Problem wih hyperbolic function











up vote
1
down vote

favorite












Can we use hyperbolic function to solve the following problems ?



If $(sqrt {{y^2-x^3}} - x)(sqrt {{x^2} + y^3} - y) =y^3$ , prove that $x+ y = 0$



If $(sqrt {{x^2+y^4}} - x)(sqrt {{y^2} + x^4} - y) le x^2 y^2$ , prove that $x + y ge 0$










share|cite|improve this question






















  • Do you want see a solution without hyperbolic functions?
    – Michael Rozenberg
    Nov 9 at 5:32










  • Yes, of course! Michael Rozenberg, please post your full solutions.
    – Trần Văn Lâm
    Nov 9 at 9:10






  • 1




    You need to show us your trying, otherwise this topic will be closed.
    – Michael Rozenberg
    Nov 9 at 12:08










  • Sir, I thought $x=sinh t, ycosh t$. And nothing more!
    – Trần Văn Lâm
    Nov 10 at 0:08










  • Sir Michael Rozenberg, please! I can't wait because I want to see your solution.
    – Trần Văn Lâm
    Nov 10 at 13:05















up vote
1
down vote

favorite












Can we use hyperbolic function to solve the following problems ?



If $(sqrt {{y^2-x^3}} - x)(sqrt {{x^2} + y^3} - y) =y^3$ , prove that $x+ y = 0$



If $(sqrt {{x^2+y^4}} - x)(sqrt {{y^2} + x^4} - y) le x^2 y^2$ , prove that $x + y ge 0$










share|cite|improve this question






















  • Do you want see a solution without hyperbolic functions?
    – Michael Rozenberg
    Nov 9 at 5:32










  • Yes, of course! Michael Rozenberg, please post your full solutions.
    – Trần Văn Lâm
    Nov 9 at 9:10






  • 1




    You need to show us your trying, otherwise this topic will be closed.
    – Michael Rozenberg
    Nov 9 at 12:08










  • Sir, I thought $x=sinh t, ycosh t$. And nothing more!
    – Trần Văn Lâm
    Nov 10 at 0:08










  • Sir Michael Rozenberg, please! I can't wait because I want to see your solution.
    – Trần Văn Lâm
    Nov 10 at 13:05













up vote
1
down vote

favorite









up vote
1
down vote

favorite











Can we use hyperbolic function to solve the following problems ?



If $(sqrt {{y^2-x^3}} - x)(sqrt {{x^2} + y^3} - y) =y^3$ , prove that $x+ y = 0$



If $(sqrt {{x^2+y^4}} - x)(sqrt {{y^2} + x^4} - y) le x^2 y^2$ , prove that $x + y ge 0$










share|cite|improve this question













Can we use hyperbolic function to solve the following problems ?



If $(sqrt {{y^2-x^3}} - x)(sqrt {{x^2} + y^3} - y) =y^3$ , prove that $x+ y = 0$



If $(sqrt {{x^2+y^4}} - x)(sqrt {{y^2} + x^4} - y) le x^2 y^2$ , prove that $x + y ge 0$







inequality exponential-function hyperbolic-equations






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Nov 9 at 4:54









Trần Văn Lâm

412




412












  • Do you want see a solution without hyperbolic functions?
    – Michael Rozenberg
    Nov 9 at 5:32










  • Yes, of course! Michael Rozenberg, please post your full solutions.
    – Trần Văn Lâm
    Nov 9 at 9:10






  • 1




    You need to show us your trying, otherwise this topic will be closed.
    – Michael Rozenberg
    Nov 9 at 12:08










  • Sir, I thought $x=sinh t, ycosh t$. And nothing more!
    – Trần Văn Lâm
    Nov 10 at 0:08










  • Sir Michael Rozenberg, please! I can't wait because I want to see your solution.
    – Trần Văn Lâm
    Nov 10 at 13:05


















  • Do you want see a solution without hyperbolic functions?
    – Michael Rozenberg
    Nov 9 at 5:32










  • Yes, of course! Michael Rozenberg, please post your full solutions.
    – Trần Văn Lâm
    Nov 9 at 9:10






  • 1




    You need to show us your trying, otherwise this topic will be closed.
    – Michael Rozenberg
    Nov 9 at 12:08










  • Sir, I thought $x=sinh t, ycosh t$. And nothing more!
    – Trần Văn Lâm
    Nov 10 at 0:08










  • Sir Michael Rozenberg, please! I can't wait because I want to see your solution.
    – Trần Văn Lâm
    Nov 10 at 13:05
















Do you want see a solution without hyperbolic functions?
– Michael Rozenberg
Nov 9 at 5:32




Do you want see a solution without hyperbolic functions?
– Michael Rozenberg
Nov 9 at 5:32












Yes, of course! Michael Rozenberg, please post your full solutions.
– Trần Văn Lâm
Nov 9 at 9:10




Yes, of course! Michael Rozenberg, please post your full solutions.
– Trần Văn Lâm
Nov 9 at 9:10




1




1




You need to show us your trying, otherwise this topic will be closed.
– Michael Rozenberg
Nov 9 at 12:08




You need to show us your trying, otherwise this topic will be closed.
– Michael Rozenberg
Nov 9 at 12:08












Sir, I thought $x=sinh t, ycosh t$. And nothing more!
– Trần Văn Lâm
Nov 10 at 0:08




Sir, I thought $x=sinh t, ycosh t$. And nothing more!
– Trần Văn Lâm
Nov 10 at 0:08












Sir Michael Rozenberg, please! I can't wait because I want to see your solution.
– Trần Văn Lâm
Nov 10 at 13:05




Sir Michael Rozenberg, please! I can't wait because I want to see your solution.
– Trần Văn Lâm
Nov 10 at 13:05










1 Answer
1






active

oldest

votes

















up vote
1
down vote













By C-S $$x^2y^2geqsqrt{(x^2+y^4)(y^2+x^4)}-xsqrt{y^2+x^4}-ysqrt{x^2+y^4}+xygeq$$
$$geq |xy|+x^2y^2-xsqrt{y^2+x^4}-ysqrt{x^2+y^4}+xy,$$
which gives
$$xsqrt{y^2+x^4}+ysqrt{x^2+y^4}geq|xy|+xy.$$
Now, if $xygeq0$ so since
$$xsqrt{y^2+x^4}+ysqrt{x^2+y^4}geq0,$$ we obtain $xgeq0$, $ygeq0$ and from here $x+ygeq0.$



Let $xy<0$, $x>0$ and $y<0$.



Thus, $$xsqrt{y^2+x^4}geq-ysqrt{x^2+y^4}$$ or
$$x^2y^2+x^6geq x^2y^2+y^6$$ or
$$x^2geq y^2,$$ which gives $x+ygeq0$ because $x-y>0.$






share|cite|improve this answer























  • The first part, $x^2y^2geqsqrt{(x^2+y^4)(y^2+x^4)}-xsqrt{y^2+x^4}-ysqrt{x^2+y^4}+xy$ is what you WANT to establish. The second part, $sqrt{(x^2+y^4)(y^2+x^4)}-xsqrt{y^2+x^4}-ysqrt{x^2+y^4}+xygeq |xy|+x^2y^2-xsqrt{y^2+x^4}-ysqrt{x^2+y^4}$ doesn't hold true in general, e.g. $(x,y)=(1,−1)$ doesn't hold. So I wonder how the proof goes.
    – Andreas
    2 days ago










  • @Andreas I work with the given. Your example $(1,-1)$ is not valid. See please better the given.
    – Michael Rozenberg
    2 days ago










  • The question doen't say anything about the signs or ranges of $x$ and $y$.
    – Andreas
    2 days ago








  • 1




    Ok I got it. You are of course right that on the condition side, we can make that replacement.
    – Andreas
    2 days ago






  • 1




    Ok I followed the further steps in your answer and it looks real fine. Congrats!
    – Andreas
    2 days ago











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2990955%2fproblem-wih-hyperbolic-function%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes








up vote
1
down vote













By C-S $$x^2y^2geqsqrt{(x^2+y^4)(y^2+x^4)}-xsqrt{y^2+x^4}-ysqrt{x^2+y^4}+xygeq$$
$$geq |xy|+x^2y^2-xsqrt{y^2+x^4}-ysqrt{x^2+y^4}+xy,$$
which gives
$$xsqrt{y^2+x^4}+ysqrt{x^2+y^4}geq|xy|+xy.$$
Now, if $xygeq0$ so since
$$xsqrt{y^2+x^4}+ysqrt{x^2+y^4}geq0,$$ we obtain $xgeq0$, $ygeq0$ and from here $x+ygeq0.$



Let $xy<0$, $x>0$ and $y<0$.



Thus, $$xsqrt{y^2+x^4}geq-ysqrt{x^2+y^4}$$ or
$$x^2y^2+x^6geq x^2y^2+y^6$$ or
$$x^2geq y^2,$$ which gives $x+ygeq0$ because $x-y>0.$






share|cite|improve this answer























  • The first part, $x^2y^2geqsqrt{(x^2+y^4)(y^2+x^4)}-xsqrt{y^2+x^4}-ysqrt{x^2+y^4}+xy$ is what you WANT to establish. The second part, $sqrt{(x^2+y^4)(y^2+x^4)}-xsqrt{y^2+x^4}-ysqrt{x^2+y^4}+xygeq |xy|+x^2y^2-xsqrt{y^2+x^4}-ysqrt{x^2+y^4}$ doesn't hold true in general, e.g. $(x,y)=(1,−1)$ doesn't hold. So I wonder how the proof goes.
    – Andreas
    2 days ago










  • @Andreas I work with the given. Your example $(1,-1)$ is not valid. See please better the given.
    – Michael Rozenberg
    2 days ago










  • The question doen't say anything about the signs or ranges of $x$ and $y$.
    – Andreas
    2 days ago








  • 1




    Ok I got it. You are of course right that on the condition side, we can make that replacement.
    – Andreas
    2 days ago






  • 1




    Ok I followed the further steps in your answer and it looks real fine. Congrats!
    – Andreas
    2 days ago















up vote
1
down vote













By C-S $$x^2y^2geqsqrt{(x^2+y^4)(y^2+x^4)}-xsqrt{y^2+x^4}-ysqrt{x^2+y^4}+xygeq$$
$$geq |xy|+x^2y^2-xsqrt{y^2+x^4}-ysqrt{x^2+y^4}+xy,$$
which gives
$$xsqrt{y^2+x^4}+ysqrt{x^2+y^4}geq|xy|+xy.$$
Now, if $xygeq0$ so since
$$xsqrt{y^2+x^4}+ysqrt{x^2+y^4}geq0,$$ we obtain $xgeq0$, $ygeq0$ and from here $x+ygeq0.$



Let $xy<0$, $x>0$ and $y<0$.



Thus, $$xsqrt{y^2+x^4}geq-ysqrt{x^2+y^4}$$ or
$$x^2y^2+x^6geq x^2y^2+y^6$$ or
$$x^2geq y^2,$$ which gives $x+ygeq0$ because $x-y>0.$






share|cite|improve this answer























  • The first part, $x^2y^2geqsqrt{(x^2+y^4)(y^2+x^4)}-xsqrt{y^2+x^4}-ysqrt{x^2+y^4}+xy$ is what you WANT to establish. The second part, $sqrt{(x^2+y^4)(y^2+x^4)}-xsqrt{y^2+x^4}-ysqrt{x^2+y^4}+xygeq |xy|+x^2y^2-xsqrt{y^2+x^4}-ysqrt{x^2+y^4}$ doesn't hold true in general, e.g. $(x,y)=(1,−1)$ doesn't hold. So I wonder how the proof goes.
    – Andreas
    2 days ago










  • @Andreas I work with the given. Your example $(1,-1)$ is not valid. See please better the given.
    – Michael Rozenberg
    2 days ago










  • The question doen't say anything about the signs or ranges of $x$ and $y$.
    – Andreas
    2 days ago








  • 1




    Ok I got it. You are of course right that on the condition side, we can make that replacement.
    – Andreas
    2 days ago






  • 1




    Ok I followed the further steps in your answer and it looks real fine. Congrats!
    – Andreas
    2 days ago













up vote
1
down vote










up vote
1
down vote









By C-S $$x^2y^2geqsqrt{(x^2+y^4)(y^2+x^4)}-xsqrt{y^2+x^4}-ysqrt{x^2+y^4}+xygeq$$
$$geq |xy|+x^2y^2-xsqrt{y^2+x^4}-ysqrt{x^2+y^4}+xy,$$
which gives
$$xsqrt{y^2+x^4}+ysqrt{x^2+y^4}geq|xy|+xy.$$
Now, if $xygeq0$ so since
$$xsqrt{y^2+x^4}+ysqrt{x^2+y^4}geq0,$$ we obtain $xgeq0$, $ygeq0$ and from here $x+ygeq0.$



Let $xy<0$, $x>0$ and $y<0$.



Thus, $$xsqrt{y^2+x^4}geq-ysqrt{x^2+y^4}$$ or
$$x^2y^2+x^6geq x^2y^2+y^6$$ or
$$x^2geq y^2,$$ which gives $x+ygeq0$ because $x-y>0.$






share|cite|improve this answer














By C-S $$x^2y^2geqsqrt{(x^2+y^4)(y^2+x^4)}-xsqrt{y^2+x^4}-ysqrt{x^2+y^4}+xygeq$$
$$geq |xy|+x^2y^2-xsqrt{y^2+x^4}-ysqrt{x^2+y^4}+xy,$$
which gives
$$xsqrt{y^2+x^4}+ysqrt{x^2+y^4}geq|xy|+xy.$$
Now, if $xygeq0$ so since
$$xsqrt{y^2+x^4}+ysqrt{x^2+y^4}geq0,$$ we obtain $xgeq0$, $ygeq0$ and from here $x+ygeq0.$



Let $xy<0$, $x>0$ and $y<0$.



Thus, $$xsqrt{y^2+x^4}geq-ysqrt{x^2+y^4}$$ or
$$x^2y^2+x^6geq x^2y^2+y^6$$ or
$$x^2geq y^2,$$ which gives $x+ygeq0$ because $x-y>0.$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 2 days ago

























answered Nov 23 at 8:48









Michael Rozenberg

94.4k1588183




94.4k1588183












  • The first part, $x^2y^2geqsqrt{(x^2+y^4)(y^2+x^4)}-xsqrt{y^2+x^4}-ysqrt{x^2+y^4}+xy$ is what you WANT to establish. The second part, $sqrt{(x^2+y^4)(y^2+x^4)}-xsqrt{y^2+x^4}-ysqrt{x^2+y^4}+xygeq |xy|+x^2y^2-xsqrt{y^2+x^4}-ysqrt{x^2+y^4}$ doesn't hold true in general, e.g. $(x,y)=(1,−1)$ doesn't hold. So I wonder how the proof goes.
    – Andreas
    2 days ago










  • @Andreas I work with the given. Your example $(1,-1)$ is not valid. See please better the given.
    – Michael Rozenberg
    2 days ago










  • The question doen't say anything about the signs or ranges of $x$ and $y$.
    – Andreas
    2 days ago








  • 1




    Ok I got it. You are of course right that on the condition side, we can make that replacement.
    – Andreas
    2 days ago






  • 1




    Ok I followed the further steps in your answer and it looks real fine. Congrats!
    – Andreas
    2 days ago


















  • The first part, $x^2y^2geqsqrt{(x^2+y^4)(y^2+x^4)}-xsqrt{y^2+x^4}-ysqrt{x^2+y^4}+xy$ is what you WANT to establish. The second part, $sqrt{(x^2+y^4)(y^2+x^4)}-xsqrt{y^2+x^4}-ysqrt{x^2+y^4}+xygeq |xy|+x^2y^2-xsqrt{y^2+x^4}-ysqrt{x^2+y^4}$ doesn't hold true in general, e.g. $(x,y)=(1,−1)$ doesn't hold. So I wonder how the proof goes.
    – Andreas
    2 days ago










  • @Andreas I work with the given. Your example $(1,-1)$ is not valid. See please better the given.
    – Michael Rozenberg
    2 days ago










  • The question doen't say anything about the signs or ranges of $x$ and $y$.
    – Andreas
    2 days ago








  • 1




    Ok I got it. You are of course right that on the condition side, we can make that replacement.
    – Andreas
    2 days ago






  • 1




    Ok I followed the further steps in your answer and it looks real fine. Congrats!
    – Andreas
    2 days ago
















The first part, $x^2y^2geqsqrt{(x^2+y^4)(y^2+x^4)}-xsqrt{y^2+x^4}-ysqrt{x^2+y^4}+xy$ is what you WANT to establish. The second part, $sqrt{(x^2+y^4)(y^2+x^4)}-xsqrt{y^2+x^4}-ysqrt{x^2+y^4}+xygeq |xy|+x^2y^2-xsqrt{y^2+x^4}-ysqrt{x^2+y^4}$ doesn't hold true in general, e.g. $(x,y)=(1,−1)$ doesn't hold. So I wonder how the proof goes.
– Andreas
2 days ago




The first part, $x^2y^2geqsqrt{(x^2+y^4)(y^2+x^4)}-xsqrt{y^2+x^4}-ysqrt{x^2+y^4}+xy$ is what you WANT to establish. The second part, $sqrt{(x^2+y^4)(y^2+x^4)}-xsqrt{y^2+x^4}-ysqrt{x^2+y^4}+xygeq |xy|+x^2y^2-xsqrt{y^2+x^4}-ysqrt{x^2+y^4}$ doesn't hold true in general, e.g. $(x,y)=(1,−1)$ doesn't hold. So I wonder how the proof goes.
– Andreas
2 days ago












@Andreas I work with the given. Your example $(1,-1)$ is not valid. See please better the given.
– Michael Rozenberg
2 days ago




@Andreas I work with the given. Your example $(1,-1)$ is not valid. See please better the given.
– Michael Rozenberg
2 days ago












The question doen't say anything about the signs or ranges of $x$ and $y$.
– Andreas
2 days ago






The question doen't say anything about the signs or ranges of $x$ and $y$.
– Andreas
2 days ago






1




1




Ok I got it. You are of course right that on the condition side, we can make that replacement.
– Andreas
2 days ago




Ok I got it. You are of course right that on the condition side, we can make that replacement.
– Andreas
2 days ago




1




1




Ok I followed the further steps in your answer and it looks real fine. Congrats!
– Andreas
2 days ago




Ok I followed the further steps in your answer and it looks real fine. Congrats!
– Andreas
2 days ago


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.





Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


Please pay close attention to the following guidance:


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2990955%2fproblem-wih-hyperbolic-function%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Berounka

Different font size/position of beamer's navigation symbols template's content depending on regular/plain...

Sphinx de Gizeh