How is the suggested method used to estabish the stated result? In proof that a polynomial of degree n has at...
$begingroup$
This question is based on the discussion in B4-1.2 of Fundamentals of Mathematics, Volume 1 Edited by H. Behnke, F. Bachmann, K. Fladt, W. Süss and H. Kunle.
See the bold text for the part of the proof I am seeking help with. My question is: how do I use the method suggested to obtain the needed result?
Technically this proof is applied to $mathcal{R}$ which is an arbitrary
commutative ring with unit element 1, and without null divisors. And the expression
$$
fleft[xright]=sum_{i=0}^{n}a_{i}x^{i}
$$
is equivalent to an entire rational function of one argument
in $mathcal{R}.$ Here we have defined $0^{0}equiv1$ to support
our notation. For the purpose of this question we can simply call
$f$ a polynomial of degree $n$ in $mathbb{R}.$
Our objective is to prove the following theorem: If $f$ is expressible
in the form
$$
fleft[xright]=sum_{i=0}^{n}a_{i}x^{i}
$$
with $a_{n}ne0,$ then $f$ has at most $n$ roots.
Proof: First we introduce the constant expressions
$$
bar{a}_{k}=sum_{i=k+1}^{n}a_{i}alpha^{i-k-1},
$$
and the function
$$
f_{1}left[xright]equivsum_{k=0}^{n-1}x^{k}bar{a}_{k}=sum_{k=0}^{n-2}x^{k}bar{a}_{k}+a_{n}x^{n-1}.
$$
The right-most expression follows from $bar{a}_{n-1}=a_{n},$ and
shows that $f_{1}$ has at most $n-1$ roots by the induction hypothesis.
Next we observe that for the real number constant $alpha$ we have
$$
(x-alpha)sum_{k=0}^{i-1}x^{k}alpha^{i-k-1}=sum_{k=0}^{i-1}x^{k+1}alpha^{i-k-1}-sum_{k=0}^{i-1}x^{k}alpha^{i-k}
$$
$$
=sum_{k=1}^{i}x^{k}alpha^{i-k}-sum_{k=0}^{i-1}x^{k}alpha^{i-k}=x^{i}-alpha^{i},
$$
and apply this result to obtain, for $n>0$
$$
fleft[xright]-fleft[alpharight]=left(x-alpharight)f_{1}left[xright].
$$
The case of $n=0$ is the constant function $fleft[xright]=a_{0}x^{0},$
which is of the required form. If $alpha$ is a root of $f,$ we have
$$
fleft[xright]-fleft[alpharight]=left(x-alpharight)f_{1}left[xright]=0.
$$
If $xnealpha,$ is a root of $f$ then $f_{1}left[xright]=0.$ It follows that $f$
has at most one more root than $f_{1}$ Since $f_{1}$ has at most $n-1$ roots this which completes the proof.
The step I am not following is the establishment of $fleft[xright]-fleft[alpharight]=left(x-alpharight)f_{1}left[xright]$
using
$$(x-alpha)sum_{k=0}^{i-1}x^{k}alpha^{i-k-1}=x^{i}-alpha^{i}.$$
I am able to establish the result using brute force as follows: Expand
$f_{1}$
$$
f_{1}left[xright]equivsum_{k=0}^{n-1}left(sum_{i=k+1}^{n}a_{i}alpha^{i-k-1}right)x^{k}
$$
$$
=left(a_{1}+a_{2}alpha+a_{3}alpha^{2}+a_{4}alpha^{3}+ldots+a_{n}alpha^{n-1}right)
$$
$$
+left(a_{2}+a_{3}alpha+a_{4}alpha^{2}+a_{5}alpha^{3}+ldots+a_{n}alpha^{n-2}right)x
$$
$$
+left(a_{3}+a_{4}alpha+a_{5}alpha^{2}+a_{6}alpha^{3}+ldots+a_{n}alpha^{n-3}right)x^{2}
$$
$$
+dots+a_{n}x^{n-1}
$$
$$
=a_{1}+a_{2}(alpha+x)+a_{3}left(alpha^{2}+alpha x+x^{2}right)
$$
$$
+a_{4}left(alpha^{3}+alpha^{2}x+alpha x^{2}+x^{3}right)
$$
$$
+ldots+a_{i}left(alpha^{i-1}+alpha^{i-2}x+ldots+alpha x^{i-2}+x^{i-1}right)
$$
$$
+ldots+a_{i}left(alpha^{n-1}+alpha^{n-2}x+ldots+alpha x^{n-2}+x^{n-1}right).
$$
Multiplying by $left(x-alpharight)$ and canceling like terms of opposite
sign produces the desired result
$$
left(x-alpharight)f_{1}left[xright]=a_{1}left(x-alpharight)+a_{2}(alpha^{2}-x^{2})
$$
$$
+a_{3}left(alpha^{2}x+alpha x^{2}+x^{3}-alpha^{3}-alpha^{2}x-alpha x^{2}right)
$$
$$
+ldots+a_{i}left(alpha^{i-1}x+alpha^{i-2}x^{2}+ldots+alpha^{2}x^{i-2}+alpha x^{i-1}+x^{i}right)
$$
$$
-a_{i}left(alpha^{i}+alpha^{i-1}x+alpha^{i-2}x^{2}+ldots+alpha^{2}x^{i-2}+alpha x^{i-1}right)
$$
$$
+ldots+a_{n}left(alpha^{n-1}x+alpha^{n-2}x^{2}+ldots+alpha^{2}x^{n-2}+alpha x^{n-1}+x^{n}right)
$$
$$
-a_{n}left(alpha^{n}+alpha^{n-1}x+alpha^{n-2}x^{2}+ldots+alpha^{2}x^{n-2}+alpha x^{n-1}right)
$$
$$
=fleft[xright].
$$
abstract-algebra algebra-precalculus polynomials
$endgroup$
add a comment |
$begingroup$
This question is based on the discussion in B4-1.2 of Fundamentals of Mathematics, Volume 1 Edited by H. Behnke, F. Bachmann, K. Fladt, W. Süss and H. Kunle.
See the bold text for the part of the proof I am seeking help with. My question is: how do I use the method suggested to obtain the needed result?
Technically this proof is applied to $mathcal{R}$ which is an arbitrary
commutative ring with unit element 1, and without null divisors. And the expression
$$
fleft[xright]=sum_{i=0}^{n}a_{i}x^{i}
$$
is equivalent to an entire rational function of one argument
in $mathcal{R}.$ Here we have defined $0^{0}equiv1$ to support
our notation. For the purpose of this question we can simply call
$f$ a polynomial of degree $n$ in $mathbb{R}.$
Our objective is to prove the following theorem: If $f$ is expressible
in the form
$$
fleft[xright]=sum_{i=0}^{n}a_{i}x^{i}
$$
with $a_{n}ne0,$ then $f$ has at most $n$ roots.
Proof: First we introduce the constant expressions
$$
bar{a}_{k}=sum_{i=k+1}^{n}a_{i}alpha^{i-k-1},
$$
and the function
$$
f_{1}left[xright]equivsum_{k=0}^{n-1}x^{k}bar{a}_{k}=sum_{k=0}^{n-2}x^{k}bar{a}_{k}+a_{n}x^{n-1}.
$$
The right-most expression follows from $bar{a}_{n-1}=a_{n},$ and
shows that $f_{1}$ has at most $n-1$ roots by the induction hypothesis.
Next we observe that for the real number constant $alpha$ we have
$$
(x-alpha)sum_{k=0}^{i-1}x^{k}alpha^{i-k-1}=sum_{k=0}^{i-1}x^{k+1}alpha^{i-k-1}-sum_{k=0}^{i-1}x^{k}alpha^{i-k}
$$
$$
=sum_{k=1}^{i}x^{k}alpha^{i-k}-sum_{k=0}^{i-1}x^{k}alpha^{i-k}=x^{i}-alpha^{i},
$$
and apply this result to obtain, for $n>0$
$$
fleft[xright]-fleft[alpharight]=left(x-alpharight)f_{1}left[xright].
$$
The case of $n=0$ is the constant function $fleft[xright]=a_{0}x^{0},$
which is of the required form. If $alpha$ is a root of $f,$ we have
$$
fleft[xright]-fleft[alpharight]=left(x-alpharight)f_{1}left[xright]=0.
$$
If $xnealpha,$ is a root of $f$ then $f_{1}left[xright]=0.$ It follows that $f$
has at most one more root than $f_{1}$ Since $f_{1}$ has at most $n-1$ roots this which completes the proof.
The step I am not following is the establishment of $fleft[xright]-fleft[alpharight]=left(x-alpharight)f_{1}left[xright]$
using
$$(x-alpha)sum_{k=0}^{i-1}x^{k}alpha^{i-k-1}=x^{i}-alpha^{i}.$$
I am able to establish the result using brute force as follows: Expand
$f_{1}$
$$
f_{1}left[xright]equivsum_{k=0}^{n-1}left(sum_{i=k+1}^{n}a_{i}alpha^{i-k-1}right)x^{k}
$$
$$
=left(a_{1}+a_{2}alpha+a_{3}alpha^{2}+a_{4}alpha^{3}+ldots+a_{n}alpha^{n-1}right)
$$
$$
+left(a_{2}+a_{3}alpha+a_{4}alpha^{2}+a_{5}alpha^{3}+ldots+a_{n}alpha^{n-2}right)x
$$
$$
+left(a_{3}+a_{4}alpha+a_{5}alpha^{2}+a_{6}alpha^{3}+ldots+a_{n}alpha^{n-3}right)x^{2}
$$
$$
+dots+a_{n}x^{n-1}
$$
$$
=a_{1}+a_{2}(alpha+x)+a_{3}left(alpha^{2}+alpha x+x^{2}right)
$$
$$
+a_{4}left(alpha^{3}+alpha^{2}x+alpha x^{2}+x^{3}right)
$$
$$
+ldots+a_{i}left(alpha^{i-1}+alpha^{i-2}x+ldots+alpha x^{i-2}+x^{i-1}right)
$$
$$
+ldots+a_{i}left(alpha^{n-1}+alpha^{n-2}x+ldots+alpha x^{n-2}+x^{n-1}right).
$$
Multiplying by $left(x-alpharight)$ and canceling like terms of opposite
sign produces the desired result
$$
left(x-alpharight)f_{1}left[xright]=a_{1}left(x-alpharight)+a_{2}(alpha^{2}-x^{2})
$$
$$
+a_{3}left(alpha^{2}x+alpha x^{2}+x^{3}-alpha^{3}-alpha^{2}x-alpha x^{2}right)
$$
$$
+ldots+a_{i}left(alpha^{i-1}x+alpha^{i-2}x^{2}+ldots+alpha^{2}x^{i-2}+alpha x^{i-1}+x^{i}right)
$$
$$
-a_{i}left(alpha^{i}+alpha^{i-1}x+alpha^{i-2}x^{2}+ldots+alpha^{2}x^{i-2}+alpha x^{i-1}right)
$$
$$
+ldots+a_{n}left(alpha^{n-1}x+alpha^{n-2}x^{2}+ldots+alpha^{2}x^{n-2}+alpha x^{n-1}+x^{n}right)
$$
$$
-a_{n}left(alpha^{n}+alpha^{n-1}x+alpha^{n-2}x^{2}+ldots+alpha^{2}x^{n-2}+alpha x^{n-1}right)
$$
$$
=fleft[xright].
$$
abstract-algebra algebra-precalculus polynomials
$endgroup$
add a comment |
$begingroup$
This question is based on the discussion in B4-1.2 of Fundamentals of Mathematics, Volume 1 Edited by H. Behnke, F. Bachmann, K. Fladt, W. Süss and H. Kunle.
See the bold text for the part of the proof I am seeking help with. My question is: how do I use the method suggested to obtain the needed result?
Technically this proof is applied to $mathcal{R}$ which is an arbitrary
commutative ring with unit element 1, and without null divisors. And the expression
$$
fleft[xright]=sum_{i=0}^{n}a_{i}x^{i}
$$
is equivalent to an entire rational function of one argument
in $mathcal{R}.$ Here we have defined $0^{0}equiv1$ to support
our notation. For the purpose of this question we can simply call
$f$ a polynomial of degree $n$ in $mathbb{R}.$
Our objective is to prove the following theorem: If $f$ is expressible
in the form
$$
fleft[xright]=sum_{i=0}^{n}a_{i}x^{i}
$$
with $a_{n}ne0,$ then $f$ has at most $n$ roots.
Proof: First we introduce the constant expressions
$$
bar{a}_{k}=sum_{i=k+1}^{n}a_{i}alpha^{i-k-1},
$$
and the function
$$
f_{1}left[xright]equivsum_{k=0}^{n-1}x^{k}bar{a}_{k}=sum_{k=0}^{n-2}x^{k}bar{a}_{k}+a_{n}x^{n-1}.
$$
The right-most expression follows from $bar{a}_{n-1}=a_{n},$ and
shows that $f_{1}$ has at most $n-1$ roots by the induction hypothesis.
Next we observe that for the real number constant $alpha$ we have
$$
(x-alpha)sum_{k=0}^{i-1}x^{k}alpha^{i-k-1}=sum_{k=0}^{i-1}x^{k+1}alpha^{i-k-1}-sum_{k=0}^{i-1}x^{k}alpha^{i-k}
$$
$$
=sum_{k=1}^{i}x^{k}alpha^{i-k}-sum_{k=0}^{i-1}x^{k}alpha^{i-k}=x^{i}-alpha^{i},
$$
and apply this result to obtain, for $n>0$
$$
fleft[xright]-fleft[alpharight]=left(x-alpharight)f_{1}left[xright].
$$
The case of $n=0$ is the constant function $fleft[xright]=a_{0}x^{0},$
which is of the required form. If $alpha$ is a root of $f,$ we have
$$
fleft[xright]-fleft[alpharight]=left(x-alpharight)f_{1}left[xright]=0.
$$
If $xnealpha,$ is a root of $f$ then $f_{1}left[xright]=0.$ It follows that $f$
has at most one more root than $f_{1}$ Since $f_{1}$ has at most $n-1$ roots this which completes the proof.
The step I am not following is the establishment of $fleft[xright]-fleft[alpharight]=left(x-alpharight)f_{1}left[xright]$
using
$$(x-alpha)sum_{k=0}^{i-1}x^{k}alpha^{i-k-1}=x^{i}-alpha^{i}.$$
I am able to establish the result using brute force as follows: Expand
$f_{1}$
$$
f_{1}left[xright]equivsum_{k=0}^{n-1}left(sum_{i=k+1}^{n}a_{i}alpha^{i-k-1}right)x^{k}
$$
$$
=left(a_{1}+a_{2}alpha+a_{3}alpha^{2}+a_{4}alpha^{3}+ldots+a_{n}alpha^{n-1}right)
$$
$$
+left(a_{2}+a_{3}alpha+a_{4}alpha^{2}+a_{5}alpha^{3}+ldots+a_{n}alpha^{n-2}right)x
$$
$$
+left(a_{3}+a_{4}alpha+a_{5}alpha^{2}+a_{6}alpha^{3}+ldots+a_{n}alpha^{n-3}right)x^{2}
$$
$$
+dots+a_{n}x^{n-1}
$$
$$
=a_{1}+a_{2}(alpha+x)+a_{3}left(alpha^{2}+alpha x+x^{2}right)
$$
$$
+a_{4}left(alpha^{3}+alpha^{2}x+alpha x^{2}+x^{3}right)
$$
$$
+ldots+a_{i}left(alpha^{i-1}+alpha^{i-2}x+ldots+alpha x^{i-2}+x^{i-1}right)
$$
$$
+ldots+a_{i}left(alpha^{n-1}+alpha^{n-2}x+ldots+alpha x^{n-2}+x^{n-1}right).
$$
Multiplying by $left(x-alpharight)$ and canceling like terms of opposite
sign produces the desired result
$$
left(x-alpharight)f_{1}left[xright]=a_{1}left(x-alpharight)+a_{2}(alpha^{2}-x^{2})
$$
$$
+a_{3}left(alpha^{2}x+alpha x^{2}+x^{3}-alpha^{3}-alpha^{2}x-alpha x^{2}right)
$$
$$
+ldots+a_{i}left(alpha^{i-1}x+alpha^{i-2}x^{2}+ldots+alpha^{2}x^{i-2}+alpha x^{i-1}+x^{i}right)
$$
$$
-a_{i}left(alpha^{i}+alpha^{i-1}x+alpha^{i-2}x^{2}+ldots+alpha^{2}x^{i-2}+alpha x^{i-1}right)
$$
$$
+ldots+a_{n}left(alpha^{n-1}x+alpha^{n-2}x^{2}+ldots+alpha^{2}x^{n-2}+alpha x^{n-1}+x^{n}right)
$$
$$
-a_{n}left(alpha^{n}+alpha^{n-1}x+alpha^{n-2}x^{2}+ldots+alpha^{2}x^{n-2}+alpha x^{n-1}right)
$$
$$
=fleft[xright].
$$
abstract-algebra algebra-precalculus polynomials
$endgroup$
This question is based on the discussion in B4-1.2 of Fundamentals of Mathematics, Volume 1 Edited by H. Behnke, F. Bachmann, K. Fladt, W. Süss and H. Kunle.
See the bold text for the part of the proof I am seeking help with. My question is: how do I use the method suggested to obtain the needed result?
Technically this proof is applied to $mathcal{R}$ which is an arbitrary
commutative ring with unit element 1, and without null divisors. And the expression
$$
fleft[xright]=sum_{i=0}^{n}a_{i}x^{i}
$$
is equivalent to an entire rational function of one argument
in $mathcal{R}.$ Here we have defined $0^{0}equiv1$ to support
our notation. For the purpose of this question we can simply call
$f$ a polynomial of degree $n$ in $mathbb{R}.$
Our objective is to prove the following theorem: If $f$ is expressible
in the form
$$
fleft[xright]=sum_{i=0}^{n}a_{i}x^{i}
$$
with $a_{n}ne0,$ then $f$ has at most $n$ roots.
Proof: First we introduce the constant expressions
$$
bar{a}_{k}=sum_{i=k+1}^{n}a_{i}alpha^{i-k-1},
$$
and the function
$$
f_{1}left[xright]equivsum_{k=0}^{n-1}x^{k}bar{a}_{k}=sum_{k=0}^{n-2}x^{k}bar{a}_{k}+a_{n}x^{n-1}.
$$
The right-most expression follows from $bar{a}_{n-1}=a_{n},$ and
shows that $f_{1}$ has at most $n-1$ roots by the induction hypothesis.
Next we observe that for the real number constant $alpha$ we have
$$
(x-alpha)sum_{k=0}^{i-1}x^{k}alpha^{i-k-1}=sum_{k=0}^{i-1}x^{k+1}alpha^{i-k-1}-sum_{k=0}^{i-1}x^{k}alpha^{i-k}
$$
$$
=sum_{k=1}^{i}x^{k}alpha^{i-k}-sum_{k=0}^{i-1}x^{k}alpha^{i-k}=x^{i}-alpha^{i},
$$
and apply this result to obtain, for $n>0$
$$
fleft[xright]-fleft[alpharight]=left(x-alpharight)f_{1}left[xright].
$$
The case of $n=0$ is the constant function $fleft[xright]=a_{0}x^{0},$
which is of the required form. If $alpha$ is a root of $f,$ we have
$$
fleft[xright]-fleft[alpharight]=left(x-alpharight)f_{1}left[xright]=0.
$$
If $xnealpha,$ is a root of $f$ then $f_{1}left[xright]=0.$ It follows that $f$
has at most one more root than $f_{1}$ Since $f_{1}$ has at most $n-1$ roots this which completes the proof.
The step I am not following is the establishment of $fleft[xright]-fleft[alpharight]=left(x-alpharight)f_{1}left[xright]$
using
$$(x-alpha)sum_{k=0}^{i-1}x^{k}alpha^{i-k-1}=x^{i}-alpha^{i}.$$
I am able to establish the result using brute force as follows: Expand
$f_{1}$
$$
f_{1}left[xright]equivsum_{k=0}^{n-1}left(sum_{i=k+1}^{n}a_{i}alpha^{i-k-1}right)x^{k}
$$
$$
=left(a_{1}+a_{2}alpha+a_{3}alpha^{2}+a_{4}alpha^{3}+ldots+a_{n}alpha^{n-1}right)
$$
$$
+left(a_{2}+a_{3}alpha+a_{4}alpha^{2}+a_{5}alpha^{3}+ldots+a_{n}alpha^{n-2}right)x
$$
$$
+left(a_{3}+a_{4}alpha+a_{5}alpha^{2}+a_{6}alpha^{3}+ldots+a_{n}alpha^{n-3}right)x^{2}
$$
$$
+dots+a_{n}x^{n-1}
$$
$$
=a_{1}+a_{2}(alpha+x)+a_{3}left(alpha^{2}+alpha x+x^{2}right)
$$
$$
+a_{4}left(alpha^{3}+alpha^{2}x+alpha x^{2}+x^{3}right)
$$
$$
+ldots+a_{i}left(alpha^{i-1}+alpha^{i-2}x+ldots+alpha x^{i-2}+x^{i-1}right)
$$
$$
+ldots+a_{i}left(alpha^{n-1}+alpha^{n-2}x+ldots+alpha x^{n-2}+x^{n-1}right).
$$
Multiplying by $left(x-alpharight)$ and canceling like terms of opposite
sign produces the desired result
$$
left(x-alpharight)f_{1}left[xright]=a_{1}left(x-alpharight)+a_{2}(alpha^{2}-x^{2})
$$
$$
+a_{3}left(alpha^{2}x+alpha x^{2}+x^{3}-alpha^{3}-alpha^{2}x-alpha x^{2}right)
$$
$$
+ldots+a_{i}left(alpha^{i-1}x+alpha^{i-2}x^{2}+ldots+alpha^{2}x^{i-2}+alpha x^{i-1}+x^{i}right)
$$
$$
-a_{i}left(alpha^{i}+alpha^{i-1}x+alpha^{i-2}x^{2}+ldots+alpha^{2}x^{i-2}+alpha x^{i-1}right)
$$
$$
+ldots+a_{n}left(alpha^{n-1}x+alpha^{n-2}x^{2}+ldots+alpha^{2}x^{n-2}+alpha x^{n-1}+x^{n}right)
$$
$$
-a_{n}left(alpha^{n}+alpha^{n-1}x+alpha^{n-2}x^{2}+ldots+alpha^{2}x^{n-2}+alpha x^{n-1}right)
$$
$$
=fleft[xright].
$$
abstract-algebra algebra-precalculus polynomials
abstract-algebra algebra-precalculus polynomials
edited Dec 7 '18 at 23:35
Eric Wofsey
182k12209337
182k12209337
asked Dec 7 '18 at 16:51
Steven HattonSteven Hatton
792316
792316
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Well,
begin{align*}
f[x]-f[alpha]&=sum_{i=0}^na_ix^i-sum_{i=0}^na_ialpha^i \
&=sum_{i=0}^na_i(x^i-alpha^i) \
&=sum_{i=0}^na_i(x-alpha)sum_{k=0}^{i-1}x^{k}alpha^{i-k-1} \
&=(x-alpha)sum_{i=0}^nsum_{k=0}^{i-1}a_ialpha^{i-k-1} x^{k}.
end{align*}
Now we interchange the two sums to get
begin{align*}
f[x]-f[alpha]&=(x-alpha)sum_{k=0}^{n-1}sum_{i=k+1}^{n}a_ialpha^{i-k-1}x^{k} \
&=(x-alpha)sum_{k=0}^{n-1}bar{a}_kx^k \
&=(x-alpha)f_1[x].
end{align*}
$endgroup$
$begingroup$
I did find a way to do it by working backward from my brute-force method. But I'm glad I asked. Your way is better than mine.
$endgroup$
– Steven Hatton
Dec 8 '18 at 16:17
$begingroup$
I get $f_{1}left[xright]=sum_{i=1}^{n}sum_{k=0}^{i-1}a_{i}x^{k}alpha^{i-k-1}$ which is OK since the $a_0$ terms cancel in $fleft[xright]-fleft[alpharight]$. I will argue that your sum over $i$ in $(x-alpha)sum_{i=0}^nsum_{k=0}^{i-1}a_ialpha^{i-k-1} x^{k}$ should begin at $i=1$ rather than $i=0$. Do you agree?
$endgroup$
– Steven Hatton
Dec 8 '18 at 21:26
$begingroup$
It doesn't make a difference whether it starts at $i=0$ or $i=1$. The $i=0$ term is $0$ anyways (there are no values of $k$ in the second summation if $i=0$).
$endgroup$
– Eric Wofsey
Dec 8 '18 at 21:29
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3030116%2fhow-is-the-suggested-method-used-to-estabish-the-stated-result-in-proof-that-a%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Well,
begin{align*}
f[x]-f[alpha]&=sum_{i=0}^na_ix^i-sum_{i=0}^na_ialpha^i \
&=sum_{i=0}^na_i(x^i-alpha^i) \
&=sum_{i=0}^na_i(x-alpha)sum_{k=0}^{i-1}x^{k}alpha^{i-k-1} \
&=(x-alpha)sum_{i=0}^nsum_{k=0}^{i-1}a_ialpha^{i-k-1} x^{k}.
end{align*}
Now we interchange the two sums to get
begin{align*}
f[x]-f[alpha]&=(x-alpha)sum_{k=0}^{n-1}sum_{i=k+1}^{n}a_ialpha^{i-k-1}x^{k} \
&=(x-alpha)sum_{k=0}^{n-1}bar{a}_kx^k \
&=(x-alpha)f_1[x].
end{align*}
$endgroup$
$begingroup$
I did find a way to do it by working backward from my brute-force method. But I'm glad I asked. Your way is better than mine.
$endgroup$
– Steven Hatton
Dec 8 '18 at 16:17
$begingroup$
I get $f_{1}left[xright]=sum_{i=1}^{n}sum_{k=0}^{i-1}a_{i}x^{k}alpha^{i-k-1}$ which is OK since the $a_0$ terms cancel in $fleft[xright]-fleft[alpharight]$. I will argue that your sum over $i$ in $(x-alpha)sum_{i=0}^nsum_{k=0}^{i-1}a_ialpha^{i-k-1} x^{k}$ should begin at $i=1$ rather than $i=0$. Do you agree?
$endgroup$
– Steven Hatton
Dec 8 '18 at 21:26
$begingroup$
It doesn't make a difference whether it starts at $i=0$ or $i=1$. The $i=0$ term is $0$ anyways (there are no values of $k$ in the second summation if $i=0$).
$endgroup$
– Eric Wofsey
Dec 8 '18 at 21:29
add a comment |
$begingroup$
Well,
begin{align*}
f[x]-f[alpha]&=sum_{i=0}^na_ix^i-sum_{i=0}^na_ialpha^i \
&=sum_{i=0}^na_i(x^i-alpha^i) \
&=sum_{i=0}^na_i(x-alpha)sum_{k=0}^{i-1}x^{k}alpha^{i-k-1} \
&=(x-alpha)sum_{i=0}^nsum_{k=0}^{i-1}a_ialpha^{i-k-1} x^{k}.
end{align*}
Now we interchange the two sums to get
begin{align*}
f[x]-f[alpha]&=(x-alpha)sum_{k=0}^{n-1}sum_{i=k+1}^{n}a_ialpha^{i-k-1}x^{k} \
&=(x-alpha)sum_{k=0}^{n-1}bar{a}_kx^k \
&=(x-alpha)f_1[x].
end{align*}
$endgroup$
$begingroup$
I did find a way to do it by working backward from my brute-force method. But I'm glad I asked. Your way is better than mine.
$endgroup$
– Steven Hatton
Dec 8 '18 at 16:17
$begingroup$
I get $f_{1}left[xright]=sum_{i=1}^{n}sum_{k=0}^{i-1}a_{i}x^{k}alpha^{i-k-1}$ which is OK since the $a_0$ terms cancel in $fleft[xright]-fleft[alpharight]$. I will argue that your sum over $i$ in $(x-alpha)sum_{i=0}^nsum_{k=0}^{i-1}a_ialpha^{i-k-1} x^{k}$ should begin at $i=1$ rather than $i=0$. Do you agree?
$endgroup$
– Steven Hatton
Dec 8 '18 at 21:26
$begingroup$
It doesn't make a difference whether it starts at $i=0$ or $i=1$. The $i=0$ term is $0$ anyways (there are no values of $k$ in the second summation if $i=0$).
$endgroup$
– Eric Wofsey
Dec 8 '18 at 21:29
add a comment |
$begingroup$
Well,
begin{align*}
f[x]-f[alpha]&=sum_{i=0}^na_ix^i-sum_{i=0}^na_ialpha^i \
&=sum_{i=0}^na_i(x^i-alpha^i) \
&=sum_{i=0}^na_i(x-alpha)sum_{k=0}^{i-1}x^{k}alpha^{i-k-1} \
&=(x-alpha)sum_{i=0}^nsum_{k=0}^{i-1}a_ialpha^{i-k-1} x^{k}.
end{align*}
Now we interchange the two sums to get
begin{align*}
f[x]-f[alpha]&=(x-alpha)sum_{k=0}^{n-1}sum_{i=k+1}^{n}a_ialpha^{i-k-1}x^{k} \
&=(x-alpha)sum_{k=0}^{n-1}bar{a}_kx^k \
&=(x-alpha)f_1[x].
end{align*}
$endgroup$
Well,
begin{align*}
f[x]-f[alpha]&=sum_{i=0}^na_ix^i-sum_{i=0}^na_ialpha^i \
&=sum_{i=0}^na_i(x^i-alpha^i) \
&=sum_{i=0}^na_i(x-alpha)sum_{k=0}^{i-1}x^{k}alpha^{i-k-1} \
&=(x-alpha)sum_{i=0}^nsum_{k=0}^{i-1}a_ialpha^{i-k-1} x^{k}.
end{align*}
Now we interchange the two sums to get
begin{align*}
f[x]-f[alpha]&=(x-alpha)sum_{k=0}^{n-1}sum_{i=k+1}^{n}a_ialpha^{i-k-1}x^{k} \
&=(x-alpha)sum_{k=0}^{n-1}bar{a}_kx^k \
&=(x-alpha)f_1[x].
end{align*}
answered Dec 7 '18 at 23:35
Eric WofseyEric Wofsey
182k12209337
182k12209337
$begingroup$
I did find a way to do it by working backward from my brute-force method. But I'm glad I asked. Your way is better than mine.
$endgroup$
– Steven Hatton
Dec 8 '18 at 16:17
$begingroup$
I get $f_{1}left[xright]=sum_{i=1}^{n}sum_{k=0}^{i-1}a_{i}x^{k}alpha^{i-k-1}$ which is OK since the $a_0$ terms cancel in $fleft[xright]-fleft[alpharight]$. I will argue that your sum over $i$ in $(x-alpha)sum_{i=0}^nsum_{k=0}^{i-1}a_ialpha^{i-k-1} x^{k}$ should begin at $i=1$ rather than $i=0$. Do you agree?
$endgroup$
– Steven Hatton
Dec 8 '18 at 21:26
$begingroup$
It doesn't make a difference whether it starts at $i=0$ or $i=1$. The $i=0$ term is $0$ anyways (there are no values of $k$ in the second summation if $i=0$).
$endgroup$
– Eric Wofsey
Dec 8 '18 at 21:29
add a comment |
$begingroup$
I did find a way to do it by working backward from my brute-force method. But I'm glad I asked. Your way is better than mine.
$endgroup$
– Steven Hatton
Dec 8 '18 at 16:17
$begingroup$
I get $f_{1}left[xright]=sum_{i=1}^{n}sum_{k=0}^{i-1}a_{i}x^{k}alpha^{i-k-1}$ which is OK since the $a_0$ terms cancel in $fleft[xright]-fleft[alpharight]$. I will argue that your sum over $i$ in $(x-alpha)sum_{i=0}^nsum_{k=0}^{i-1}a_ialpha^{i-k-1} x^{k}$ should begin at $i=1$ rather than $i=0$. Do you agree?
$endgroup$
– Steven Hatton
Dec 8 '18 at 21:26
$begingroup$
It doesn't make a difference whether it starts at $i=0$ or $i=1$. The $i=0$ term is $0$ anyways (there are no values of $k$ in the second summation if $i=0$).
$endgroup$
– Eric Wofsey
Dec 8 '18 at 21:29
$begingroup$
I did find a way to do it by working backward from my brute-force method. But I'm glad I asked. Your way is better than mine.
$endgroup$
– Steven Hatton
Dec 8 '18 at 16:17
$begingroup$
I did find a way to do it by working backward from my brute-force method. But I'm glad I asked. Your way is better than mine.
$endgroup$
– Steven Hatton
Dec 8 '18 at 16:17
$begingroup$
I get $f_{1}left[xright]=sum_{i=1}^{n}sum_{k=0}^{i-1}a_{i}x^{k}alpha^{i-k-1}$ which is OK since the $a_0$ terms cancel in $fleft[xright]-fleft[alpharight]$. I will argue that your sum over $i$ in $(x-alpha)sum_{i=0}^nsum_{k=0}^{i-1}a_ialpha^{i-k-1} x^{k}$ should begin at $i=1$ rather than $i=0$. Do you agree?
$endgroup$
– Steven Hatton
Dec 8 '18 at 21:26
$begingroup$
I get $f_{1}left[xright]=sum_{i=1}^{n}sum_{k=0}^{i-1}a_{i}x^{k}alpha^{i-k-1}$ which is OK since the $a_0$ terms cancel in $fleft[xright]-fleft[alpharight]$. I will argue that your sum over $i$ in $(x-alpha)sum_{i=0}^nsum_{k=0}^{i-1}a_ialpha^{i-k-1} x^{k}$ should begin at $i=1$ rather than $i=0$. Do you agree?
$endgroup$
– Steven Hatton
Dec 8 '18 at 21:26
$begingroup$
It doesn't make a difference whether it starts at $i=0$ or $i=1$. The $i=0$ term is $0$ anyways (there are no values of $k$ in the second summation if $i=0$).
$endgroup$
– Eric Wofsey
Dec 8 '18 at 21:29
$begingroup$
It doesn't make a difference whether it starts at $i=0$ or $i=1$. The $i=0$ term is $0$ anyways (there are no values of $k$ in the second summation if $i=0$).
$endgroup$
– Eric Wofsey
Dec 8 '18 at 21:29
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3030116%2fhow-is-the-suggested-method-used-to-estabish-the-stated-result-in-proof-that-a%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown