Characterization of $ell^q$ sequences
up vote
0
down vote
favorite
I'm working on a solution for this one:
Let $x:=(x_n)_n subset mathbb{C}^mathbb{N}.$ Suppose that for any $yin ell^p, pin [1,+infty],$ the series $sum_{ninmathbb{N}}x_ny_n$ converges. Prove that $(x_n)_n in ell^q$ for $qin [1,+infty]$ satisfying $frac{1}{p}+frac{1}{q} = 1.$
I tried to prove the statement for the three cases in the following way, but don't come so far..
$p=infty :$ Let $(y_n)_nin ell^infty$, so we have $sup_{ninmathbb{N}}|y_n|<infty$ and that the series $sum_{ninmathbb{N}}x_ny_n$ converges. Now I have to show that $sum_{n=1}^{infty}|x_n|<infty$ to get $(x_n)_n in ell^1.$
$p=1:$ I got the hint to construct a sequence $(y_n)_n in ell^1$ such that the sequence $x_ny_n$ does not converge to $0.$
$pin(1,infty):$ here we should apply the Banach Steinhaus Theorem to a well chosen family of linear maps $T_N: ell^ptomathbb{C},Ninmathbb{N}.$
Thank you for your help!
functional-analysis
add a comment |
up vote
0
down vote
favorite
I'm working on a solution for this one:
Let $x:=(x_n)_n subset mathbb{C}^mathbb{N}.$ Suppose that for any $yin ell^p, pin [1,+infty],$ the series $sum_{ninmathbb{N}}x_ny_n$ converges. Prove that $(x_n)_n in ell^q$ for $qin [1,+infty]$ satisfying $frac{1}{p}+frac{1}{q} = 1.$
I tried to prove the statement for the three cases in the following way, but don't come so far..
$p=infty :$ Let $(y_n)_nin ell^infty$, so we have $sup_{ninmathbb{N}}|y_n|<infty$ and that the series $sum_{ninmathbb{N}}x_ny_n$ converges. Now I have to show that $sum_{n=1}^{infty}|x_n|<infty$ to get $(x_n)_n in ell^1.$
$p=1:$ I got the hint to construct a sequence $(y_n)_n in ell^1$ such that the sequence $x_ny_n$ does not converge to $0.$
$pin(1,infty):$ here we should apply the Banach Steinhaus Theorem to a well chosen family of linear maps $T_N: ell^ptomathbb{C},Ninmathbb{N}.$
Thank you for your help!
functional-analysis
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I'm working on a solution for this one:
Let $x:=(x_n)_n subset mathbb{C}^mathbb{N}.$ Suppose that for any $yin ell^p, pin [1,+infty],$ the series $sum_{ninmathbb{N}}x_ny_n$ converges. Prove that $(x_n)_n in ell^q$ for $qin [1,+infty]$ satisfying $frac{1}{p}+frac{1}{q} = 1.$
I tried to prove the statement for the three cases in the following way, but don't come so far..
$p=infty :$ Let $(y_n)_nin ell^infty$, so we have $sup_{ninmathbb{N}}|y_n|<infty$ and that the series $sum_{ninmathbb{N}}x_ny_n$ converges. Now I have to show that $sum_{n=1}^{infty}|x_n|<infty$ to get $(x_n)_n in ell^1.$
$p=1:$ I got the hint to construct a sequence $(y_n)_n in ell^1$ such that the sequence $x_ny_n$ does not converge to $0.$
$pin(1,infty):$ here we should apply the Banach Steinhaus Theorem to a well chosen family of linear maps $T_N: ell^ptomathbb{C},Ninmathbb{N}.$
Thank you for your help!
functional-analysis
I'm working on a solution for this one:
Let $x:=(x_n)_n subset mathbb{C}^mathbb{N}.$ Suppose that for any $yin ell^p, pin [1,+infty],$ the series $sum_{ninmathbb{N}}x_ny_n$ converges. Prove that $(x_n)_n in ell^q$ for $qin [1,+infty]$ satisfying $frac{1}{p}+frac{1}{q} = 1.$
I tried to prove the statement for the three cases in the following way, but don't come so far..
$p=infty :$ Let $(y_n)_nin ell^infty$, so we have $sup_{ninmathbb{N}}|y_n|<infty$ and that the series $sum_{ninmathbb{N}}x_ny_n$ converges. Now I have to show that $sum_{n=1}^{infty}|x_n|<infty$ to get $(x_n)_n in ell^1.$
$p=1:$ I got the hint to construct a sequence $(y_n)_n in ell^1$ such that the sequence $x_ny_n$ does not converge to $0.$
$pin(1,infty):$ here we should apply the Banach Steinhaus Theorem to a well chosen family of linear maps $T_N: ell^ptomathbb{C},Ninmathbb{N}.$
Thank you for your help!
functional-analysis
functional-analysis
edited 10 hours ago
asked 12 hours ago
hAM1t
11
11
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
1
down vote
For $0ne zin Bbb C$ let $z'=|z|^{q-2}bar z,$ and let $0'=0.$ Note that $|z'|^p=zz'= |z|^q.$
Suppose $xnot in l_q.$ Then there is a strictly increasing sequence $(M_j)_{jin Bbb N}$ in $Bbb N$ such that $$F(n)=sum_{j=M_{2n-1}}^{M_{2n}} |x_j|^q>2^n$$ for each $nin Bbb N.$
For $nin Bbb N$ and $M_{2n-1}leq jleq M_{2n}$ let $y_j=(x_j)'/F(n).$ Let $y_j=0$ for all other $jin Bbb N.$
We have $$sum_{k=1}^{infty}|y_k|^p=sum_{n=1}^{infty}sum_{j=M_{2n-1}}^{M_{2n}}|x_j|^q/F(n)^{p}=$$ $$=sum_{n=1}^{infty}F(n)^{1-p}<sum_{n=1}^{infty}2^{n(1-p)}<infty$$ because $1-p<0.$
We have $$sum_{k=1}^{infty}x_ky_k=sum_{n=1}^{infty}sum_{j=M_{2n-1}}^{M_{2n}}x_j(x_j)'/F(n)=$$ $$=sum_{n=1}^{infty}1=infty.$$
Remarks. Treating $x$ as a function that sends each $yin l_p$ to $sum_jx_jy_j, $ we cannot assume $x$ is continuous. But let $u(n)=(u(n)_j)_jin l_p$ where $u(n)_j=y_j$ for $M_{2n-1}leq M_{2n}$ and $u(n)_j=0$ for all other $j$. Then $sum_nu(n)=(y_j)_jin l_p$ and also $sum_nx(u(n))=x(sum_nu(n))=infty$.
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
For $0ne zin Bbb C$ let $z'=|z|^{q-2}bar z,$ and let $0'=0.$ Note that $|z'|^p=zz'= |z|^q.$
Suppose $xnot in l_q.$ Then there is a strictly increasing sequence $(M_j)_{jin Bbb N}$ in $Bbb N$ such that $$F(n)=sum_{j=M_{2n-1}}^{M_{2n}} |x_j|^q>2^n$$ for each $nin Bbb N.$
For $nin Bbb N$ and $M_{2n-1}leq jleq M_{2n}$ let $y_j=(x_j)'/F(n).$ Let $y_j=0$ for all other $jin Bbb N.$
We have $$sum_{k=1}^{infty}|y_k|^p=sum_{n=1}^{infty}sum_{j=M_{2n-1}}^{M_{2n}}|x_j|^q/F(n)^{p}=$$ $$=sum_{n=1}^{infty}F(n)^{1-p}<sum_{n=1}^{infty}2^{n(1-p)}<infty$$ because $1-p<0.$
We have $$sum_{k=1}^{infty}x_ky_k=sum_{n=1}^{infty}sum_{j=M_{2n-1}}^{M_{2n}}x_j(x_j)'/F(n)=$$ $$=sum_{n=1}^{infty}1=infty.$$
Remarks. Treating $x$ as a function that sends each $yin l_p$ to $sum_jx_jy_j, $ we cannot assume $x$ is continuous. But let $u(n)=(u(n)_j)_jin l_p$ where $u(n)_j=y_j$ for $M_{2n-1}leq M_{2n}$ and $u(n)_j=0$ for all other $j$. Then $sum_nu(n)=(y_j)_jin l_p$ and also $sum_nx(u(n))=x(sum_nu(n))=infty$.
add a comment |
up vote
1
down vote
For $0ne zin Bbb C$ let $z'=|z|^{q-2}bar z,$ and let $0'=0.$ Note that $|z'|^p=zz'= |z|^q.$
Suppose $xnot in l_q.$ Then there is a strictly increasing sequence $(M_j)_{jin Bbb N}$ in $Bbb N$ such that $$F(n)=sum_{j=M_{2n-1}}^{M_{2n}} |x_j|^q>2^n$$ for each $nin Bbb N.$
For $nin Bbb N$ and $M_{2n-1}leq jleq M_{2n}$ let $y_j=(x_j)'/F(n).$ Let $y_j=0$ for all other $jin Bbb N.$
We have $$sum_{k=1}^{infty}|y_k|^p=sum_{n=1}^{infty}sum_{j=M_{2n-1}}^{M_{2n}}|x_j|^q/F(n)^{p}=$$ $$=sum_{n=1}^{infty}F(n)^{1-p}<sum_{n=1}^{infty}2^{n(1-p)}<infty$$ because $1-p<0.$
We have $$sum_{k=1}^{infty}x_ky_k=sum_{n=1}^{infty}sum_{j=M_{2n-1}}^{M_{2n}}x_j(x_j)'/F(n)=$$ $$=sum_{n=1}^{infty}1=infty.$$
Remarks. Treating $x$ as a function that sends each $yin l_p$ to $sum_jx_jy_j, $ we cannot assume $x$ is continuous. But let $u(n)=(u(n)_j)_jin l_p$ where $u(n)_j=y_j$ for $M_{2n-1}leq M_{2n}$ and $u(n)_j=0$ for all other $j$. Then $sum_nu(n)=(y_j)_jin l_p$ and also $sum_nx(u(n))=x(sum_nu(n))=infty$.
add a comment |
up vote
1
down vote
up vote
1
down vote
For $0ne zin Bbb C$ let $z'=|z|^{q-2}bar z,$ and let $0'=0.$ Note that $|z'|^p=zz'= |z|^q.$
Suppose $xnot in l_q.$ Then there is a strictly increasing sequence $(M_j)_{jin Bbb N}$ in $Bbb N$ such that $$F(n)=sum_{j=M_{2n-1}}^{M_{2n}} |x_j|^q>2^n$$ for each $nin Bbb N.$
For $nin Bbb N$ and $M_{2n-1}leq jleq M_{2n}$ let $y_j=(x_j)'/F(n).$ Let $y_j=0$ for all other $jin Bbb N.$
We have $$sum_{k=1}^{infty}|y_k|^p=sum_{n=1}^{infty}sum_{j=M_{2n-1}}^{M_{2n}}|x_j|^q/F(n)^{p}=$$ $$=sum_{n=1}^{infty}F(n)^{1-p}<sum_{n=1}^{infty}2^{n(1-p)}<infty$$ because $1-p<0.$
We have $$sum_{k=1}^{infty}x_ky_k=sum_{n=1}^{infty}sum_{j=M_{2n-1}}^{M_{2n}}x_j(x_j)'/F(n)=$$ $$=sum_{n=1}^{infty}1=infty.$$
Remarks. Treating $x$ as a function that sends each $yin l_p$ to $sum_jx_jy_j, $ we cannot assume $x$ is continuous. But let $u(n)=(u(n)_j)_jin l_p$ where $u(n)_j=y_j$ for $M_{2n-1}leq M_{2n}$ and $u(n)_j=0$ for all other $j$. Then $sum_nu(n)=(y_j)_jin l_p$ and also $sum_nx(u(n))=x(sum_nu(n))=infty$.
For $0ne zin Bbb C$ let $z'=|z|^{q-2}bar z,$ and let $0'=0.$ Note that $|z'|^p=zz'= |z|^q.$
Suppose $xnot in l_q.$ Then there is a strictly increasing sequence $(M_j)_{jin Bbb N}$ in $Bbb N$ such that $$F(n)=sum_{j=M_{2n-1}}^{M_{2n}} |x_j|^q>2^n$$ for each $nin Bbb N.$
For $nin Bbb N$ and $M_{2n-1}leq jleq M_{2n}$ let $y_j=(x_j)'/F(n).$ Let $y_j=0$ for all other $jin Bbb N.$
We have $$sum_{k=1}^{infty}|y_k|^p=sum_{n=1}^{infty}sum_{j=M_{2n-1}}^{M_{2n}}|x_j|^q/F(n)^{p}=$$ $$=sum_{n=1}^{infty}F(n)^{1-p}<sum_{n=1}^{infty}2^{n(1-p)}<infty$$ because $1-p<0.$
We have $$sum_{k=1}^{infty}x_ky_k=sum_{n=1}^{infty}sum_{j=M_{2n-1}}^{M_{2n}}x_j(x_j)'/F(n)=$$ $$=sum_{n=1}^{infty}1=infty.$$
Remarks. Treating $x$ as a function that sends each $yin l_p$ to $sum_jx_jy_j, $ we cannot assume $x$ is continuous. But let $u(n)=(u(n)_j)_jin l_p$ where $u(n)_j=y_j$ for $M_{2n-1}leq M_{2n}$ and $u(n)_j=0$ for all other $j$. Then $sum_nu(n)=(y_j)_jin l_p$ and also $sum_nx(u(n))=x(sum_nu(n))=infty$.
edited 2 mins ago
answered 34 mins ago
DanielWainfleet
33.4k31647
33.4k31647
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006729%2fcharacterization-of-ellq-sequences%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown