Characterization of $ell^q$ sequences











up vote
0
down vote

favorite












I'm working on a solution for this one:



Let $x:=(x_n)_n subset mathbb{C}^mathbb{N}.$ Suppose that for any $yin ell^p, pin [1,+infty],$ the series $sum_{ninmathbb{N}}x_ny_n$ converges. Prove that $(x_n)_n in ell^q$ for $qin [1,+infty]$ satisfying $frac{1}{p}+frac{1}{q} = 1.$



I tried to prove the statement for the three cases in the following way, but don't come so far..





  • $p=infty :$ Let $(y_n)_nin ell^infty$, so we have $sup_{ninmathbb{N}}|y_n|<infty$ and that the series $sum_{ninmathbb{N}}x_ny_n$ converges. Now I have to show that $sum_{n=1}^{infty}|x_n|<infty$ to get $(x_n)_n in ell^1.$


  • $p=1:$ I got the hint to construct a sequence $(y_n)_n in ell^1$ such that the sequence $x_ny_n$ does not converge to $0.$


  • $pin(1,infty):$ here we should apply the Banach Steinhaus Theorem to a well chosen family of linear maps $T_N: ell^ptomathbb{C},Ninmathbb{N}.$


Thank you for your help!










share|cite|improve this question




























    up vote
    0
    down vote

    favorite












    I'm working on a solution for this one:



    Let $x:=(x_n)_n subset mathbb{C}^mathbb{N}.$ Suppose that for any $yin ell^p, pin [1,+infty],$ the series $sum_{ninmathbb{N}}x_ny_n$ converges. Prove that $(x_n)_n in ell^q$ for $qin [1,+infty]$ satisfying $frac{1}{p}+frac{1}{q} = 1.$



    I tried to prove the statement for the three cases in the following way, but don't come so far..





    • $p=infty :$ Let $(y_n)_nin ell^infty$, so we have $sup_{ninmathbb{N}}|y_n|<infty$ and that the series $sum_{ninmathbb{N}}x_ny_n$ converges. Now I have to show that $sum_{n=1}^{infty}|x_n|<infty$ to get $(x_n)_n in ell^1.$


    • $p=1:$ I got the hint to construct a sequence $(y_n)_n in ell^1$ such that the sequence $x_ny_n$ does not converge to $0.$


    • $pin(1,infty):$ here we should apply the Banach Steinhaus Theorem to a well chosen family of linear maps $T_N: ell^ptomathbb{C},Ninmathbb{N}.$


    Thank you for your help!










    share|cite|improve this question


























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      I'm working on a solution for this one:



      Let $x:=(x_n)_n subset mathbb{C}^mathbb{N}.$ Suppose that for any $yin ell^p, pin [1,+infty],$ the series $sum_{ninmathbb{N}}x_ny_n$ converges. Prove that $(x_n)_n in ell^q$ for $qin [1,+infty]$ satisfying $frac{1}{p}+frac{1}{q} = 1.$



      I tried to prove the statement for the three cases in the following way, but don't come so far..





      • $p=infty :$ Let $(y_n)_nin ell^infty$, so we have $sup_{ninmathbb{N}}|y_n|<infty$ and that the series $sum_{ninmathbb{N}}x_ny_n$ converges. Now I have to show that $sum_{n=1}^{infty}|x_n|<infty$ to get $(x_n)_n in ell^1.$


      • $p=1:$ I got the hint to construct a sequence $(y_n)_n in ell^1$ such that the sequence $x_ny_n$ does not converge to $0.$


      • $pin(1,infty):$ here we should apply the Banach Steinhaus Theorem to a well chosen family of linear maps $T_N: ell^ptomathbb{C},Ninmathbb{N}.$


      Thank you for your help!










      share|cite|improve this question















      I'm working on a solution for this one:



      Let $x:=(x_n)_n subset mathbb{C}^mathbb{N}.$ Suppose that for any $yin ell^p, pin [1,+infty],$ the series $sum_{ninmathbb{N}}x_ny_n$ converges. Prove that $(x_n)_n in ell^q$ for $qin [1,+infty]$ satisfying $frac{1}{p}+frac{1}{q} = 1.$



      I tried to prove the statement for the three cases in the following way, but don't come so far..





      • $p=infty :$ Let $(y_n)_nin ell^infty$, so we have $sup_{ninmathbb{N}}|y_n|<infty$ and that the series $sum_{ninmathbb{N}}x_ny_n$ converges. Now I have to show that $sum_{n=1}^{infty}|x_n|<infty$ to get $(x_n)_n in ell^1.$


      • $p=1:$ I got the hint to construct a sequence $(y_n)_n in ell^1$ such that the sequence $x_ny_n$ does not converge to $0.$


      • $pin(1,infty):$ here we should apply the Banach Steinhaus Theorem to a well chosen family of linear maps $T_N: ell^ptomathbb{C},Ninmathbb{N}.$


      Thank you for your help!







      functional-analysis






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 10 hours ago

























      asked 12 hours ago









      hAM1t

      11




      11






















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          1
          down vote













          For $0ne zin Bbb C$ let $z'=|z|^{q-2}bar z,$ and let $0'=0.$ Note that $|z'|^p=zz'= |z|^q.$



          Suppose $xnot in l_q.$ Then there is a strictly increasing sequence $(M_j)_{jin Bbb N}$ in $Bbb N$ such that $$F(n)=sum_{j=M_{2n-1}}^{M_{2n}} |x_j|^q>2^n$$ for each $nin Bbb N.$



          For $nin Bbb N$ and $M_{2n-1}leq jleq M_{2n}$ let $y_j=(x_j)'/F(n).$ Let $y_j=0$ for all other $jin Bbb N.$



          We have $$sum_{k=1}^{infty}|y_k|^p=sum_{n=1}^{infty}sum_{j=M_{2n-1}}^{M_{2n}}|x_j|^q/F(n)^{p}=$$ $$=sum_{n=1}^{infty}F(n)^{1-p}<sum_{n=1}^{infty}2^{n(1-p)}<infty$$ because $1-p<0.$



          We have $$sum_{k=1}^{infty}x_ky_k=sum_{n=1}^{infty}sum_{j=M_{2n-1}}^{M_{2n}}x_j(x_j)'/F(n)=$$ $$=sum_{n=1}^{infty}1=infty.$$



          Remarks. Treating $x$ as a function that sends each $yin l_p$ to $sum_jx_jy_j, $ we cannot assume $x$ is continuous. But let $u(n)=(u(n)_j)_jin l_p$ where $u(n)_j=y_j$ for $M_{2n-1}leq M_{2n}$ and $u(n)_j=0$ for all other $j$. Then $sum_nu(n)=(y_j)_jin l_p$ and also $sum_nx(u(n))=x(sum_nu(n))=infty$.






          share|cite|improve this answer























            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














             

            draft saved


            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006729%2fcharacterization-of-ellq-sequences%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            1
            down vote













            For $0ne zin Bbb C$ let $z'=|z|^{q-2}bar z,$ and let $0'=0.$ Note that $|z'|^p=zz'= |z|^q.$



            Suppose $xnot in l_q.$ Then there is a strictly increasing sequence $(M_j)_{jin Bbb N}$ in $Bbb N$ such that $$F(n)=sum_{j=M_{2n-1}}^{M_{2n}} |x_j|^q>2^n$$ for each $nin Bbb N.$



            For $nin Bbb N$ and $M_{2n-1}leq jleq M_{2n}$ let $y_j=(x_j)'/F(n).$ Let $y_j=0$ for all other $jin Bbb N.$



            We have $$sum_{k=1}^{infty}|y_k|^p=sum_{n=1}^{infty}sum_{j=M_{2n-1}}^{M_{2n}}|x_j|^q/F(n)^{p}=$$ $$=sum_{n=1}^{infty}F(n)^{1-p}<sum_{n=1}^{infty}2^{n(1-p)}<infty$$ because $1-p<0.$



            We have $$sum_{k=1}^{infty}x_ky_k=sum_{n=1}^{infty}sum_{j=M_{2n-1}}^{M_{2n}}x_j(x_j)'/F(n)=$$ $$=sum_{n=1}^{infty}1=infty.$$



            Remarks. Treating $x$ as a function that sends each $yin l_p$ to $sum_jx_jy_j, $ we cannot assume $x$ is continuous. But let $u(n)=(u(n)_j)_jin l_p$ where $u(n)_j=y_j$ for $M_{2n-1}leq M_{2n}$ and $u(n)_j=0$ for all other $j$. Then $sum_nu(n)=(y_j)_jin l_p$ and also $sum_nx(u(n))=x(sum_nu(n))=infty$.






            share|cite|improve this answer



























              up vote
              1
              down vote













              For $0ne zin Bbb C$ let $z'=|z|^{q-2}bar z,$ and let $0'=0.$ Note that $|z'|^p=zz'= |z|^q.$



              Suppose $xnot in l_q.$ Then there is a strictly increasing sequence $(M_j)_{jin Bbb N}$ in $Bbb N$ such that $$F(n)=sum_{j=M_{2n-1}}^{M_{2n}} |x_j|^q>2^n$$ for each $nin Bbb N.$



              For $nin Bbb N$ and $M_{2n-1}leq jleq M_{2n}$ let $y_j=(x_j)'/F(n).$ Let $y_j=0$ for all other $jin Bbb N.$



              We have $$sum_{k=1}^{infty}|y_k|^p=sum_{n=1}^{infty}sum_{j=M_{2n-1}}^{M_{2n}}|x_j|^q/F(n)^{p}=$$ $$=sum_{n=1}^{infty}F(n)^{1-p}<sum_{n=1}^{infty}2^{n(1-p)}<infty$$ because $1-p<0.$



              We have $$sum_{k=1}^{infty}x_ky_k=sum_{n=1}^{infty}sum_{j=M_{2n-1}}^{M_{2n}}x_j(x_j)'/F(n)=$$ $$=sum_{n=1}^{infty}1=infty.$$



              Remarks. Treating $x$ as a function that sends each $yin l_p$ to $sum_jx_jy_j, $ we cannot assume $x$ is continuous. But let $u(n)=(u(n)_j)_jin l_p$ where $u(n)_j=y_j$ for $M_{2n-1}leq M_{2n}$ and $u(n)_j=0$ for all other $j$. Then $sum_nu(n)=(y_j)_jin l_p$ and also $sum_nx(u(n))=x(sum_nu(n))=infty$.






              share|cite|improve this answer

























                up vote
                1
                down vote










                up vote
                1
                down vote









                For $0ne zin Bbb C$ let $z'=|z|^{q-2}bar z,$ and let $0'=0.$ Note that $|z'|^p=zz'= |z|^q.$



                Suppose $xnot in l_q.$ Then there is a strictly increasing sequence $(M_j)_{jin Bbb N}$ in $Bbb N$ such that $$F(n)=sum_{j=M_{2n-1}}^{M_{2n}} |x_j|^q>2^n$$ for each $nin Bbb N.$



                For $nin Bbb N$ and $M_{2n-1}leq jleq M_{2n}$ let $y_j=(x_j)'/F(n).$ Let $y_j=0$ for all other $jin Bbb N.$



                We have $$sum_{k=1}^{infty}|y_k|^p=sum_{n=1}^{infty}sum_{j=M_{2n-1}}^{M_{2n}}|x_j|^q/F(n)^{p}=$$ $$=sum_{n=1}^{infty}F(n)^{1-p}<sum_{n=1}^{infty}2^{n(1-p)}<infty$$ because $1-p<0.$



                We have $$sum_{k=1}^{infty}x_ky_k=sum_{n=1}^{infty}sum_{j=M_{2n-1}}^{M_{2n}}x_j(x_j)'/F(n)=$$ $$=sum_{n=1}^{infty}1=infty.$$



                Remarks. Treating $x$ as a function that sends each $yin l_p$ to $sum_jx_jy_j, $ we cannot assume $x$ is continuous. But let $u(n)=(u(n)_j)_jin l_p$ where $u(n)_j=y_j$ for $M_{2n-1}leq M_{2n}$ and $u(n)_j=0$ for all other $j$. Then $sum_nu(n)=(y_j)_jin l_p$ and also $sum_nx(u(n))=x(sum_nu(n))=infty$.






                share|cite|improve this answer














                For $0ne zin Bbb C$ let $z'=|z|^{q-2}bar z,$ and let $0'=0.$ Note that $|z'|^p=zz'= |z|^q.$



                Suppose $xnot in l_q.$ Then there is a strictly increasing sequence $(M_j)_{jin Bbb N}$ in $Bbb N$ such that $$F(n)=sum_{j=M_{2n-1}}^{M_{2n}} |x_j|^q>2^n$$ for each $nin Bbb N.$



                For $nin Bbb N$ and $M_{2n-1}leq jleq M_{2n}$ let $y_j=(x_j)'/F(n).$ Let $y_j=0$ for all other $jin Bbb N.$



                We have $$sum_{k=1}^{infty}|y_k|^p=sum_{n=1}^{infty}sum_{j=M_{2n-1}}^{M_{2n}}|x_j|^q/F(n)^{p}=$$ $$=sum_{n=1}^{infty}F(n)^{1-p}<sum_{n=1}^{infty}2^{n(1-p)}<infty$$ because $1-p<0.$



                We have $$sum_{k=1}^{infty}x_ky_k=sum_{n=1}^{infty}sum_{j=M_{2n-1}}^{M_{2n}}x_j(x_j)'/F(n)=$$ $$=sum_{n=1}^{infty}1=infty.$$



                Remarks. Treating $x$ as a function that sends each $yin l_p$ to $sum_jx_jy_j, $ we cannot assume $x$ is continuous. But let $u(n)=(u(n)_j)_jin l_p$ where $u(n)_j=y_j$ for $M_{2n-1}leq M_{2n}$ and $u(n)_j=0$ for all other $j$. Then $sum_nu(n)=(y_j)_jin l_p$ and also $sum_nx(u(n))=x(sum_nu(n))=infty$.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited 2 mins ago

























                answered 34 mins ago









                DanielWainfleet

                33.4k31647




                33.4k31647






























                     

                    draft saved


                    draft discarded



















































                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006729%2fcharacterization-of-ellq-sequences%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Berounka

                    Different font size/position of beamer's navigation symbols template's content depending on regular/plain...

                    Sphinx de Gizeh