Expected number of updates of Maximum











up vote
1
down vote

favorite
1












Let $L$ be a list of unique elements. Consider the following standard algorithm for finding the maximum value in $L$:




  1. Initialize the current maximum of the list to be $m = −infty$.

  2. For $i= 1$ up through $n$,check to see if $L[i]>m$; if so, reset $m$ to be $L[i]$.

  3. Output $m$.


Suppose we randomly permuate the elements of $L$ before running the procedure. Calculated the expected number of times $m$ will be reset in Step 2.










share|cite|improve this question
























  • Perhaps this, or something like it: cs.stackexchange.com/questions/63682/…
    – Ethan Bolker
    10 hours ago










  • Thank you for the comment. However, my question is about the expected value that the algorithm will output m in list L.
    – Naseeb Thapaliya
    10 hours ago















up vote
1
down vote

favorite
1












Let $L$ be a list of unique elements. Consider the following standard algorithm for finding the maximum value in $L$:




  1. Initialize the current maximum of the list to be $m = −infty$.

  2. For $i= 1$ up through $n$,check to see if $L[i]>m$; if so, reset $m$ to be $L[i]$.

  3. Output $m$.


Suppose we randomly permuate the elements of $L$ before running the procedure. Calculated the expected number of times $m$ will be reset in Step 2.










share|cite|improve this question
























  • Perhaps this, or something like it: cs.stackexchange.com/questions/63682/…
    – Ethan Bolker
    10 hours ago










  • Thank you for the comment. However, my question is about the expected value that the algorithm will output m in list L.
    – Naseeb Thapaliya
    10 hours ago













up vote
1
down vote

favorite
1









up vote
1
down vote

favorite
1






1





Let $L$ be a list of unique elements. Consider the following standard algorithm for finding the maximum value in $L$:




  1. Initialize the current maximum of the list to be $m = −infty$.

  2. For $i= 1$ up through $n$,check to see if $L[i]>m$; if so, reset $m$ to be $L[i]$.

  3. Output $m$.


Suppose we randomly permuate the elements of $L$ before running the procedure. Calculated the expected number of times $m$ will be reset in Step 2.










share|cite|improve this question















Let $L$ be a list of unique elements. Consider the following standard algorithm for finding the maximum value in $L$:




  1. Initialize the current maximum of the list to be $m = −infty$.

  2. For $i= 1$ up through $n$,check to see if $L[i]>m$; if so, reset $m$ to be $L[i]$.

  3. Output $m$.


Suppose we randomly permuate the elements of $L$ before running the procedure. Calculated the expected number of times $m$ will be reset in Step 2.







probability-theory random-variables foundations expected-value






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 2 hours ago









d.k.o.

8,079527




8,079527










asked 13 hours ago









Naseeb Thapaliya

62




62












  • Perhaps this, or something like it: cs.stackexchange.com/questions/63682/…
    – Ethan Bolker
    10 hours ago










  • Thank you for the comment. However, my question is about the expected value that the algorithm will output m in list L.
    – Naseeb Thapaliya
    10 hours ago


















  • Perhaps this, or something like it: cs.stackexchange.com/questions/63682/…
    – Ethan Bolker
    10 hours ago










  • Thank you for the comment. However, my question is about the expected value that the algorithm will output m in list L.
    – Naseeb Thapaliya
    10 hours ago
















Perhaps this, or something like it: cs.stackexchange.com/questions/63682/…
– Ethan Bolker
10 hours ago




Perhaps this, or something like it: cs.stackexchange.com/questions/63682/…
– Ethan Bolker
10 hours ago












Thank you for the comment. However, my question is about the expected value that the algorithm will output m in list L.
– Naseeb Thapaliya
10 hours ago




Thank you for the comment. However, my question is about the expected value that the algorithm will output m in list L.
– Naseeb Thapaliya
10 hours ago










1 Answer
1






active

oldest

votes

















up vote
0
down vote













Let $X_i:=L[pi(i)]$, where $pi$ denotes the random permutation of $[n]$, $X_0equiv-infty$, and $M_i:=max_{jle i}X_j$. Then the expected number of resets is
begin{align}
&mathsf{E}left[sum_{i=1}^n 1{X_i>M_{i-1}}right]=sum_{i=1}^n mathsf{P}(X_i>M_{i-1}) \
&qquad =sum_{i=1}^nmathsf{E}left[mathsf{P}(X_i>M_{i-1}mid X_i)right]=frac{1}{n}sum_{i=1}^nsum_{j=1}^nbinom{j-1}{i-1}binom{n-1}{i-1}^{-1} \
&qquad=Psi(n+1)+gamma,
end{align}

where $Psi$ is the digamma function and $gamma=-Psi(1)$ is the Euler's constant.






share|cite|improve this answer























    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














     

    draft saved


    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006710%2fexpected-number-of-updates-of-maximum%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    0
    down vote













    Let $X_i:=L[pi(i)]$, where $pi$ denotes the random permutation of $[n]$, $X_0equiv-infty$, and $M_i:=max_{jle i}X_j$. Then the expected number of resets is
    begin{align}
    &mathsf{E}left[sum_{i=1}^n 1{X_i>M_{i-1}}right]=sum_{i=1}^n mathsf{P}(X_i>M_{i-1}) \
    &qquad =sum_{i=1}^nmathsf{E}left[mathsf{P}(X_i>M_{i-1}mid X_i)right]=frac{1}{n}sum_{i=1}^nsum_{j=1}^nbinom{j-1}{i-1}binom{n-1}{i-1}^{-1} \
    &qquad=Psi(n+1)+gamma,
    end{align}

    where $Psi$ is the digamma function and $gamma=-Psi(1)$ is the Euler's constant.






    share|cite|improve this answer



























      up vote
      0
      down vote













      Let $X_i:=L[pi(i)]$, where $pi$ denotes the random permutation of $[n]$, $X_0equiv-infty$, and $M_i:=max_{jle i}X_j$. Then the expected number of resets is
      begin{align}
      &mathsf{E}left[sum_{i=1}^n 1{X_i>M_{i-1}}right]=sum_{i=1}^n mathsf{P}(X_i>M_{i-1}) \
      &qquad =sum_{i=1}^nmathsf{E}left[mathsf{P}(X_i>M_{i-1}mid X_i)right]=frac{1}{n}sum_{i=1}^nsum_{j=1}^nbinom{j-1}{i-1}binom{n-1}{i-1}^{-1} \
      &qquad=Psi(n+1)+gamma,
      end{align}

      where $Psi$ is the digamma function and $gamma=-Psi(1)$ is the Euler's constant.






      share|cite|improve this answer

























        up vote
        0
        down vote










        up vote
        0
        down vote









        Let $X_i:=L[pi(i)]$, where $pi$ denotes the random permutation of $[n]$, $X_0equiv-infty$, and $M_i:=max_{jle i}X_j$. Then the expected number of resets is
        begin{align}
        &mathsf{E}left[sum_{i=1}^n 1{X_i>M_{i-1}}right]=sum_{i=1}^n mathsf{P}(X_i>M_{i-1}) \
        &qquad =sum_{i=1}^nmathsf{E}left[mathsf{P}(X_i>M_{i-1}mid X_i)right]=frac{1}{n}sum_{i=1}^nsum_{j=1}^nbinom{j-1}{i-1}binom{n-1}{i-1}^{-1} \
        &qquad=Psi(n+1)+gamma,
        end{align}

        where $Psi$ is the digamma function and $gamma=-Psi(1)$ is the Euler's constant.






        share|cite|improve this answer














        Let $X_i:=L[pi(i)]$, where $pi$ denotes the random permutation of $[n]$, $X_0equiv-infty$, and $M_i:=max_{jle i}X_j$. Then the expected number of resets is
        begin{align}
        &mathsf{E}left[sum_{i=1}^n 1{X_i>M_{i-1}}right]=sum_{i=1}^n mathsf{P}(X_i>M_{i-1}) \
        &qquad =sum_{i=1}^nmathsf{E}left[mathsf{P}(X_i>M_{i-1}mid X_i)right]=frac{1}{n}sum_{i=1}^nsum_{j=1}^nbinom{j-1}{i-1}binom{n-1}{i-1}^{-1} \
        &qquad=Psi(n+1)+gamma,
        end{align}

        where $Psi$ is the digamma function and $gamma=-Psi(1)$ is the Euler's constant.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited 1 hour ago

























        answered 2 hours ago









        d.k.o.

        8,079527




        8,079527






























             

            draft saved


            draft discarded



















































             


            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006710%2fexpected-number-of-updates-of-maximum%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Berounka

            Different font size/position of beamer's navigation symbols template's content depending on regular/plain...

            Sphinx de Gizeh