Find a good formulae












2












$begingroup$


We know that equation $$s_1+s_2+s_3=n-1 quad mbox{$s_1,s_2,s_3$}geq 1$$
has $binom{n-2}{2}$ solution.
I want to find any good formulae for the following form :



$$sumlimits_{(s_1,s_2,s_3)}prod_{i=1}^3binom{s_i+s_{i-1}-1}{s_i}=?$$
where, $s_0=1$ and each $(s_1,s_2,s_3)$ is the solution of above equaiton.





  • My all attempts have failed.




$textbf{Edit}:$ I also note that following:
$$n=4Longrightarrow 1$$
$$n=5Longrightarrow 5$$
$$n=6Longrightarrow 18$$
$$n=7Longrightarrow 53$$
$$n=8Longrightarrow 169$$
$$n=9Longrightarrow 502$$










share|cite|improve this question











$endgroup$








  • 3




    $begingroup$
    $sumlimits_{(s_1,s_2,s_3)}prod_{i=1}^3binom{s_i+s_{i-1}-1}{s_i}=sumlimits_{(s_1,s_2,s_3)}prod_{i=2}^3binom{s_i+s_{i-1}-1}{s_i}$ since $forall s_1,binom {s_1+s_0-1}{s_1}=binom{s_1}{s_1}=1$. The product just has two terms.
    $endgroup$
    – Shubham Johri
    Dec 10 '18 at 14:02












  • $begingroup$
    @ShubhamJohri, thank you I know it . But, it is not help to me for answer.
    $endgroup$
    – 1Spectre1
    Dec 11 '18 at 6:10
















2












$begingroup$


We know that equation $$s_1+s_2+s_3=n-1 quad mbox{$s_1,s_2,s_3$}geq 1$$
has $binom{n-2}{2}$ solution.
I want to find any good formulae for the following form :



$$sumlimits_{(s_1,s_2,s_3)}prod_{i=1}^3binom{s_i+s_{i-1}-1}{s_i}=?$$
where, $s_0=1$ and each $(s_1,s_2,s_3)$ is the solution of above equaiton.





  • My all attempts have failed.




$textbf{Edit}:$ I also note that following:
$$n=4Longrightarrow 1$$
$$n=5Longrightarrow 5$$
$$n=6Longrightarrow 18$$
$$n=7Longrightarrow 53$$
$$n=8Longrightarrow 169$$
$$n=9Longrightarrow 502$$










share|cite|improve this question











$endgroup$








  • 3




    $begingroup$
    $sumlimits_{(s_1,s_2,s_3)}prod_{i=1}^3binom{s_i+s_{i-1}-1}{s_i}=sumlimits_{(s_1,s_2,s_3)}prod_{i=2}^3binom{s_i+s_{i-1}-1}{s_i}$ since $forall s_1,binom {s_1+s_0-1}{s_1}=binom{s_1}{s_1}=1$. The product just has two terms.
    $endgroup$
    – Shubham Johri
    Dec 10 '18 at 14:02












  • $begingroup$
    @ShubhamJohri, thank you I know it . But, it is not help to me for answer.
    $endgroup$
    – 1Spectre1
    Dec 11 '18 at 6:10














2












2








2


1



$begingroup$


We know that equation $$s_1+s_2+s_3=n-1 quad mbox{$s_1,s_2,s_3$}geq 1$$
has $binom{n-2}{2}$ solution.
I want to find any good formulae for the following form :



$$sumlimits_{(s_1,s_2,s_3)}prod_{i=1}^3binom{s_i+s_{i-1}-1}{s_i}=?$$
where, $s_0=1$ and each $(s_1,s_2,s_3)$ is the solution of above equaiton.





  • My all attempts have failed.




$textbf{Edit}:$ I also note that following:
$$n=4Longrightarrow 1$$
$$n=5Longrightarrow 5$$
$$n=6Longrightarrow 18$$
$$n=7Longrightarrow 53$$
$$n=8Longrightarrow 169$$
$$n=9Longrightarrow 502$$










share|cite|improve this question











$endgroup$




We know that equation $$s_1+s_2+s_3=n-1 quad mbox{$s_1,s_2,s_3$}geq 1$$
has $binom{n-2}{2}$ solution.
I want to find any good formulae for the following form :



$$sumlimits_{(s_1,s_2,s_3)}prod_{i=1}^3binom{s_i+s_{i-1}-1}{s_i}=?$$
where, $s_0=1$ and each $(s_1,s_2,s_3)$ is the solution of above equaiton.





  • My all attempts have failed.




$textbf{Edit}:$ I also note that following:
$$n=4Longrightarrow 1$$
$$n=5Longrightarrow 5$$
$$n=6Longrightarrow 18$$
$$n=7Longrightarrow 53$$
$$n=8Longrightarrow 169$$
$$n=9Longrightarrow 502$$







combinatorics discrete-mathematics combinations






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 11 '18 at 12:23







1Spectre1

















asked Dec 10 '18 at 13:28









1Spectre11Spectre1

999




999








  • 3




    $begingroup$
    $sumlimits_{(s_1,s_2,s_3)}prod_{i=1}^3binom{s_i+s_{i-1}-1}{s_i}=sumlimits_{(s_1,s_2,s_3)}prod_{i=2}^3binom{s_i+s_{i-1}-1}{s_i}$ since $forall s_1,binom {s_1+s_0-1}{s_1}=binom{s_1}{s_1}=1$. The product just has two terms.
    $endgroup$
    – Shubham Johri
    Dec 10 '18 at 14:02












  • $begingroup$
    @ShubhamJohri, thank you I know it . But, it is not help to me for answer.
    $endgroup$
    – 1Spectre1
    Dec 11 '18 at 6:10














  • 3




    $begingroup$
    $sumlimits_{(s_1,s_2,s_3)}prod_{i=1}^3binom{s_i+s_{i-1}-1}{s_i}=sumlimits_{(s_1,s_2,s_3)}prod_{i=2}^3binom{s_i+s_{i-1}-1}{s_i}$ since $forall s_1,binom {s_1+s_0-1}{s_1}=binom{s_1}{s_1}=1$. The product just has two terms.
    $endgroup$
    – Shubham Johri
    Dec 10 '18 at 14:02












  • $begingroup$
    @ShubhamJohri, thank you I know it . But, it is not help to me for answer.
    $endgroup$
    – 1Spectre1
    Dec 11 '18 at 6:10








3




3




$begingroup$
$sumlimits_{(s_1,s_2,s_3)}prod_{i=1}^3binom{s_i+s_{i-1}-1}{s_i}=sumlimits_{(s_1,s_2,s_3)}prod_{i=2}^3binom{s_i+s_{i-1}-1}{s_i}$ since $forall s_1,binom {s_1+s_0-1}{s_1}=binom{s_1}{s_1}=1$. The product just has two terms.
$endgroup$
– Shubham Johri
Dec 10 '18 at 14:02






$begingroup$
$sumlimits_{(s_1,s_2,s_3)}prod_{i=1}^3binom{s_i+s_{i-1}-1}{s_i}=sumlimits_{(s_1,s_2,s_3)}prod_{i=2}^3binom{s_i+s_{i-1}-1}{s_i}$ since $forall s_1,binom {s_1+s_0-1}{s_1}=binom{s_1}{s_1}=1$. The product just has two terms.
$endgroup$
– Shubham Johri
Dec 10 '18 at 14:02














$begingroup$
@ShubhamJohri, thank you I know it . But, it is not help to me for answer.
$endgroup$
– 1Spectre1
Dec 11 '18 at 6:10




$begingroup$
@ShubhamJohri, thank you I know it . But, it is not help to me for answer.
$endgroup$
– 1Spectre1
Dec 11 '18 at 6:10










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033913%2ffind-a-good-formulae%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033913%2ffind-a-good-formulae%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Berounka

Different font size/position of beamer's navigation symbols template's content depending on regular/plain...

Sphinx de Gizeh