How to compute Spearman correlation in Tensorflow











up vote
1
down vote

favorite












Problem



I need to compute the Pearson and Spearman correlations, and use it as metrics in tensorflow.



For Pearson, it's trivial :



tf.contrib.metrics.streaming_pearson_correlation(y_pred, y_true)


But for Spearman, I am clueless !



What I tried :



From this answer :



    samples = 1
predictions_rank = tf.nn.top_k(y_pred, k=samples, sorted=True, name='prediction_rank').indices
real_rank = tf.nn.top_k(y_true, k=samples, sorted=True, name='real_rank').indices
rank_diffs = predictions_rank - real_rank
rank_diffs_squared_sum = tf.reduce_sum(rank_diffs * rank_diffs)
six = tf.constant(6)
one = tf.constant(1.0)
numerator = tf.cast(six * rank_diffs_squared_sum, dtype=tf.float32)
divider = tf.cast(samples * samples * samples - samples, dtype=tf.float32)
spearman_batch = one - numerator / divider


But this return NaN...





Following the definition of Wikipedia :
enter image description here



I tried :



size = tf.size(y_pred)
indice_of_ranks_pred = tf.nn.top_k(y_pred, k=size)[1]
indice_of_ranks_label = tf.nn.top_k(y_true, k=size)[1]
rank_pred = tf.nn.top_k(-indice_of_ranks_pred, k=size)[1]
rank_label = tf.nn.top_k(-indice_of_ranks_label, k=size)[1]
rank_pred = tf.to_float(rank_pred)
rank_label = tf.to_float(rank_label)
spearman = tf.contrib.metrics.streaming_pearson_correlation(rank_pred, rank_label)


But running this I got the following error :




tensorflow.python.framework.errors_impl.InvalidArgumentError: input
must have at least k columns. Had 1, needed 32



[[{{node metrics/spearman/TopKV2}} = TopKV2[T=DT_FLOAT, sorted=true,
_device="/job:localhost/replica:0/task:0/device:CPU:0"](lambda_1/add, metrics/pearson/pearson_r/variance_predictions/Size)]]











share|improve this question


























    up vote
    1
    down vote

    favorite












    Problem



    I need to compute the Pearson and Spearman correlations, and use it as metrics in tensorflow.



    For Pearson, it's trivial :



    tf.contrib.metrics.streaming_pearson_correlation(y_pred, y_true)


    But for Spearman, I am clueless !



    What I tried :



    From this answer :



        samples = 1
    predictions_rank = tf.nn.top_k(y_pred, k=samples, sorted=True, name='prediction_rank').indices
    real_rank = tf.nn.top_k(y_true, k=samples, sorted=True, name='real_rank').indices
    rank_diffs = predictions_rank - real_rank
    rank_diffs_squared_sum = tf.reduce_sum(rank_diffs * rank_diffs)
    six = tf.constant(6)
    one = tf.constant(1.0)
    numerator = tf.cast(six * rank_diffs_squared_sum, dtype=tf.float32)
    divider = tf.cast(samples * samples * samples - samples, dtype=tf.float32)
    spearman_batch = one - numerator / divider


    But this return NaN...





    Following the definition of Wikipedia :
    enter image description here



    I tried :



    size = tf.size(y_pred)
    indice_of_ranks_pred = tf.nn.top_k(y_pred, k=size)[1]
    indice_of_ranks_label = tf.nn.top_k(y_true, k=size)[1]
    rank_pred = tf.nn.top_k(-indice_of_ranks_pred, k=size)[1]
    rank_label = tf.nn.top_k(-indice_of_ranks_label, k=size)[1]
    rank_pred = tf.to_float(rank_pred)
    rank_label = tf.to_float(rank_label)
    spearman = tf.contrib.metrics.streaming_pearson_correlation(rank_pred, rank_label)


    But running this I got the following error :




    tensorflow.python.framework.errors_impl.InvalidArgumentError: input
    must have at least k columns. Had 1, needed 32



    [[{{node metrics/spearman/TopKV2}} = TopKV2[T=DT_FLOAT, sorted=true,
    _device="/job:localhost/replica:0/task:0/device:CPU:0"](lambda_1/add, metrics/pearson/pearson_r/variance_predictions/Size)]]











    share|improve this question
























      up vote
      1
      down vote

      favorite









      up vote
      1
      down vote

      favorite











      Problem



      I need to compute the Pearson and Spearman correlations, and use it as metrics in tensorflow.



      For Pearson, it's trivial :



      tf.contrib.metrics.streaming_pearson_correlation(y_pred, y_true)


      But for Spearman, I am clueless !



      What I tried :



      From this answer :



          samples = 1
      predictions_rank = tf.nn.top_k(y_pred, k=samples, sorted=True, name='prediction_rank').indices
      real_rank = tf.nn.top_k(y_true, k=samples, sorted=True, name='real_rank').indices
      rank_diffs = predictions_rank - real_rank
      rank_diffs_squared_sum = tf.reduce_sum(rank_diffs * rank_diffs)
      six = tf.constant(6)
      one = tf.constant(1.0)
      numerator = tf.cast(six * rank_diffs_squared_sum, dtype=tf.float32)
      divider = tf.cast(samples * samples * samples - samples, dtype=tf.float32)
      spearman_batch = one - numerator / divider


      But this return NaN...





      Following the definition of Wikipedia :
      enter image description here



      I tried :



      size = tf.size(y_pred)
      indice_of_ranks_pred = tf.nn.top_k(y_pred, k=size)[1]
      indice_of_ranks_label = tf.nn.top_k(y_true, k=size)[1]
      rank_pred = tf.nn.top_k(-indice_of_ranks_pred, k=size)[1]
      rank_label = tf.nn.top_k(-indice_of_ranks_label, k=size)[1]
      rank_pred = tf.to_float(rank_pred)
      rank_label = tf.to_float(rank_label)
      spearman = tf.contrib.metrics.streaming_pearson_correlation(rank_pred, rank_label)


      But running this I got the following error :




      tensorflow.python.framework.errors_impl.InvalidArgumentError: input
      must have at least k columns. Had 1, needed 32



      [[{{node metrics/spearman/TopKV2}} = TopKV2[T=DT_FLOAT, sorted=true,
      _device="/job:localhost/replica:0/task:0/device:CPU:0"](lambda_1/add, metrics/pearson/pearson_r/variance_predictions/Size)]]











      share|improve this question













      Problem



      I need to compute the Pearson and Spearman correlations, and use it as metrics in tensorflow.



      For Pearson, it's trivial :



      tf.contrib.metrics.streaming_pearson_correlation(y_pred, y_true)


      But for Spearman, I am clueless !



      What I tried :



      From this answer :



          samples = 1
      predictions_rank = tf.nn.top_k(y_pred, k=samples, sorted=True, name='prediction_rank').indices
      real_rank = tf.nn.top_k(y_true, k=samples, sorted=True, name='real_rank').indices
      rank_diffs = predictions_rank - real_rank
      rank_diffs_squared_sum = tf.reduce_sum(rank_diffs * rank_diffs)
      six = tf.constant(6)
      one = tf.constant(1.0)
      numerator = tf.cast(six * rank_diffs_squared_sum, dtype=tf.float32)
      divider = tf.cast(samples * samples * samples - samples, dtype=tf.float32)
      spearman_batch = one - numerator / divider


      But this return NaN...





      Following the definition of Wikipedia :
      enter image description here



      I tried :



      size = tf.size(y_pred)
      indice_of_ranks_pred = tf.nn.top_k(y_pred, k=size)[1]
      indice_of_ranks_label = tf.nn.top_k(y_true, k=size)[1]
      rank_pred = tf.nn.top_k(-indice_of_ranks_pred, k=size)[1]
      rank_label = tf.nn.top_k(-indice_of_ranks_label, k=size)[1]
      rank_pred = tf.to_float(rank_pred)
      rank_label = tf.to_float(rank_label)
      spearman = tf.contrib.metrics.streaming_pearson_correlation(rank_pred, rank_label)


      But running this I got the following error :




      tensorflow.python.framework.errors_impl.InvalidArgumentError: input
      must have at least k columns. Had 1, needed 32



      [[{{node metrics/spearman/TopKV2}} = TopKV2[T=DT_FLOAT, sorted=true,
      _device="/job:localhost/replica:0/task:0/device:CPU:0"](lambda_1/add, metrics/pearson/pearson_r/variance_predictions/Size)]]








      python python-3.x tensorflow metrics






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Nov 21 at 1:58









      Astariul

      18210




      18210





























          active

          oldest

          votes











          Your Answer






          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "1"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














           

          draft saved


          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53404301%2fhow-to-compute-spearman-correlation-in-tensorflow%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown






























          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















           

          draft saved


          draft discarded



















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53404301%2fhow-to-compute-spearman-correlation-in-tensorflow%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Berounka

          Different font size/position of beamer's navigation symbols template's content depending on regular/plain...

          Sphinx de Gizeh