Find $k$ in Maclaurin series expansion of $frac{dy}{dx}=-frac{1}{2}+frac{1}{4}x+kx^2+…$ where...
up vote
2
down vote
favorite
Given that $y=lnBigl(frac{e^{-x}+1}{2}Bigl)$, show $frac{dy}{dx}=frac{1}{2}e^{-y}-1$. Show that the series expansion of $frac{dy}{dx}$ in ascending powers of $x$, up to and including the term in $x^2$ is $-frac{1}{2}+frac{1}{4}x+kx^2+dots$ , where $k$ is to be determined.
I'm able to solve this question but I'm unsure if my $k$ value is correct. My $k$ is $0$. Am I correct? Otherwise, I might have made a mistake somewhere.
My work
1) $f(0)=y=0$
2) $frac{dy}{dx}=frac{1}{2}e^{-y}-1 $
therefore $f'(0)=-frac{1}{2}$
3) $frac{d^2y}{dx^2}=-frac{1}{2}e^{-y}cdotBig(frac{dy}{dx}Bigl) $
therefore $f''(0)=frac{1}{4}$
4) $frac{d^3y}{dx^3}=frac{1}{2}e^{-y}cdotBigl(frac{dy}{dx}Bigl)^2-frac{1}{2}e^{-y}cdotBigl(frac{d^2y}{dx^2}Bigl) $
therefore $f'''(0)=0$
Hence
$$frac{dy}{dx}=f'(0)+f''(0)x+frac{f'''(x)}{2}x^2+dots=-frac{1}{2}+frac{1}{4}x+dots$$
sequences-and-series taylor-expansion
add a comment |
up vote
2
down vote
favorite
Given that $y=lnBigl(frac{e^{-x}+1}{2}Bigl)$, show $frac{dy}{dx}=frac{1}{2}e^{-y}-1$. Show that the series expansion of $frac{dy}{dx}$ in ascending powers of $x$, up to and including the term in $x^2$ is $-frac{1}{2}+frac{1}{4}x+kx^2+dots$ , where $k$ is to be determined.
I'm able to solve this question but I'm unsure if my $k$ value is correct. My $k$ is $0$. Am I correct? Otherwise, I might have made a mistake somewhere.
My work
1) $f(0)=y=0$
2) $frac{dy}{dx}=frac{1}{2}e^{-y}-1 $
therefore $f'(0)=-frac{1}{2}$
3) $frac{d^2y}{dx^2}=-frac{1}{2}e^{-y}cdotBig(frac{dy}{dx}Bigl) $
therefore $f''(0)=frac{1}{4}$
4) $frac{d^3y}{dx^3}=frac{1}{2}e^{-y}cdotBigl(frac{dy}{dx}Bigl)^2-frac{1}{2}e^{-y}cdotBigl(frac{d^2y}{dx^2}Bigl) $
therefore $f'''(0)=0$
Hence
$$frac{dy}{dx}=f'(0)+f''(0)x+frac{f'''(x)}{2}x^2+dots=-frac{1}{2}+frac{1}{4}x+dots$$
sequences-and-series taylor-expansion
1
Looks OK, but the title mismatches with the main text, where you calculate the Maclaurin expansion of $y'$.
– gammatester
Nov 21 at 15:55
add a comment |
up vote
2
down vote
favorite
up vote
2
down vote
favorite
Given that $y=lnBigl(frac{e^{-x}+1}{2}Bigl)$, show $frac{dy}{dx}=frac{1}{2}e^{-y}-1$. Show that the series expansion of $frac{dy}{dx}$ in ascending powers of $x$, up to and including the term in $x^2$ is $-frac{1}{2}+frac{1}{4}x+kx^2+dots$ , where $k$ is to be determined.
I'm able to solve this question but I'm unsure if my $k$ value is correct. My $k$ is $0$. Am I correct? Otherwise, I might have made a mistake somewhere.
My work
1) $f(0)=y=0$
2) $frac{dy}{dx}=frac{1}{2}e^{-y}-1 $
therefore $f'(0)=-frac{1}{2}$
3) $frac{d^2y}{dx^2}=-frac{1}{2}e^{-y}cdotBig(frac{dy}{dx}Bigl) $
therefore $f''(0)=frac{1}{4}$
4) $frac{d^3y}{dx^3}=frac{1}{2}e^{-y}cdotBigl(frac{dy}{dx}Bigl)^2-frac{1}{2}e^{-y}cdotBigl(frac{d^2y}{dx^2}Bigl) $
therefore $f'''(0)=0$
Hence
$$frac{dy}{dx}=f'(0)+f''(0)x+frac{f'''(x)}{2}x^2+dots=-frac{1}{2}+frac{1}{4}x+dots$$
sequences-and-series taylor-expansion
Given that $y=lnBigl(frac{e^{-x}+1}{2}Bigl)$, show $frac{dy}{dx}=frac{1}{2}e^{-y}-1$. Show that the series expansion of $frac{dy}{dx}$ in ascending powers of $x$, up to and including the term in $x^2$ is $-frac{1}{2}+frac{1}{4}x+kx^2+dots$ , where $k$ is to be determined.
I'm able to solve this question but I'm unsure if my $k$ value is correct. My $k$ is $0$. Am I correct? Otherwise, I might have made a mistake somewhere.
My work
1) $f(0)=y=0$
2) $frac{dy}{dx}=frac{1}{2}e^{-y}-1 $
therefore $f'(0)=-frac{1}{2}$
3) $frac{d^2y}{dx^2}=-frac{1}{2}e^{-y}cdotBig(frac{dy}{dx}Bigl) $
therefore $f''(0)=frac{1}{4}$
4) $frac{d^3y}{dx^3}=frac{1}{2}e^{-y}cdotBigl(frac{dy}{dx}Bigl)^2-frac{1}{2}e^{-y}cdotBigl(frac{d^2y}{dx^2}Bigl) $
therefore $f'''(0)=0$
Hence
$$frac{dy}{dx}=f'(0)+f''(0)x+frac{f'''(x)}{2}x^2+dots=-frac{1}{2}+frac{1}{4}x+dots$$
sequences-and-series taylor-expansion
sequences-and-series taylor-expansion
edited Nov 21 at 17:14
Robert Z
90.4k1056128
90.4k1056128
asked Nov 21 at 15:46
Henias
615
615
1
Looks OK, but the title mismatches with the main text, where you calculate the Maclaurin expansion of $y'$.
– gammatester
Nov 21 at 15:55
add a comment |
1
Looks OK, but the title mismatches with the main text, where you calculate the Maclaurin expansion of $y'$.
– gammatester
Nov 21 at 15:55
1
1
Looks OK, but the title mismatches with the main text, where you calculate the Maclaurin expansion of $y'$.
– gammatester
Nov 21 at 15:55
Looks OK, but the title mismatches with the main text, where you calculate the Maclaurin expansion of $y'$.
– gammatester
Nov 21 at 15:55
add a comment |
3 Answers
3
active
oldest
votes
up vote
1
down vote
A hint. If you set $$ u=frac{1-e^{-x}}2$$ then, as $tto0$, $u to 0$ and you can use $$ln(1-u)=-u+frac{u^2}2+o(u^3) $$ to get a Maclaurin series expansion of $$y=lnBigl(frac{e^{-x}+1}{2}Bigl).$$
add a comment |
up vote
1
down vote
Yes, you are correct $k=0$. This is an alternative solution where we use the expansions of $e^t$ and $(1+t)^{-1}$ at $t=0$:
$$begin{align}
frac{dy}{dx}&=frac{2}{e^{-x}+1}cdot frac{-e^{-x}}{2} =-frac{1}{1+e^x}\
&=-frac{1}{1+1+x+frac{x^2}{2}+o(x^2)}\
&=-frac{1}{2}left(1+frac{x}{2}+frac{x^2}{4}+o(x^2)right)^{-1}\
&=-frac{1}{2}left(1-left(frac{x}{2}+frac{x^2}{4}right)+left(frac{x}{2}+o(x)right)^2+o(x^2)right)\
&=-frac{1}{2}+frac{x}{4}+underbrace{left(-frac{1}{4}+frac{1}{4}right)}_{=0}cdot x^2+ o(x^2).
end{align}$$
add a comment |
up vote
1
down vote
Notice that $$2e^y=1+e^{-x}$$therefore by differentiating we have $$2y'e^y=-e^{-x}$$or equivalently$$y'=-({2e^y-1}){1over 2e^y}={1over 2}e^{-y}-1$$also we know that$$k={1over 2}{d^2yover dx^2}|_{x=0}$$since $y(0)=0$ and $y'(0)=-{1over 2}$ we obtain$$y''=-{1over 2}y'e^{-y}to k={1over 8}$$
add a comment |
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
A hint. If you set $$ u=frac{1-e^{-x}}2$$ then, as $tto0$, $u to 0$ and you can use $$ln(1-u)=-u+frac{u^2}2+o(u^3) $$ to get a Maclaurin series expansion of $$y=lnBigl(frac{e^{-x}+1}{2}Bigl).$$
add a comment |
up vote
1
down vote
A hint. If you set $$ u=frac{1-e^{-x}}2$$ then, as $tto0$, $u to 0$ and you can use $$ln(1-u)=-u+frac{u^2}2+o(u^3) $$ to get a Maclaurin series expansion of $$y=lnBigl(frac{e^{-x}+1}{2}Bigl).$$
add a comment |
up vote
1
down vote
up vote
1
down vote
A hint. If you set $$ u=frac{1-e^{-x}}2$$ then, as $tto0$, $u to 0$ and you can use $$ln(1-u)=-u+frac{u^2}2+o(u^3) $$ to get a Maclaurin series expansion of $$y=lnBigl(frac{e^{-x}+1}{2}Bigl).$$
A hint. If you set $$ u=frac{1-e^{-x}}2$$ then, as $tto0$, $u to 0$ and you can use $$ln(1-u)=-u+frac{u^2}2+o(u^3) $$ to get a Maclaurin series expansion of $$y=lnBigl(frac{e^{-x}+1}{2}Bigl).$$
answered Nov 21 at 15:54
Dan Kent
237
237
add a comment |
add a comment |
up vote
1
down vote
Yes, you are correct $k=0$. This is an alternative solution where we use the expansions of $e^t$ and $(1+t)^{-1}$ at $t=0$:
$$begin{align}
frac{dy}{dx}&=frac{2}{e^{-x}+1}cdot frac{-e^{-x}}{2} =-frac{1}{1+e^x}\
&=-frac{1}{1+1+x+frac{x^2}{2}+o(x^2)}\
&=-frac{1}{2}left(1+frac{x}{2}+frac{x^2}{4}+o(x^2)right)^{-1}\
&=-frac{1}{2}left(1-left(frac{x}{2}+frac{x^2}{4}right)+left(frac{x}{2}+o(x)right)^2+o(x^2)right)\
&=-frac{1}{2}+frac{x}{4}+underbrace{left(-frac{1}{4}+frac{1}{4}right)}_{=0}cdot x^2+ o(x^2).
end{align}$$
add a comment |
up vote
1
down vote
Yes, you are correct $k=0$. This is an alternative solution where we use the expansions of $e^t$ and $(1+t)^{-1}$ at $t=0$:
$$begin{align}
frac{dy}{dx}&=frac{2}{e^{-x}+1}cdot frac{-e^{-x}}{2} =-frac{1}{1+e^x}\
&=-frac{1}{1+1+x+frac{x^2}{2}+o(x^2)}\
&=-frac{1}{2}left(1+frac{x}{2}+frac{x^2}{4}+o(x^2)right)^{-1}\
&=-frac{1}{2}left(1-left(frac{x}{2}+frac{x^2}{4}right)+left(frac{x}{2}+o(x)right)^2+o(x^2)right)\
&=-frac{1}{2}+frac{x}{4}+underbrace{left(-frac{1}{4}+frac{1}{4}right)}_{=0}cdot x^2+ o(x^2).
end{align}$$
add a comment |
up vote
1
down vote
up vote
1
down vote
Yes, you are correct $k=0$. This is an alternative solution where we use the expansions of $e^t$ and $(1+t)^{-1}$ at $t=0$:
$$begin{align}
frac{dy}{dx}&=frac{2}{e^{-x}+1}cdot frac{-e^{-x}}{2} =-frac{1}{1+e^x}\
&=-frac{1}{1+1+x+frac{x^2}{2}+o(x^2)}\
&=-frac{1}{2}left(1+frac{x}{2}+frac{x^2}{4}+o(x^2)right)^{-1}\
&=-frac{1}{2}left(1-left(frac{x}{2}+frac{x^2}{4}right)+left(frac{x}{2}+o(x)right)^2+o(x^2)right)\
&=-frac{1}{2}+frac{x}{4}+underbrace{left(-frac{1}{4}+frac{1}{4}right)}_{=0}cdot x^2+ o(x^2).
end{align}$$
Yes, you are correct $k=0$. This is an alternative solution where we use the expansions of $e^t$ and $(1+t)^{-1}$ at $t=0$:
$$begin{align}
frac{dy}{dx}&=frac{2}{e^{-x}+1}cdot frac{-e^{-x}}{2} =-frac{1}{1+e^x}\
&=-frac{1}{1+1+x+frac{x^2}{2}+o(x^2)}\
&=-frac{1}{2}left(1+frac{x}{2}+frac{x^2}{4}+o(x^2)right)^{-1}\
&=-frac{1}{2}left(1-left(frac{x}{2}+frac{x^2}{4}right)+left(frac{x}{2}+o(x)right)^2+o(x^2)right)\
&=-frac{1}{2}+frac{x}{4}+underbrace{left(-frac{1}{4}+frac{1}{4}right)}_{=0}cdot x^2+ o(x^2).
end{align}$$
edited Nov 21 at 16:08
answered Nov 21 at 15:56
Robert Z
90.4k1056128
90.4k1056128
add a comment |
add a comment |
up vote
1
down vote
Notice that $$2e^y=1+e^{-x}$$therefore by differentiating we have $$2y'e^y=-e^{-x}$$or equivalently$$y'=-({2e^y-1}){1over 2e^y}={1over 2}e^{-y}-1$$also we know that$$k={1over 2}{d^2yover dx^2}|_{x=0}$$since $y(0)=0$ and $y'(0)=-{1over 2}$ we obtain$$y''=-{1over 2}y'e^{-y}to k={1over 8}$$
add a comment |
up vote
1
down vote
Notice that $$2e^y=1+e^{-x}$$therefore by differentiating we have $$2y'e^y=-e^{-x}$$or equivalently$$y'=-({2e^y-1}){1over 2e^y}={1over 2}e^{-y}-1$$also we know that$$k={1over 2}{d^2yover dx^2}|_{x=0}$$since $y(0)=0$ and $y'(0)=-{1over 2}$ we obtain$$y''=-{1over 2}y'e^{-y}to k={1over 8}$$
add a comment |
up vote
1
down vote
up vote
1
down vote
Notice that $$2e^y=1+e^{-x}$$therefore by differentiating we have $$2y'e^y=-e^{-x}$$or equivalently$$y'=-({2e^y-1}){1over 2e^y}={1over 2}e^{-y}-1$$also we know that$$k={1over 2}{d^2yover dx^2}|_{x=0}$$since $y(0)=0$ and $y'(0)=-{1over 2}$ we obtain$$y''=-{1over 2}y'e^{-y}to k={1over 8}$$
Notice that $$2e^y=1+e^{-x}$$therefore by differentiating we have $$2y'e^y=-e^{-x}$$or equivalently$$y'=-({2e^y-1}){1over 2e^y}={1over 2}e^{-y}-1$$also we know that$$k={1over 2}{d^2yover dx^2}|_{x=0}$$since $y(0)=0$ and $y'(0)=-{1over 2}$ we obtain$$y''=-{1over 2}y'e^{-y}to k={1over 8}$$
answered Nov 21 at 19:24
Mostafa Ayaz
12.2k3733
12.2k3733
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007897%2ffind-k-in-maclaurin-series-expansion-of-fracdydx-frac12-frac14%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
Looks OK, but the title mismatches with the main text, where you calculate the Maclaurin expansion of $y'$.
– gammatester
Nov 21 at 15:55