are:
begin{equation}
left(p_2+q_2 x+r_2 x^2right)^2 y^{''}(x) + left(p_1 + q_1 xright) y^{'}(x) + p_0 y(x)=0
end{equation}
where both $p_2neq 0$ and $q_1 neq 0$ and $p_0 neq 0$.
By eliminating the coefficient at the 1st derivative, i.e. by writing:
begin{equation}
y(x)=expleft(-frac{1}{2} int frac{left(p_1 + q_1 xright)}{left(p_2+q_2 x+r_2 x^2right)^2} dx right) cdot v(x)
end{equation}
they are always reduced to the following ODE:
begin{eqnarray}
v^{''}(x) + frac{{mathfrak P}_0+{mathfrak P}_1 x + {mathfrak P_2} x^2 + {mathfrak P_3} x^3 + {mathfrak P_4} x^4}{(p_1 x+q_1)^4 (p_2 x+q_2)^4} cdot v(x)=0
end{eqnarray}
which in turn can be always solved in terms of the doubly confluent Heun functions as demonstrated in Algorithm for solving a large class of linear 2nd order ODEs with polynomial coefficients. .
See the following Mathematica code snippet for the illustration of that:
{p0, q0, r0} = RandomInteger[{1, 10}, 3];
{p1, q1, r1} = RandomInteger[{1, 10}, 3];
{p2, q2, r2} = RandomInteger[{1, 10}, 3];
Clear[y]; x =.; Clear[v];
myeqn = (p2 + q2 x + r2 x^2)^2 y''[x] + (p1 + q1 x) y'[x] + (p0) y[x];
myeqn = Collect[
myeqn/Coefficient[myeqn, y''[x]], {y[x], y'[x], y''[x]}, Simplify]
mycoeff = Coefficient[myeqn, y'[x]];
myparam = Coefficient[PowerExpand[Sqrt[Denominator[mycoeff]]], x^2]^2;
m[x_] = Simplify[
Exp[Total[(-1/2) Integrate[
List @@ Apart[
Numerator[
mycoeff]/(myparam Times @@ (x - # & /@ (x /.
Solve[Denominator[mycoeff] == 0, x]))), x], x]]]]
y[x_] = m[x] v[x];
Collect[Simplify[myeqn/m[x]], {v[x], v''[x]}, Simplify]
add a comment |
up vote
0
down vote
Again, this is not exactly an answer to your question but I found exact solutions to an ODE very similar to the one on the bottom of your question.
Define:
begin{eqnarray}
p&:=&frac{b_1}{4}(-2+a_1-c_1)\
q&:=&frac{a_1+c_1}{4}(-2+a_1-c_1)
end{eqnarray}
and consider the following ODE:
begin{eqnarray}
x(x-1)(x+1) frac{d^2 y(x)}{d x^2} + left( a_1 x^2+b_1 x+c_1right) frac{d y(x)}{d x} + (p+q x) y(x)=0
end{eqnarray}
Then we have:
begin{eqnarray}
y(x):=frac{1}{m(x)} left( C_1 F_{2,1} left[ a,b,c,f(x)right] + C_2 [f(x)]^{1-c} F_{2,1}left[a+1-c,b+1-c,2-c,f[x]right]right)
end{eqnarray}
where
begin{eqnarray}
m(x)&:=& x^{frac{1}{2} (-c-c_1)} (x+1)^{a+frac{1}{4} (a_1+4 b-b_1+c_1-2)} (1-x)^{frac{1}{4} (-4 a+a_1-4 b+b_1+4 c+c_1-2)}\
f(x)&:=&frac{4 x}{(x+1)^2}
end{eqnarray}
and
begin{eqnarray}
left(
begin{array}{r} a \ b \ c end{array}
right) =
left{
left(
begin{array}{r} frac{1}{4}(2-a_1-3 c_1) \ frac{1}{4}(-b_1-2 c_1) \ -c_1 end{array}
right),
left(
begin{array}{r} frac{1}{4}(-2+a_1- c_1) \ frac{1}{4}(b_1-2 c_1) \ -c_1 end{array}
right)
right}
end{eqnarray}
In[2]:= a1 =.; b1 =.; c1 =.;
a =.; b =.; c =.; x =.;
f[x_] = 4 x/(x + 1)^2;
m[x_] = (1 - x)^(1/4 (-2 - 4 a + a1 - 4 b + b1 + 4 c + c1)) x^(
1/2 (-c - c1)) (1 + x)^(a + 1/4 (-2 + a1 + 4 b - b1 + c1));
{p, q} = { b1 (-2 + a1 - c1), (-2 + a1 - c1) (a1 + c1)}/4;
a = {1/4 (2 - a1 - 3 c1), 1/4 (-2 + a1 - c1)};
b = {1/4 (-b1 - 2 c1), 1/4 (b1 - 2 c1)};
c = {-c1, -c1};
{b, c} = {(-2 b1 + a1 b1 - 8 a c1 + b1 c1 - 4 c1^2)/(
8 (2 a + c1)), -c1};
eX = (x (x - 1) (x + 1) D[#, {x, 2}] + (a1 x^2 + b1 x + c1) D[#,
x] + (p + q x) #) & /@ {1/
m[x] (C[1] Hypergeometric2F1[a, b, c, f[x]] +
C[2] f[x]^(1 - c) Hypergeometric2F1[a + 1 - c, b + 1 - c,
2 - c, f[x]])};
{a1, b1, c1, x} = RandomReal[{0, 1}, 4, WorkingPrecision -> 50];
Simplify[eX]
Out[13]= {{0.*10^-47 C[1] + 0.*10^-48 C[2],
0.*10^-47 C[1] + 0.*10^-48 C[2]}}
This is a generalization of example 1.1 in page 3 in https://arxiv.org/abs/1606.01576 .
add a comment |
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
Unfortunately this is not an answer to your question but I have found another broad class of ODEs, similar to those above, which are solved in terms of the doubly-confluent Heun functions. They are:
begin{equation}
left(p_2+q_2 x+r_2 x^2right)^2 y^{''}(x) + left(p_1 + q_1 xright) y^{'}(x) + p_0 y(x)=0
end{equation}
where both $p_2neq 0$ and $q_1 neq 0$ and $p_0 neq 0$.
By eliminating the coefficient at the 1st derivative, i.e. by writing:
begin{equation}
y(x)=expleft(-frac{1}{2} int frac{left(p_1 + q_1 xright)}{left(p_2+q_2 x+r_2 x^2right)^2} dx right) cdot v(x)
end{equation}
they are always reduced to the following ODE:
begin{eqnarray}
v^{''}(x) + frac{{mathfrak P}_0+{mathfrak P}_1 x + {mathfrak P_2} x^2 + {mathfrak P_3} x^3 + {mathfrak P_4} x^4}{(p_1 x+q_1)^4 (p_2 x+q_2)^4} cdot v(x)=0
end{eqnarray}
which in turn can be always solved in terms of the doubly confluent Heun functions as demonstrated in Algorithm for solving a large class of linear 2nd order ODEs with polynomial coefficients. .
See the following Mathematica code snippet for the illustration of that:
{p0, q0, r0} = RandomInteger[{1, 10}, 3];
{p1, q1, r1} = RandomInteger[{1, 10}, 3];
{p2, q2, r2} = RandomInteger[{1, 10}, 3];
Clear[y]; x =.; Clear[v];
myeqn = (p2 + q2 x + r2 x^2)^2 y''[x] + (p1 + q1 x) y'[x] + (p0) y[x];
myeqn = Collect[
myeqn/Coefficient[myeqn, y''[x]], {y[x], y'[x], y''[x]}, Simplify]
mycoeff = Coefficient[myeqn, y'[x]];
myparam = Coefficient[PowerExpand[Sqrt[Denominator[mycoeff]]], x^2]^2;
m[x_] = Simplify[
Exp[Total[(-1/2) Integrate[
List @@ Apart[
Numerator[
mycoeff]/(myparam Times @@ (x - # & /@ (x /.
Solve[Denominator[mycoeff] == 0, x]))), x], x]]]]
y[x_] = m[x] v[x];
Collect[Simplify[myeqn/m[x]], {v[x], v''[x]}, Simplify]
add a comment |
up vote
0
down vote
Unfortunately this is not an answer to your question but I have found another broad class of ODEs, similar to those above, which are solved in terms of the doubly-confluent Heun functions. They are:
begin{equation}
left(p_2+q_2 x+r_2 x^2right)^2 y^{''}(x) + left(p_1 + q_1 xright) y^{'}(x) + p_0 y(x)=0
end{equation}
where both $p_2neq 0$ and $q_1 neq 0$ and $p_0 neq 0$.
By eliminating the coefficient at the 1st derivative, i.e. by writing:
begin{equation}
y(x)=expleft(-frac{1}{2} int frac{left(p_1 + q_1 xright)}{left(p_2+q_2 x+r_2 x^2right)^2} dx right) cdot v(x)
end{equation}
they are always reduced to the following ODE:
begin{eqnarray}
v^{''}(x) + frac{{mathfrak P}_0+{mathfrak P}_1 x + {mathfrak P_2} x^2 + {mathfrak P_3} x^3 + {mathfrak P_4} x^4}{(p_1 x+q_1)^4 (p_2 x+q_2)^4} cdot v(x)=0
end{eqnarray}
which in turn can be always solved in terms of the doubly confluent Heun functions as demonstrated in Algorithm for solving a large class of linear 2nd order ODEs with polynomial coefficients. .
See the following Mathematica code snippet for the illustration of that:
{p0, q0, r0} = RandomInteger[{1, 10}, 3];
{p1, q1, r1} = RandomInteger[{1, 10}, 3];
{p2, q2, r2} = RandomInteger[{1, 10}, 3];
Clear[y]; x =.; Clear[v];
myeqn = (p2 + q2 x + r2 x^2)^2 y''[x] + (p1 + q1 x) y'[x] + (p0) y[x];
myeqn = Collect[
myeqn/Coefficient[myeqn, y''[x]], {y[x], y'[x], y''[x]}, Simplify]
mycoeff = Coefficient[myeqn, y'[x]];
myparam = Coefficient[PowerExpand[Sqrt[Denominator[mycoeff]]], x^2]^2;
m[x_] = Simplify[
Exp[Total[(-1/2) Integrate[
List @@ Apart[
Numerator[
mycoeff]/(myparam Times @@ (x - # & /@ (x /.
Solve[Denominator[mycoeff] == 0, x]))), x], x]]]]
y[x_] = m[x] v[x];
Collect[Simplify[myeqn/m[x]], {v[x], v''[x]}, Simplify]
add a comment |
up vote
0
down vote
up vote
0
down vote
Unfortunately this is not an answer to your question but I have found another broad class of ODEs, similar to those above, which are solved in terms of the doubly-confluent Heun functions. They are:
begin{equation}
left(p_2+q_2 x+r_2 x^2right)^2 y^{''}(x) + left(p_1 + q_1 xright) y^{'}(x) + p_0 y(x)=0
end{equation}
where both $p_2neq 0$ and $q_1 neq 0$ and $p_0 neq 0$.
By eliminating the coefficient at the 1st derivative, i.e. by writing:
begin{equation}
y(x)=expleft(-frac{1}{2} int frac{left(p_1 + q_1 xright)}{left(p_2+q_2 x+r_2 x^2right)^2} dx right) cdot v(x)
end{equation}
they are always reduced to the following ODE:
begin{eqnarray}
v^{''}(x) + frac{{mathfrak P}_0+{mathfrak P}_1 x + {mathfrak P_2} x^2 + {mathfrak P_3} x^3 + {mathfrak P_4} x^4}{(p_1 x+q_1)^4 (p_2 x+q_2)^4} cdot v(x)=0
end{eqnarray}
which in turn can be always solved in terms of the doubly confluent Heun functions as demonstrated in Algorithm for solving a large class of linear 2nd order ODEs with polynomial coefficients. .
See the following Mathematica code snippet for the illustration of that:
{p0, q0, r0} = RandomInteger[{1, 10}, 3];
{p1, q1, r1} = RandomInteger[{1, 10}, 3];
{p2, q2, r2} = RandomInteger[{1, 10}, 3];
Clear[y]; x =.; Clear[v];
myeqn = (p2 + q2 x + r2 x^2)^2 y''[x] + (p1 + q1 x) y'[x] + (p0) y[x];
myeqn = Collect[
myeqn/Coefficient[myeqn, y''[x]], {y[x], y'[x], y''[x]}, Simplify]
mycoeff = Coefficient[myeqn, y'[x]];
myparam = Coefficient[PowerExpand[Sqrt[Denominator[mycoeff]]], x^2]^2;
m[x_] = Simplify[
Exp[Total[(-1/2) Integrate[
List @@ Apart[
Numerator[
mycoeff]/(myparam Times @@ (x - # & /@ (x /.
Solve[Denominator[mycoeff] == 0, x]))), x], x]]]]
y[x_] = m[x] v[x];
Collect[Simplify[myeqn/m[x]], {v[x], v''[x]}, Simplify]
Unfortunately this is not an answer to your question but I have found another broad class of ODEs, similar to those above, which are solved in terms of the doubly-confluent Heun functions. They are:
begin{equation}
left(p_2+q_2 x+r_2 x^2right)^2 y^{''}(x) + left(p_1 + q_1 xright) y^{'}(x) + p_0 y(x)=0
end{equation}
where both $p_2neq 0$ and $q_1 neq 0$ and $p_0 neq 0$.
By eliminating the coefficient at the 1st derivative, i.e. by writing:
begin{equation}
y(x)=expleft(-frac{1}{2} int frac{left(p_1 + q_1 xright)}{left(p_2+q_2 x+r_2 x^2right)^2} dx right) cdot v(x)
end{equation}
they are always reduced to the following ODE:
begin{eqnarray}
v^{''}(x) + frac{{mathfrak P}_0+{mathfrak P}_1 x + {mathfrak P_2} x^2 + {mathfrak P_3} x^3 + {mathfrak P_4} x^4}{(p_1 x+q_1)^4 (p_2 x+q_2)^4} cdot v(x)=0
end{eqnarray}
which in turn can be always solved in terms of the doubly confluent Heun functions as demonstrated in Algorithm for solving a large class of linear 2nd order ODEs with polynomial coefficients. .
See the following Mathematica code snippet for the illustration of that:
{p0, q0, r0} = RandomInteger[{1, 10}, 3];
{p1, q1, r1} = RandomInteger[{1, 10}, 3];
{p2, q2, r2} = RandomInteger[{1, 10}, 3];
Clear[y]; x =.; Clear[v];
myeqn = (p2 + q2 x + r2 x^2)^2 y''[x] + (p1 + q1 x) y'[x] + (p0) y[x];
myeqn = Collect[
myeqn/Coefficient[myeqn, y''[x]], {y[x], y'[x], y''[x]}, Simplify]
mycoeff = Coefficient[myeqn, y'[x]];
myparam = Coefficient[PowerExpand[Sqrt[Denominator[mycoeff]]], x^2]^2;
m[x_] = Simplify[
Exp[Total[(-1/2) Integrate[
List @@ Apart[
Numerator[
mycoeff]/(myparam Times @@ (x - # & /@ (x /.
Solve[Denominator[mycoeff] == 0, x]))), x], x]]]]
y[x_] = m[x] v[x];
Collect[Simplify[myeqn/m[x]], {v[x], v''[x]}, Simplify]
answered Oct 24 at 18:09
Przemo
4,1171928
4,1171928
add a comment |
add a comment |
up vote
0
down vote
Again, this is not exactly an answer to your question but I found exact solutions to an ODE very similar to the one on the bottom of your question.
Define:
begin{eqnarray}
p&:=&frac{b_1}{4}(-2+a_1-c_1)\
q&:=&frac{a_1+c_1}{4}(-2+a_1-c_1)
end{eqnarray}
and consider the following ODE:
begin{eqnarray}
x(x-1)(x+1) frac{d^2 y(x)}{d x^2} + left( a_1 x^2+b_1 x+c_1right) frac{d y(x)}{d x} + (p+q x) y(x)=0
end{eqnarray}
Then we have:
begin{eqnarray}
y(x):=frac{1}{m(x)} left( C_1 F_{2,1} left[ a,b,c,f(x)right] + C_2 [f(x)]^{1-c} F_{2,1}left[a+1-c,b+1-c,2-c,f[x]right]right)
end{eqnarray}
where
begin{eqnarray}
m(x)&:=& x^{frac{1}{2} (-c-c_1)} (x+1)^{a+frac{1}{4} (a_1+4 b-b_1+c_1-2)} (1-x)^{frac{1}{4} (-4 a+a_1-4 b+b_1+4 c+c_1-2)}\
f(x)&:=&frac{4 x}{(x+1)^2}
end{eqnarray}
and
begin{eqnarray}
left(
begin{array}{r} a \ b \ c end{array}
right) =
left{
left(
begin{array}{r} frac{1}{4}(2-a_1-3 c_1) \ frac{1}{4}(-b_1-2 c_1) \ -c_1 end{array}
right),
left(
begin{array}{r} frac{1}{4}(-2+a_1- c_1) \ frac{1}{4}(b_1-2 c_1) \ -c_1 end{array}
right)
right}
end{eqnarray}
In[2]:= a1 =.; b1 =.; c1 =.;
a =.; b =.; c =.; x =.;
f[x_] = 4 x/(x + 1)^2;
m[x_] = (1 - x)^(1/4 (-2 - 4 a + a1 - 4 b + b1 + 4 c + c1)) x^(
1/2 (-c - c1)) (1 + x)^(a + 1/4 (-2 + a1 + 4 b - b1 + c1));
{p, q} = { b1 (-2 + a1 - c1), (-2 + a1 - c1) (a1 + c1)}/4;
a = {1/4 (2 - a1 - 3 c1), 1/4 (-2 + a1 - c1)};
b = {1/4 (-b1 - 2 c1), 1/4 (b1 - 2 c1)};
c = {-c1, -c1};
{b, c} = {(-2 b1 + a1 b1 - 8 a c1 + b1 c1 - 4 c1^2)/(
8 (2 a + c1)), -c1};
eX = (x (x - 1) (x + 1) D[#, {x, 2}] + (a1 x^2 + b1 x + c1) D[#,
x] + (p + q x) #) & /@ {1/
m[x] (C[1] Hypergeometric2F1[a, b, c, f[x]] +
C[2] f[x]^(1 - c) Hypergeometric2F1[a + 1 - c, b + 1 - c,
2 - c, f[x]])};
{a1, b1, c1, x} = RandomReal[{0, 1}, 4, WorkingPrecision -> 50];
Simplify[eX]
Out[13]= {{0.*10^-47 C[1] + 0.*10^-48 C[2],
0.*10^-47 C[1] + 0.*10^-48 C[2]}}
This is a generalization of example 1.1 in page 3 in https://arxiv.org/abs/1606.01576 .
add a comment |
up vote
0
down vote
Again, this is not exactly an answer to your question but I found exact solutions to an ODE very similar to the one on the bottom of your question.
Define:
begin{eqnarray}
p&:=&frac{b_1}{4}(-2+a_1-c_1)\
q&:=&frac{a_1+c_1}{4}(-2+a_1-c_1)
end{eqnarray}
and consider the following ODE:
begin{eqnarray}
x(x-1)(x+1) frac{d^2 y(x)}{d x^2} + left( a_1 x^2+b_1 x+c_1right) frac{d y(x)}{d x} + (p+q x) y(x)=0
end{eqnarray}
Then we have:
begin{eqnarray}
y(x):=frac{1}{m(x)} left( C_1 F_{2,1} left[ a,b,c,f(x)right] + C_2 [f(x)]^{1-c} F_{2,1}left[a+1-c,b+1-c,2-c,f[x]right]right)
end{eqnarray}
where
begin{eqnarray}
m(x)&:=& x^{frac{1}{2} (-c-c_1)} (x+1)^{a+frac{1}{4} (a_1+4 b-b_1+c_1-2)} (1-x)^{frac{1}{4} (-4 a+a_1-4 b+b_1+4 c+c_1-2)}\
f(x)&:=&frac{4 x}{(x+1)^2}
end{eqnarray}
and
begin{eqnarray}
left(
begin{array}{r} a \ b \ c end{array}
right) =
left{
left(
begin{array}{r} frac{1}{4}(2-a_1-3 c_1) \ frac{1}{4}(-b_1-2 c_1) \ -c_1 end{array}
right),
left(
begin{array}{r} frac{1}{4}(-2+a_1- c_1) \ frac{1}{4}(b_1-2 c_1) \ -c_1 end{array}
right)
right}
end{eqnarray}
In[2]:= a1 =.; b1 =.; c1 =.;
a =.; b =.; c =.; x =.;
f[x_] = 4 x/(x + 1)^2;
m[x_] = (1 - x)^(1/4 (-2 - 4 a + a1 - 4 b + b1 + 4 c + c1)) x^(
1/2 (-c - c1)) (1 + x)^(a + 1/4 (-2 + a1 + 4 b - b1 + c1));
{p, q} = { b1 (-2 + a1 - c1), (-2 + a1 - c1) (a1 + c1)}/4;
a = {1/4 (2 - a1 - 3 c1), 1/4 (-2 + a1 - c1)};
b = {1/4 (-b1 - 2 c1), 1/4 (b1 - 2 c1)};
c = {-c1, -c1};
{b, c} = {(-2 b1 + a1 b1 - 8 a c1 + b1 c1 - 4 c1^2)/(
8 (2 a + c1)), -c1};
eX = (x (x - 1) (x + 1) D[#, {x, 2}] + (a1 x^2 + b1 x + c1) D[#,
x] + (p + q x) #) & /@ {1/
m[x] (C[1] Hypergeometric2F1[a, b, c, f[x]] +
C[2] f[x]^(1 - c) Hypergeometric2F1[a + 1 - c, b + 1 - c,
2 - c, f[x]])};
{a1, b1, c1, x} = RandomReal[{0, 1}, 4, WorkingPrecision -> 50];
Simplify[eX]
Out[13]= {{0.*10^-47 C[1] + 0.*10^-48 C[2],
0.*10^-47 C[1] + 0.*10^-48 C[2]}}
This is a generalization of example 1.1 in page 3 in https://arxiv.org/abs/1606.01576 .
add a comment |
up vote
0
down vote
up vote
0
down vote
Again, this is not exactly an answer to your question but I found exact solutions to an ODE very similar to the one on the bottom of your question.
Define:
begin{eqnarray}
p&:=&frac{b_1}{4}(-2+a_1-c_1)\
q&:=&frac{a_1+c_1}{4}(-2+a_1-c_1)
end{eqnarray}
and consider the following ODE:
begin{eqnarray}
x(x-1)(x+1) frac{d^2 y(x)}{d x^2} + left( a_1 x^2+b_1 x+c_1right) frac{d y(x)}{d x} + (p+q x) y(x)=0
end{eqnarray}
Then we have:
begin{eqnarray}
y(x):=frac{1}{m(x)} left( C_1 F_{2,1} left[ a,b,c,f(x)right] + C_2 [f(x)]^{1-c} F_{2,1}left[a+1-c,b+1-c,2-c,f[x]right]right)
end{eqnarray}
where
begin{eqnarray}
m(x)&:=& x^{frac{1}{2} (-c-c_1)} (x+1)^{a+frac{1}{4} (a_1+4 b-b_1+c_1-2)} (1-x)^{frac{1}{4} (-4 a+a_1-4 b+b_1+4 c+c_1-2)}\
f(x)&:=&frac{4 x}{(x+1)^2}
end{eqnarray}
and
begin{eqnarray}
left(
begin{array}{r} a \ b \ c end{array}
right) =
left{
left(
begin{array}{r} frac{1}{4}(2-a_1-3 c_1) \ frac{1}{4}(-b_1-2 c_1) \ -c_1 end{array}
right),
left(
begin{array}{r} frac{1}{4}(-2+a_1- c_1) \ frac{1}{4}(b_1-2 c_1) \ -c_1 end{array}
right)
right}
end{eqnarray}
In[2]:= a1 =.; b1 =.; c1 =.;
a =.; b =.; c =.; x =.;
f[x_] = 4 x/(x + 1)^2;
m[x_] = (1 - x)^(1/4 (-2 - 4 a + a1 - 4 b + b1 + 4 c + c1)) x^(
1/2 (-c - c1)) (1 + x)^(a + 1/4 (-2 + a1 + 4 b - b1 + c1));
{p, q} = { b1 (-2 + a1 - c1), (-2 + a1 - c1) (a1 + c1)}/4;
a = {1/4 (2 - a1 - 3 c1), 1/4 (-2 + a1 - c1)};
b = {1/4 (-b1 - 2 c1), 1/4 (b1 - 2 c1)};
c = {-c1, -c1};
{b, c} = {(-2 b1 + a1 b1 - 8 a c1 + b1 c1 - 4 c1^2)/(
8 (2 a + c1)), -c1};
eX = (x (x - 1) (x + 1) D[#, {x, 2}] + (a1 x^2 + b1 x + c1) D[#,
x] + (p + q x) #) & /@ {1/
m[x] (C[1] Hypergeometric2F1[a, b, c, f[x]] +
C[2] f[x]^(1 - c) Hypergeometric2F1[a + 1 - c, b + 1 - c,
2 - c, f[x]])};
{a1, b1, c1, x} = RandomReal[{0, 1}, 4, WorkingPrecision -> 50];
Simplify[eX]
Out[13]= {{0.*10^-47 C[1] + 0.*10^-48 C[2],
0.*10^-47 C[1] + 0.*10^-48 C[2]}}
This is a generalization of example 1.1 in page 3 in https://arxiv.org/abs/1606.01576 .
Again, this is not exactly an answer to your question but I found exact solutions to an ODE very similar to the one on the bottom of your question.
Define:
begin{eqnarray}
p&:=&frac{b_1}{4}(-2+a_1-c_1)\
q&:=&frac{a_1+c_1}{4}(-2+a_1-c_1)
end{eqnarray}
and consider the following ODE:
begin{eqnarray}
x(x-1)(x+1) frac{d^2 y(x)}{d x^2} + left( a_1 x^2+b_1 x+c_1right) frac{d y(x)}{d x} + (p+q x) y(x)=0
end{eqnarray}
Then we have:
begin{eqnarray}
y(x):=frac{1}{m(x)} left( C_1 F_{2,1} left[ a,b,c,f(x)right] + C_2 [f(x)]^{1-c} F_{2,1}left[a+1-c,b+1-c,2-c,f[x]right]right)
end{eqnarray}
where
begin{eqnarray}
m(x)&:=& x^{frac{1}{2} (-c-c_1)} (x+1)^{a+frac{1}{4} (a_1+4 b-b_1+c_1-2)} (1-x)^{frac{1}{4} (-4 a+a_1-4 b+b_1+4 c+c_1-2)}\
f(x)&:=&frac{4 x}{(x+1)^2}
end{eqnarray}
and
begin{eqnarray}
left(
begin{array}{r} a \ b \ c end{array}
right) =
left{
left(
begin{array}{r} frac{1}{4}(2-a_1-3 c_1) \ frac{1}{4}(-b_1-2 c_1) \ -c_1 end{array}
right),
left(
begin{array}{r} frac{1}{4}(-2+a_1- c_1) \ frac{1}{4}(b_1-2 c_1) \ -c_1 end{array}
right)
right}
end{eqnarray}
In[2]:= a1 =.; b1 =.; c1 =.;
a =.; b =.; c =.; x =.;
f[x_] = 4 x/(x + 1)^2;
m[x_] = (1 - x)^(1/4 (-2 - 4 a + a1 - 4 b + b1 + 4 c + c1)) x^(
1/2 (-c - c1)) (1 + x)^(a + 1/4 (-2 + a1 + 4 b - b1 + c1));
{p, q} = { b1 (-2 + a1 - c1), (-2 + a1 - c1) (a1 + c1)}/4;
a = {1/4 (2 - a1 - 3 c1), 1/4 (-2 + a1 - c1)};
b = {1/4 (-b1 - 2 c1), 1/4 (b1 - 2 c1)};
c = {-c1, -c1};
{b, c} = {(-2 b1 + a1 b1 - 8 a c1 + b1 c1 - 4 c1^2)/(
8 (2 a + c1)), -c1};
eX = (x (x - 1) (x + 1) D[#, {x, 2}] + (a1 x^2 + b1 x + c1) D[#,
x] + (p + q x) #) & /@ {1/
m[x] (C[1] Hypergeometric2F1[a, b, c, f[x]] +
C[2] f[x]^(1 - c) Hypergeometric2F1[a + 1 - c, b + 1 - c,
2 - c, f[x]])};
{a1, b1, c1, x} = RandomReal[{0, 1}, 4, WorkingPrecision -> 50];
Simplify[eX]
Out[13]= {{0.*10^-47 C[1] + 0.*10^-48 C[2],
0.*10^-47 C[1] + 0.*10^-48 C[2]}}
This is a generalization of example 1.1 in page 3 in https://arxiv.org/abs/1606.01576 .
answered Nov 21 at 17:45
Przemo
4,1171928
4,1171928
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2282856%2fdoes-heuns-differential-equation-have-other-known-types-confluent-approach%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
What about them?
– Robert Israel
May 16 '17 at 4:20
@Robert Israel The first two consider $ato0$ and $1$ respectively
– doraemonpaul
Aug 15 '17 at 16:24