Find $k$ in Maclaurin series expansion of $frac{dy}{dx}=-frac{1}{2}+frac{1}{4}x+kx^2+…$ where...











up vote
2
down vote

favorite
2













Given that $y=lnBigl(frac{e^{-x}+1}{2}Bigl)$, show $frac{dy}{dx}=frac{1}{2}e^{-y}-1$. Show that the series expansion of $frac{dy}{dx}$ in ascending powers of $x$, up to and including the term in $x^2$ is $-frac{1}{2}+frac{1}{4}x+kx^2+dots$ , where $k$ is to be determined.




I'm able to solve this question but I'm unsure if my $k$ value is correct. My $k$ is $0$. Am I correct? Otherwise, I might have made a mistake somewhere.



My work



1) $f(0)=y=0$



2) $frac{dy}{dx}=frac{1}{2}e^{-y}-1 $
therefore $f'(0)=-frac{1}{2}$



3) $frac{d^2y}{dx^2}=-frac{1}{2}e^{-y}cdotBig(frac{dy}{dx}Bigl) $
therefore $f''(0)=frac{1}{4}$



4) $frac{d^3y}{dx^3}=frac{1}{2}e^{-y}cdotBigl(frac{dy}{dx}Bigl)^2-frac{1}{2}e^{-y}cdotBigl(frac{d^2y}{dx^2}Bigl) $
therefore $f'''(0)=0$



Hence
$$frac{dy}{dx}=f'(0)+f''(0)x+frac{f'''(x)}{2}x^2+dots=-frac{1}{2}+frac{1}{4}x+dots$$










share|cite|improve this question




















  • 1




    Looks OK, but the title mismatches with the main text, where you calculate the Maclaurin expansion of $y'$.
    – gammatester
    Nov 21 at 15:55

















up vote
2
down vote

favorite
2













Given that $y=lnBigl(frac{e^{-x}+1}{2}Bigl)$, show $frac{dy}{dx}=frac{1}{2}e^{-y}-1$. Show that the series expansion of $frac{dy}{dx}$ in ascending powers of $x$, up to and including the term in $x^2$ is $-frac{1}{2}+frac{1}{4}x+kx^2+dots$ , where $k$ is to be determined.




I'm able to solve this question but I'm unsure if my $k$ value is correct. My $k$ is $0$. Am I correct? Otherwise, I might have made a mistake somewhere.



My work



1) $f(0)=y=0$



2) $frac{dy}{dx}=frac{1}{2}e^{-y}-1 $
therefore $f'(0)=-frac{1}{2}$



3) $frac{d^2y}{dx^2}=-frac{1}{2}e^{-y}cdotBig(frac{dy}{dx}Bigl) $
therefore $f''(0)=frac{1}{4}$



4) $frac{d^3y}{dx^3}=frac{1}{2}e^{-y}cdotBigl(frac{dy}{dx}Bigl)^2-frac{1}{2}e^{-y}cdotBigl(frac{d^2y}{dx^2}Bigl) $
therefore $f'''(0)=0$



Hence
$$frac{dy}{dx}=f'(0)+f''(0)x+frac{f'''(x)}{2}x^2+dots=-frac{1}{2}+frac{1}{4}x+dots$$










share|cite|improve this question




















  • 1




    Looks OK, but the title mismatches with the main text, where you calculate the Maclaurin expansion of $y'$.
    – gammatester
    Nov 21 at 15:55















up vote
2
down vote

favorite
2









up vote
2
down vote

favorite
2






2






Given that $y=lnBigl(frac{e^{-x}+1}{2}Bigl)$, show $frac{dy}{dx}=frac{1}{2}e^{-y}-1$. Show that the series expansion of $frac{dy}{dx}$ in ascending powers of $x$, up to and including the term in $x^2$ is $-frac{1}{2}+frac{1}{4}x+kx^2+dots$ , where $k$ is to be determined.




I'm able to solve this question but I'm unsure if my $k$ value is correct. My $k$ is $0$. Am I correct? Otherwise, I might have made a mistake somewhere.



My work



1) $f(0)=y=0$



2) $frac{dy}{dx}=frac{1}{2}e^{-y}-1 $
therefore $f'(0)=-frac{1}{2}$



3) $frac{d^2y}{dx^2}=-frac{1}{2}e^{-y}cdotBig(frac{dy}{dx}Bigl) $
therefore $f''(0)=frac{1}{4}$



4) $frac{d^3y}{dx^3}=frac{1}{2}e^{-y}cdotBigl(frac{dy}{dx}Bigl)^2-frac{1}{2}e^{-y}cdotBigl(frac{d^2y}{dx^2}Bigl) $
therefore $f'''(0)=0$



Hence
$$frac{dy}{dx}=f'(0)+f''(0)x+frac{f'''(x)}{2}x^2+dots=-frac{1}{2}+frac{1}{4}x+dots$$










share|cite|improve this question
















Given that $y=lnBigl(frac{e^{-x}+1}{2}Bigl)$, show $frac{dy}{dx}=frac{1}{2}e^{-y}-1$. Show that the series expansion of $frac{dy}{dx}$ in ascending powers of $x$, up to and including the term in $x^2$ is $-frac{1}{2}+frac{1}{4}x+kx^2+dots$ , where $k$ is to be determined.




I'm able to solve this question but I'm unsure if my $k$ value is correct. My $k$ is $0$. Am I correct? Otherwise, I might have made a mistake somewhere.



My work



1) $f(0)=y=0$



2) $frac{dy}{dx}=frac{1}{2}e^{-y}-1 $
therefore $f'(0)=-frac{1}{2}$



3) $frac{d^2y}{dx^2}=-frac{1}{2}e^{-y}cdotBig(frac{dy}{dx}Bigl) $
therefore $f''(0)=frac{1}{4}$



4) $frac{d^3y}{dx^3}=frac{1}{2}e^{-y}cdotBigl(frac{dy}{dx}Bigl)^2-frac{1}{2}e^{-y}cdotBigl(frac{d^2y}{dx^2}Bigl) $
therefore $f'''(0)=0$



Hence
$$frac{dy}{dx}=f'(0)+f''(0)x+frac{f'''(x)}{2}x^2+dots=-frac{1}{2}+frac{1}{4}x+dots$$







sequences-and-series taylor-expansion






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 21 at 17:14









Robert Z

90.4k1056128




90.4k1056128










asked Nov 21 at 15:46









Henias

615




615








  • 1




    Looks OK, but the title mismatches with the main text, where you calculate the Maclaurin expansion of $y'$.
    – gammatester
    Nov 21 at 15:55
















  • 1




    Looks OK, but the title mismatches with the main text, where you calculate the Maclaurin expansion of $y'$.
    – gammatester
    Nov 21 at 15:55










1




1




Looks OK, but the title mismatches with the main text, where you calculate the Maclaurin expansion of $y'$.
– gammatester
Nov 21 at 15:55






Looks OK, but the title mismatches with the main text, where you calculate the Maclaurin expansion of $y'$.
– gammatester
Nov 21 at 15:55












3 Answers
3






active

oldest

votes

















up vote
1
down vote













A hint. If you set $$ u=frac{1-e^{-x}}2$$ then, as $tto0$, $u to 0$ and you can use $$ln(1-u)=-u+frac{u^2}2+o(u^3) $$ to get a Maclaurin series expansion of $$y=lnBigl(frac{e^{-x}+1}{2}Bigl).$$






share|cite|improve this answer




























    up vote
    1
    down vote













    Yes, you are correct $k=0$. This is an alternative solution where we use the expansions of $e^t$ and $(1+t)^{-1}$ at $t=0$:
    $$begin{align}
    frac{dy}{dx}&=frac{2}{e^{-x}+1}cdot frac{-e^{-x}}{2} =-frac{1}{1+e^x}\
    &=-frac{1}{1+1+x+frac{x^2}{2}+o(x^2)}\
    &=-frac{1}{2}left(1+frac{x}{2}+frac{x^2}{4}+o(x^2)right)^{-1}\
    &=-frac{1}{2}left(1-left(frac{x}{2}+frac{x^2}{4}right)+left(frac{x}{2}+o(x)right)^2+o(x^2)right)\
    &=-frac{1}{2}+frac{x}{4}+underbrace{left(-frac{1}{4}+frac{1}{4}right)}_{=0}cdot x^2+ o(x^2).
    end{align}$$






    share|cite|improve this answer






























      up vote
      1
      down vote













      Notice that $$2e^y=1+e^{-x}$$therefore by differentiating we have $$2y'e^y=-e^{-x}$$or equivalently$$y'=-({2e^y-1}){1over 2e^y}={1over 2}e^{-y}-1$$also we know that$$k={1over 2}{d^2yover dx^2}|_{x=0}$$since $y(0)=0$ and $y'(0)=-{1over 2}$ we obtain$$y''=-{1over 2}y'e^{-y}to k={1over 8}$$






      share|cite|improve this answer





















        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














         

        draft saved


        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007897%2ffind-k-in-maclaurin-series-expansion-of-fracdydx-frac12-frac14%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes








        up vote
        1
        down vote













        A hint. If you set $$ u=frac{1-e^{-x}}2$$ then, as $tto0$, $u to 0$ and you can use $$ln(1-u)=-u+frac{u^2}2+o(u^3) $$ to get a Maclaurin series expansion of $$y=lnBigl(frac{e^{-x}+1}{2}Bigl).$$






        share|cite|improve this answer

























          up vote
          1
          down vote













          A hint. If you set $$ u=frac{1-e^{-x}}2$$ then, as $tto0$, $u to 0$ and you can use $$ln(1-u)=-u+frac{u^2}2+o(u^3) $$ to get a Maclaurin series expansion of $$y=lnBigl(frac{e^{-x}+1}{2}Bigl).$$






          share|cite|improve this answer























            up vote
            1
            down vote










            up vote
            1
            down vote









            A hint. If you set $$ u=frac{1-e^{-x}}2$$ then, as $tto0$, $u to 0$ and you can use $$ln(1-u)=-u+frac{u^2}2+o(u^3) $$ to get a Maclaurin series expansion of $$y=lnBigl(frac{e^{-x}+1}{2}Bigl).$$






            share|cite|improve this answer












            A hint. If you set $$ u=frac{1-e^{-x}}2$$ then, as $tto0$, $u to 0$ and you can use $$ln(1-u)=-u+frac{u^2}2+o(u^3) $$ to get a Maclaurin series expansion of $$y=lnBigl(frac{e^{-x}+1}{2}Bigl).$$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Nov 21 at 15:54









            Dan Kent

            237




            237






















                up vote
                1
                down vote













                Yes, you are correct $k=0$. This is an alternative solution where we use the expansions of $e^t$ and $(1+t)^{-1}$ at $t=0$:
                $$begin{align}
                frac{dy}{dx}&=frac{2}{e^{-x}+1}cdot frac{-e^{-x}}{2} =-frac{1}{1+e^x}\
                &=-frac{1}{1+1+x+frac{x^2}{2}+o(x^2)}\
                &=-frac{1}{2}left(1+frac{x}{2}+frac{x^2}{4}+o(x^2)right)^{-1}\
                &=-frac{1}{2}left(1-left(frac{x}{2}+frac{x^2}{4}right)+left(frac{x}{2}+o(x)right)^2+o(x^2)right)\
                &=-frac{1}{2}+frac{x}{4}+underbrace{left(-frac{1}{4}+frac{1}{4}right)}_{=0}cdot x^2+ o(x^2).
                end{align}$$






                share|cite|improve this answer



























                  up vote
                  1
                  down vote













                  Yes, you are correct $k=0$. This is an alternative solution where we use the expansions of $e^t$ and $(1+t)^{-1}$ at $t=0$:
                  $$begin{align}
                  frac{dy}{dx}&=frac{2}{e^{-x}+1}cdot frac{-e^{-x}}{2} =-frac{1}{1+e^x}\
                  &=-frac{1}{1+1+x+frac{x^2}{2}+o(x^2)}\
                  &=-frac{1}{2}left(1+frac{x}{2}+frac{x^2}{4}+o(x^2)right)^{-1}\
                  &=-frac{1}{2}left(1-left(frac{x}{2}+frac{x^2}{4}right)+left(frac{x}{2}+o(x)right)^2+o(x^2)right)\
                  &=-frac{1}{2}+frac{x}{4}+underbrace{left(-frac{1}{4}+frac{1}{4}right)}_{=0}cdot x^2+ o(x^2).
                  end{align}$$






                  share|cite|improve this answer

























                    up vote
                    1
                    down vote










                    up vote
                    1
                    down vote









                    Yes, you are correct $k=0$. This is an alternative solution where we use the expansions of $e^t$ and $(1+t)^{-1}$ at $t=0$:
                    $$begin{align}
                    frac{dy}{dx}&=frac{2}{e^{-x}+1}cdot frac{-e^{-x}}{2} =-frac{1}{1+e^x}\
                    &=-frac{1}{1+1+x+frac{x^2}{2}+o(x^2)}\
                    &=-frac{1}{2}left(1+frac{x}{2}+frac{x^2}{4}+o(x^2)right)^{-1}\
                    &=-frac{1}{2}left(1-left(frac{x}{2}+frac{x^2}{4}right)+left(frac{x}{2}+o(x)right)^2+o(x^2)right)\
                    &=-frac{1}{2}+frac{x}{4}+underbrace{left(-frac{1}{4}+frac{1}{4}right)}_{=0}cdot x^2+ o(x^2).
                    end{align}$$






                    share|cite|improve this answer














                    Yes, you are correct $k=0$. This is an alternative solution where we use the expansions of $e^t$ and $(1+t)^{-1}$ at $t=0$:
                    $$begin{align}
                    frac{dy}{dx}&=frac{2}{e^{-x}+1}cdot frac{-e^{-x}}{2} =-frac{1}{1+e^x}\
                    &=-frac{1}{1+1+x+frac{x^2}{2}+o(x^2)}\
                    &=-frac{1}{2}left(1+frac{x}{2}+frac{x^2}{4}+o(x^2)right)^{-1}\
                    &=-frac{1}{2}left(1-left(frac{x}{2}+frac{x^2}{4}right)+left(frac{x}{2}+o(x)right)^2+o(x^2)right)\
                    &=-frac{1}{2}+frac{x}{4}+underbrace{left(-frac{1}{4}+frac{1}{4}right)}_{=0}cdot x^2+ o(x^2).
                    end{align}$$







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited Nov 21 at 16:08

























                    answered Nov 21 at 15:56









                    Robert Z

                    90.4k1056128




                    90.4k1056128






















                        up vote
                        1
                        down vote













                        Notice that $$2e^y=1+e^{-x}$$therefore by differentiating we have $$2y'e^y=-e^{-x}$$or equivalently$$y'=-({2e^y-1}){1over 2e^y}={1over 2}e^{-y}-1$$also we know that$$k={1over 2}{d^2yover dx^2}|_{x=0}$$since $y(0)=0$ and $y'(0)=-{1over 2}$ we obtain$$y''=-{1over 2}y'e^{-y}to k={1over 8}$$






                        share|cite|improve this answer

























                          up vote
                          1
                          down vote













                          Notice that $$2e^y=1+e^{-x}$$therefore by differentiating we have $$2y'e^y=-e^{-x}$$or equivalently$$y'=-({2e^y-1}){1over 2e^y}={1over 2}e^{-y}-1$$also we know that$$k={1over 2}{d^2yover dx^2}|_{x=0}$$since $y(0)=0$ and $y'(0)=-{1over 2}$ we obtain$$y''=-{1over 2}y'e^{-y}to k={1over 8}$$






                          share|cite|improve this answer























                            up vote
                            1
                            down vote










                            up vote
                            1
                            down vote









                            Notice that $$2e^y=1+e^{-x}$$therefore by differentiating we have $$2y'e^y=-e^{-x}$$or equivalently$$y'=-({2e^y-1}){1over 2e^y}={1over 2}e^{-y}-1$$also we know that$$k={1over 2}{d^2yover dx^2}|_{x=0}$$since $y(0)=0$ and $y'(0)=-{1over 2}$ we obtain$$y''=-{1over 2}y'e^{-y}to k={1over 8}$$






                            share|cite|improve this answer












                            Notice that $$2e^y=1+e^{-x}$$therefore by differentiating we have $$2y'e^y=-e^{-x}$$or equivalently$$y'=-({2e^y-1}){1over 2e^y}={1over 2}e^{-y}-1$$also we know that$$k={1over 2}{d^2yover dx^2}|_{x=0}$$since $y(0)=0$ and $y'(0)=-{1over 2}$ we obtain$$y''=-{1over 2}y'e^{-y}to k={1over 8}$$







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Nov 21 at 19:24









                            Mostafa Ayaz

                            12.2k3733




                            12.2k3733






























                                 

                                draft saved


                                draft discarded



















































                                 


                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007897%2ffind-k-in-maclaurin-series-expansion-of-fracdydx-frac12-frac14%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Berounka

                                Sphinx de Gizeh

                                Different font size/position of beamer's navigation symbols template's content depending on regular/plain...