How is the suggested method used to estabish the stated result? In proof that a polynomial of degree n has at...












0












$begingroup$


This question is based on the discussion in B4-1.2 of Fundamentals of Mathematics, Volume 1 Edited by H. Behnke, F. Bachmann, K. Fladt, W. Süss and H. Kunle.



See the bold text for the part of the proof I am seeking help with. My question is: how do I use the method suggested to obtain the needed result?



Technically this proof is applied to $mathcal{R}$ which is an arbitrary
commutative ring with unit element 1, and without null divisors
. And the expression



$$
fleft[xright]=sum_{i=0}^{n}a_{i}x^{i}
$$



is equivalent to an entire rational function of one argument
in $mathcal{R}.$
Here we have defined $0^{0}equiv1$ to support
our notation. For the purpose of this question we can simply call
$f$ a polynomial of degree $n$ in $mathbb{R}.$



Our objective is to prove the following theorem: If $f$ is expressible
in the form



$$
fleft[xright]=sum_{i=0}^{n}a_{i}x^{i}
$$



with $a_{n}ne0,$ then $f$ has at most $n$ roots.



Proof: First we introduce the constant expressions



$$
bar{a}_{k}=sum_{i=k+1}^{n}a_{i}alpha^{i-k-1},
$$



and the function



$$
f_{1}left[xright]equivsum_{k=0}^{n-1}x^{k}bar{a}_{k}=sum_{k=0}^{n-2}x^{k}bar{a}_{k}+a_{n}x^{n-1}.
$$



The right-most expression follows from $bar{a}_{n-1}=a_{n},$ and
shows that $f_{1}$ has at most $n-1$ roots by the induction hypothesis.



Next we observe that for the real number constant $alpha$ we have



$$
(x-alpha)sum_{k=0}^{i-1}x^{k}alpha^{i-k-1}=sum_{k=0}^{i-1}x^{k+1}alpha^{i-k-1}-sum_{k=0}^{i-1}x^{k}alpha^{i-k}
$$



$$
=sum_{k=1}^{i}x^{k}alpha^{i-k}-sum_{k=0}^{i-1}x^{k}alpha^{i-k}=x^{i}-alpha^{i},
$$



and apply this result to obtain, for $n>0$



$$
fleft[xright]-fleft[alpharight]=left(x-alpharight)f_{1}left[xright].
$$



The case of $n=0$ is the constant function $fleft[xright]=a_{0}x^{0},$
which is of the required form. If $alpha$ is a root of $f,$ we have
$$
fleft[xright]-fleft[alpharight]=left(x-alpharight)f_{1}left[xright]=0.
$$



If $xnealpha,$ is a root of $f$ then $f_{1}left[xright]=0.$ It follows that $f$
has at most one more root than $f_{1}$ Since $f_{1}$ has at most $n-1$ roots this which completes the proof.



The step I am not following is the establishment of $fleft[xright]-fleft[alpharight]=left(x-alpharight)f_{1}left[xright]$
using



$$(x-alpha)sum_{k=0}^{i-1}x^{k}alpha^{i-k-1}=x^{i}-alpha^{i}.$$
I am able to establish the result using brute force as follows: Expand
$f_{1}$



$$
f_{1}left[xright]equivsum_{k=0}^{n-1}left(sum_{i=k+1}^{n}a_{i}alpha^{i-k-1}right)x^{k}
$$



$$
=left(a_{1}+a_{2}alpha+a_{3}alpha^{2}+a_{4}alpha^{3}+ldots+a_{n}alpha^{n-1}right)
$$



$$
+left(a_{2}+a_{3}alpha+a_{4}alpha^{2}+a_{5}alpha^{3}+ldots+a_{n}alpha^{n-2}right)x
$$



$$
+left(a_{3}+a_{4}alpha+a_{5}alpha^{2}+a_{6}alpha^{3}+ldots+a_{n}alpha^{n-3}right)x^{2}
$$



$$
+dots+a_{n}x^{n-1}
$$



$$
=a_{1}+a_{2}(alpha+x)+a_{3}left(alpha^{2}+alpha x+x^{2}right)
$$



$$
+a_{4}left(alpha^{3}+alpha^{2}x+alpha x^{2}+x^{3}right)
$$



$$
+ldots+a_{i}left(alpha^{i-1}+alpha^{i-2}x+ldots+alpha x^{i-2}+x^{i-1}right)
$$



$$
+ldots+a_{i}left(alpha^{n-1}+alpha^{n-2}x+ldots+alpha x^{n-2}+x^{n-1}right).
$$



Multiplying by $left(x-alpharight)$ and canceling like terms of opposite
sign produces the desired result



$$
left(x-alpharight)f_{1}left[xright]=a_{1}left(x-alpharight)+a_{2}(alpha^{2}-x^{2})
$$



$$
+a_{3}left(alpha^{2}x+alpha x^{2}+x^{3}-alpha^{3}-alpha^{2}x-alpha x^{2}right)
$$



$$
+ldots+a_{i}left(alpha^{i-1}x+alpha^{i-2}x^{2}+ldots+alpha^{2}x^{i-2}+alpha x^{i-1}+x^{i}right)
$$



$$
-a_{i}left(alpha^{i}+alpha^{i-1}x+alpha^{i-2}x^{2}+ldots+alpha^{2}x^{i-2}+alpha x^{i-1}right)
$$



$$
+ldots+a_{n}left(alpha^{n-1}x+alpha^{n-2}x^{2}+ldots+alpha^{2}x^{n-2}+alpha x^{n-1}+x^{n}right)
$$



$$
-a_{n}left(alpha^{n}+alpha^{n-1}x+alpha^{n-2}x^{2}+ldots+alpha^{2}x^{n-2}+alpha x^{n-1}right)
$$



$$
=fleft[xright].
$$










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    This question is based on the discussion in B4-1.2 of Fundamentals of Mathematics, Volume 1 Edited by H. Behnke, F. Bachmann, K. Fladt, W. Süss and H. Kunle.



    See the bold text for the part of the proof I am seeking help with. My question is: how do I use the method suggested to obtain the needed result?



    Technically this proof is applied to $mathcal{R}$ which is an arbitrary
    commutative ring with unit element 1, and without null divisors
    . And the expression



    $$
    fleft[xright]=sum_{i=0}^{n}a_{i}x^{i}
    $$



    is equivalent to an entire rational function of one argument
    in $mathcal{R}.$
    Here we have defined $0^{0}equiv1$ to support
    our notation. For the purpose of this question we can simply call
    $f$ a polynomial of degree $n$ in $mathbb{R}.$



    Our objective is to prove the following theorem: If $f$ is expressible
    in the form



    $$
    fleft[xright]=sum_{i=0}^{n}a_{i}x^{i}
    $$



    with $a_{n}ne0,$ then $f$ has at most $n$ roots.



    Proof: First we introduce the constant expressions



    $$
    bar{a}_{k}=sum_{i=k+1}^{n}a_{i}alpha^{i-k-1},
    $$



    and the function



    $$
    f_{1}left[xright]equivsum_{k=0}^{n-1}x^{k}bar{a}_{k}=sum_{k=0}^{n-2}x^{k}bar{a}_{k}+a_{n}x^{n-1}.
    $$



    The right-most expression follows from $bar{a}_{n-1}=a_{n},$ and
    shows that $f_{1}$ has at most $n-1$ roots by the induction hypothesis.



    Next we observe that for the real number constant $alpha$ we have



    $$
    (x-alpha)sum_{k=0}^{i-1}x^{k}alpha^{i-k-1}=sum_{k=0}^{i-1}x^{k+1}alpha^{i-k-1}-sum_{k=0}^{i-1}x^{k}alpha^{i-k}
    $$



    $$
    =sum_{k=1}^{i}x^{k}alpha^{i-k}-sum_{k=0}^{i-1}x^{k}alpha^{i-k}=x^{i}-alpha^{i},
    $$



    and apply this result to obtain, for $n>0$



    $$
    fleft[xright]-fleft[alpharight]=left(x-alpharight)f_{1}left[xright].
    $$



    The case of $n=0$ is the constant function $fleft[xright]=a_{0}x^{0},$
    which is of the required form. If $alpha$ is a root of $f,$ we have
    $$
    fleft[xright]-fleft[alpharight]=left(x-alpharight)f_{1}left[xright]=0.
    $$



    If $xnealpha,$ is a root of $f$ then $f_{1}left[xright]=0.$ It follows that $f$
    has at most one more root than $f_{1}$ Since $f_{1}$ has at most $n-1$ roots this which completes the proof.



    The step I am not following is the establishment of $fleft[xright]-fleft[alpharight]=left(x-alpharight)f_{1}left[xright]$
    using



    $$(x-alpha)sum_{k=0}^{i-1}x^{k}alpha^{i-k-1}=x^{i}-alpha^{i}.$$
    I am able to establish the result using brute force as follows: Expand
    $f_{1}$



    $$
    f_{1}left[xright]equivsum_{k=0}^{n-1}left(sum_{i=k+1}^{n}a_{i}alpha^{i-k-1}right)x^{k}
    $$



    $$
    =left(a_{1}+a_{2}alpha+a_{3}alpha^{2}+a_{4}alpha^{3}+ldots+a_{n}alpha^{n-1}right)
    $$



    $$
    +left(a_{2}+a_{3}alpha+a_{4}alpha^{2}+a_{5}alpha^{3}+ldots+a_{n}alpha^{n-2}right)x
    $$



    $$
    +left(a_{3}+a_{4}alpha+a_{5}alpha^{2}+a_{6}alpha^{3}+ldots+a_{n}alpha^{n-3}right)x^{2}
    $$



    $$
    +dots+a_{n}x^{n-1}
    $$



    $$
    =a_{1}+a_{2}(alpha+x)+a_{3}left(alpha^{2}+alpha x+x^{2}right)
    $$



    $$
    +a_{4}left(alpha^{3}+alpha^{2}x+alpha x^{2}+x^{3}right)
    $$



    $$
    +ldots+a_{i}left(alpha^{i-1}+alpha^{i-2}x+ldots+alpha x^{i-2}+x^{i-1}right)
    $$



    $$
    +ldots+a_{i}left(alpha^{n-1}+alpha^{n-2}x+ldots+alpha x^{n-2}+x^{n-1}right).
    $$



    Multiplying by $left(x-alpharight)$ and canceling like terms of opposite
    sign produces the desired result



    $$
    left(x-alpharight)f_{1}left[xright]=a_{1}left(x-alpharight)+a_{2}(alpha^{2}-x^{2})
    $$



    $$
    +a_{3}left(alpha^{2}x+alpha x^{2}+x^{3}-alpha^{3}-alpha^{2}x-alpha x^{2}right)
    $$



    $$
    +ldots+a_{i}left(alpha^{i-1}x+alpha^{i-2}x^{2}+ldots+alpha^{2}x^{i-2}+alpha x^{i-1}+x^{i}right)
    $$



    $$
    -a_{i}left(alpha^{i}+alpha^{i-1}x+alpha^{i-2}x^{2}+ldots+alpha^{2}x^{i-2}+alpha x^{i-1}right)
    $$



    $$
    +ldots+a_{n}left(alpha^{n-1}x+alpha^{n-2}x^{2}+ldots+alpha^{2}x^{n-2}+alpha x^{n-1}+x^{n}right)
    $$



    $$
    -a_{n}left(alpha^{n}+alpha^{n-1}x+alpha^{n-2}x^{2}+ldots+alpha^{2}x^{n-2}+alpha x^{n-1}right)
    $$



    $$
    =fleft[xright].
    $$










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      This question is based on the discussion in B4-1.2 of Fundamentals of Mathematics, Volume 1 Edited by H. Behnke, F. Bachmann, K. Fladt, W. Süss and H. Kunle.



      See the bold text for the part of the proof I am seeking help with. My question is: how do I use the method suggested to obtain the needed result?



      Technically this proof is applied to $mathcal{R}$ which is an arbitrary
      commutative ring with unit element 1, and without null divisors
      . And the expression



      $$
      fleft[xright]=sum_{i=0}^{n}a_{i}x^{i}
      $$



      is equivalent to an entire rational function of one argument
      in $mathcal{R}.$
      Here we have defined $0^{0}equiv1$ to support
      our notation. For the purpose of this question we can simply call
      $f$ a polynomial of degree $n$ in $mathbb{R}.$



      Our objective is to prove the following theorem: If $f$ is expressible
      in the form



      $$
      fleft[xright]=sum_{i=0}^{n}a_{i}x^{i}
      $$



      with $a_{n}ne0,$ then $f$ has at most $n$ roots.



      Proof: First we introduce the constant expressions



      $$
      bar{a}_{k}=sum_{i=k+1}^{n}a_{i}alpha^{i-k-1},
      $$



      and the function



      $$
      f_{1}left[xright]equivsum_{k=0}^{n-1}x^{k}bar{a}_{k}=sum_{k=0}^{n-2}x^{k}bar{a}_{k}+a_{n}x^{n-1}.
      $$



      The right-most expression follows from $bar{a}_{n-1}=a_{n},$ and
      shows that $f_{1}$ has at most $n-1$ roots by the induction hypothesis.



      Next we observe that for the real number constant $alpha$ we have



      $$
      (x-alpha)sum_{k=0}^{i-1}x^{k}alpha^{i-k-1}=sum_{k=0}^{i-1}x^{k+1}alpha^{i-k-1}-sum_{k=0}^{i-1}x^{k}alpha^{i-k}
      $$



      $$
      =sum_{k=1}^{i}x^{k}alpha^{i-k}-sum_{k=0}^{i-1}x^{k}alpha^{i-k}=x^{i}-alpha^{i},
      $$



      and apply this result to obtain, for $n>0$



      $$
      fleft[xright]-fleft[alpharight]=left(x-alpharight)f_{1}left[xright].
      $$



      The case of $n=0$ is the constant function $fleft[xright]=a_{0}x^{0},$
      which is of the required form. If $alpha$ is a root of $f,$ we have
      $$
      fleft[xright]-fleft[alpharight]=left(x-alpharight)f_{1}left[xright]=0.
      $$



      If $xnealpha,$ is a root of $f$ then $f_{1}left[xright]=0.$ It follows that $f$
      has at most one more root than $f_{1}$ Since $f_{1}$ has at most $n-1$ roots this which completes the proof.



      The step I am not following is the establishment of $fleft[xright]-fleft[alpharight]=left(x-alpharight)f_{1}left[xright]$
      using



      $$(x-alpha)sum_{k=0}^{i-1}x^{k}alpha^{i-k-1}=x^{i}-alpha^{i}.$$
      I am able to establish the result using brute force as follows: Expand
      $f_{1}$



      $$
      f_{1}left[xright]equivsum_{k=0}^{n-1}left(sum_{i=k+1}^{n}a_{i}alpha^{i-k-1}right)x^{k}
      $$



      $$
      =left(a_{1}+a_{2}alpha+a_{3}alpha^{2}+a_{4}alpha^{3}+ldots+a_{n}alpha^{n-1}right)
      $$



      $$
      +left(a_{2}+a_{3}alpha+a_{4}alpha^{2}+a_{5}alpha^{3}+ldots+a_{n}alpha^{n-2}right)x
      $$



      $$
      +left(a_{3}+a_{4}alpha+a_{5}alpha^{2}+a_{6}alpha^{3}+ldots+a_{n}alpha^{n-3}right)x^{2}
      $$



      $$
      +dots+a_{n}x^{n-1}
      $$



      $$
      =a_{1}+a_{2}(alpha+x)+a_{3}left(alpha^{2}+alpha x+x^{2}right)
      $$



      $$
      +a_{4}left(alpha^{3}+alpha^{2}x+alpha x^{2}+x^{3}right)
      $$



      $$
      +ldots+a_{i}left(alpha^{i-1}+alpha^{i-2}x+ldots+alpha x^{i-2}+x^{i-1}right)
      $$



      $$
      +ldots+a_{i}left(alpha^{n-1}+alpha^{n-2}x+ldots+alpha x^{n-2}+x^{n-1}right).
      $$



      Multiplying by $left(x-alpharight)$ and canceling like terms of opposite
      sign produces the desired result



      $$
      left(x-alpharight)f_{1}left[xright]=a_{1}left(x-alpharight)+a_{2}(alpha^{2}-x^{2})
      $$



      $$
      +a_{3}left(alpha^{2}x+alpha x^{2}+x^{3}-alpha^{3}-alpha^{2}x-alpha x^{2}right)
      $$



      $$
      +ldots+a_{i}left(alpha^{i-1}x+alpha^{i-2}x^{2}+ldots+alpha^{2}x^{i-2}+alpha x^{i-1}+x^{i}right)
      $$



      $$
      -a_{i}left(alpha^{i}+alpha^{i-1}x+alpha^{i-2}x^{2}+ldots+alpha^{2}x^{i-2}+alpha x^{i-1}right)
      $$



      $$
      +ldots+a_{n}left(alpha^{n-1}x+alpha^{n-2}x^{2}+ldots+alpha^{2}x^{n-2}+alpha x^{n-1}+x^{n}right)
      $$



      $$
      -a_{n}left(alpha^{n}+alpha^{n-1}x+alpha^{n-2}x^{2}+ldots+alpha^{2}x^{n-2}+alpha x^{n-1}right)
      $$



      $$
      =fleft[xright].
      $$










      share|cite|improve this question











      $endgroup$




      This question is based on the discussion in B4-1.2 of Fundamentals of Mathematics, Volume 1 Edited by H. Behnke, F. Bachmann, K. Fladt, W. Süss and H. Kunle.



      See the bold text for the part of the proof I am seeking help with. My question is: how do I use the method suggested to obtain the needed result?



      Technically this proof is applied to $mathcal{R}$ which is an arbitrary
      commutative ring with unit element 1, and without null divisors
      . And the expression



      $$
      fleft[xright]=sum_{i=0}^{n}a_{i}x^{i}
      $$



      is equivalent to an entire rational function of one argument
      in $mathcal{R}.$
      Here we have defined $0^{0}equiv1$ to support
      our notation. For the purpose of this question we can simply call
      $f$ a polynomial of degree $n$ in $mathbb{R}.$



      Our objective is to prove the following theorem: If $f$ is expressible
      in the form



      $$
      fleft[xright]=sum_{i=0}^{n}a_{i}x^{i}
      $$



      with $a_{n}ne0,$ then $f$ has at most $n$ roots.



      Proof: First we introduce the constant expressions



      $$
      bar{a}_{k}=sum_{i=k+1}^{n}a_{i}alpha^{i-k-1},
      $$



      and the function



      $$
      f_{1}left[xright]equivsum_{k=0}^{n-1}x^{k}bar{a}_{k}=sum_{k=0}^{n-2}x^{k}bar{a}_{k}+a_{n}x^{n-1}.
      $$



      The right-most expression follows from $bar{a}_{n-1}=a_{n},$ and
      shows that $f_{1}$ has at most $n-1$ roots by the induction hypothesis.



      Next we observe that for the real number constant $alpha$ we have



      $$
      (x-alpha)sum_{k=0}^{i-1}x^{k}alpha^{i-k-1}=sum_{k=0}^{i-1}x^{k+1}alpha^{i-k-1}-sum_{k=0}^{i-1}x^{k}alpha^{i-k}
      $$



      $$
      =sum_{k=1}^{i}x^{k}alpha^{i-k}-sum_{k=0}^{i-1}x^{k}alpha^{i-k}=x^{i}-alpha^{i},
      $$



      and apply this result to obtain, for $n>0$



      $$
      fleft[xright]-fleft[alpharight]=left(x-alpharight)f_{1}left[xright].
      $$



      The case of $n=0$ is the constant function $fleft[xright]=a_{0}x^{0},$
      which is of the required form. If $alpha$ is a root of $f,$ we have
      $$
      fleft[xright]-fleft[alpharight]=left(x-alpharight)f_{1}left[xright]=0.
      $$



      If $xnealpha,$ is a root of $f$ then $f_{1}left[xright]=0.$ It follows that $f$
      has at most one more root than $f_{1}$ Since $f_{1}$ has at most $n-1$ roots this which completes the proof.



      The step I am not following is the establishment of $fleft[xright]-fleft[alpharight]=left(x-alpharight)f_{1}left[xright]$
      using



      $$(x-alpha)sum_{k=0}^{i-1}x^{k}alpha^{i-k-1}=x^{i}-alpha^{i}.$$
      I am able to establish the result using brute force as follows: Expand
      $f_{1}$



      $$
      f_{1}left[xright]equivsum_{k=0}^{n-1}left(sum_{i=k+1}^{n}a_{i}alpha^{i-k-1}right)x^{k}
      $$



      $$
      =left(a_{1}+a_{2}alpha+a_{3}alpha^{2}+a_{4}alpha^{3}+ldots+a_{n}alpha^{n-1}right)
      $$



      $$
      +left(a_{2}+a_{3}alpha+a_{4}alpha^{2}+a_{5}alpha^{3}+ldots+a_{n}alpha^{n-2}right)x
      $$



      $$
      +left(a_{3}+a_{4}alpha+a_{5}alpha^{2}+a_{6}alpha^{3}+ldots+a_{n}alpha^{n-3}right)x^{2}
      $$



      $$
      +dots+a_{n}x^{n-1}
      $$



      $$
      =a_{1}+a_{2}(alpha+x)+a_{3}left(alpha^{2}+alpha x+x^{2}right)
      $$



      $$
      +a_{4}left(alpha^{3}+alpha^{2}x+alpha x^{2}+x^{3}right)
      $$



      $$
      +ldots+a_{i}left(alpha^{i-1}+alpha^{i-2}x+ldots+alpha x^{i-2}+x^{i-1}right)
      $$



      $$
      +ldots+a_{i}left(alpha^{n-1}+alpha^{n-2}x+ldots+alpha x^{n-2}+x^{n-1}right).
      $$



      Multiplying by $left(x-alpharight)$ and canceling like terms of opposite
      sign produces the desired result



      $$
      left(x-alpharight)f_{1}left[xright]=a_{1}left(x-alpharight)+a_{2}(alpha^{2}-x^{2})
      $$



      $$
      +a_{3}left(alpha^{2}x+alpha x^{2}+x^{3}-alpha^{3}-alpha^{2}x-alpha x^{2}right)
      $$



      $$
      +ldots+a_{i}left(alpha^{i-1}x+alpha^{i-2}x^{2}+ldots+alpha^{2}x^{i-2}+alpha x^{i-1}+x^{i}right)
      $$



      $$
      -a_{i}left(alpha^{i}+alpha^{i-1}x+alpha^{i-2}x^{2}+ldots+alpha^{2}x^{i-2}+alpha x^{i-1}right)
      $$



      $$
      +ldots+a_{n}left(alpha^{n-1}x+alpha^{n-2}x^{2}+ldots+alpha^{2}x^{n-2}+alpha x^{n-1}+x^{n}right)
      $$



      $$
      -a_{n}left(alpha^{n}+alpha^{n-1}x+alpha^{n-2}x^{2}+ldots+alpha^{2}x^{n-2}+alpha x^{n-1}right)
      $$



      $$
      =fleft[xright].
      $$







      abstract-algebra algebra-precalculus polynomials






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 7 '18 at 23:35









      Eric Wofsey

      182k12209337




      182k12209337










      asked Dec 7 '18 at 16:51









      Steven HattonSteven Hatton

      792316




      792316






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          Well,
          begin{align*}
          f[x]-f[alpha]&=sum_{i=0}^na_ix^i-sum_{i=0}^na_ialpha^i \
          &=sum_{i=0}^na_i(x^i-alpha^i) \
          &=sum_{i=0}^na_i(x-alpha)sum_{k=0}^{i-1}x^{k}alpha^{i-k-1} \
          &=(x-alpha)sum_{i=0}^nsum_{k=0}^{i-1}a_ialpha^{i-k-1} x^{k}.
          end{align*}



          Now we interchange the two sums to get
          begin{align*}
          f[x]-f[alpha]&=(x-alpha)sum_{k=0}^{n-1}sum_{i=k+1}^{n}a_ialpha^{i-k-1}x^{k} \
          &=(x-alpha)sum_{k=0}^{n-1}bar{a}_kx^k \
          &=(x-alpha)f_1[x].
          end{align*}






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            I did find a way to do it by working backward from my brute-force method. But I'm glad I asked. Your way is better than mine.
            $endgroup$
            – Steven Hatton
            Dec 8 '18 at 16:17










          • $begingroup$
            I get $f_{1}left[xright]=sum_{i=1}^{n}sum_{k=0}^{i-1}a_{i}x^{k}alpha^{i-k-1}$ which is OK since the $a_0$ terms cancel in $fleft[xright]-fleft[alpharight]$. I will argue that your sum over $i$ in $(x-alpha)sum_{i=0}^nsum_{k=0}^{i-1}a_ialpha^{i-k-1} x^{k}$ should begin at $i=1$ rather than $i=0$. Do you agree?
            $endgroup$
            – Steven Hatton
            Dec 8 '18 at 21:26










          • $begingroup$
            It doesn't make a difference whether it starts at $i=0$ or $i=1$. The $i=0$ term is $0$ anyways (there are no values of $k$ in the second summation if $i=0$).
            $endgroup$
            – Eric Wofsey
            Dec 8 '18 at 21:29











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3030116%2fhow-is-the-suggested-method-used-to-estabish-the-stated-result-in-proof-that-a%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          Well,
          begin{align*}
          f[x]-f[alpha]&=sum_{i=0}^na_ix^i-sum_{i=0}^na_ialpha^i \
          &=sum_{i=0}^na_i(x^i-alpha^i) \
          &=sum_{i=0}^na_i(x-alpha)sum_{k=0}^{i-1}x^{k}alpha^{i-k-1} \
          &=(x-alpha)sum_{i=0}^nsum_{k=0}^{i-1}a_ialpha^{i-k-1} x^{k}.
          end{align*}



          Now we interchange the two sums to get
          begin{align*}
          f[x]-f[alpha]&=(x-alpha)sum_{k=0}^{n-1}sum_{i=k+1}^{n}a_ialpha^{i-k-1}x^{k} \
          &=(x-alpha)sum_{k=0}^{n-1}bar{a}_kx^k \
          &=(x-alpha)f_1[x].
          end{align*}






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            I did find a way to do it by working backward from my brute-force method. But I'm glad I asked. Your way is better than mine.
            $endgroup$
            – Steven Hatton
            Dec 8 '18 at 16:17










          • $begingroup$
            I get $f_{1}left[xright]=sum_{i=1}^{n}sum_{k=0}^{i-1}a_{i}x^{k}alpha^{i-k-1}$ which is OK since the $a_0$ terms cancel in $fleft[xright]-fleft[alpharight]$. I will argue that your sum over $i$ in $(x-alpha)sum_{i=0}^nsum_{k=0}^{i-1}a_ialpha^{i-k-1} x^{k}$ should begin at $i=1$ rather than $i=0$. Do you agree?
            $endgroup$
            – Steven Hatton
            Dec 8 '18 at 21:26










          • $begingroup$
            It doesn't make a difference whether it starts at $i=0$ or $i=1$. The $i=0$ term is $0$ anyways (there are no values of $k$ in the second summation if $i=0$).
            $endgroup$
            – Eric Wofsey
            Dec 8 '18 at 21:29
















          1












          $begingroup$

          Well,
          begin{align*}
          f[x]-f[alpha]&=sum_{i=0}^na_ix^i-sum_{i=0}^na_ialpha^i \
          &=sum_{i=0}^na_i(x^i-alpha^i) \
          &=sum_{i=0}^na_i(x-alpha)sum_{k=0}^{i-1}x^{k}alpha^{i-k-1} \
          &=(x-alpha)sum_{i=0}^nsum_{k=0}^{i-1}a_ialpha^{i-k-1} x^{k}.
          end{align*}



          Now we interchange the two sums to get
          begin{align*}
          f[x]-f[alpha]&=(x-alpha)sum_{k=0}^{n-1}sum_{i=k+1}^{n}a_ialpha^{i-k-1}x^{k} \
          &=(x-alpha)sum_{k=0}^{n-1}bar{a}_kx^k \
          &=(x-alpha)f_1[x].
          end{align*}






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            I did find a way to do it by working backward from my brute-force method. But I'm glad I asked. Your way is better than mine.
            $endgroup$
            – Steven Hatton
            Dec 8 '18 at 16:17










          • $begingroup$
            I get $f_{1}left[xright]=sum_{i=1}^{n}sum_{k=0}^{i-1}a_{i}x^{k}alpha^{i-k-1}$ which is OK since the $a_0$ terms cancel in $fleft[xright]-fleft[alpharight]$. I will argue that your sum over $i$ in $(x-alpha)sum_{i=0}^nsum_{k=0}^{i-1}a_ialpha^{i-k-1} x^{k}$ should begin at $i=1$ rather than $i=0$. Do you agree?
            $endgroup$
            – Steven Hatton
            Dec 8 '18 at 21:26










          • $begingroup$
            It doesn't make a difference whether it starts at $i=0$ or $i=1$. The $i=0$ term is $0$ anyways (there are no values of $k$ in the second summation if $i=0$).
            $endgroup$
            – Eric Wofsey
            Dec 8 '18 at 21:29














          1












          1








          1





          $begingroup$

          Well,
          begin{align*}
          f[x]-f[alpha]&=sum_{i=0}^na_ix^i-sum_{i=0}^na_ialpha^i \
          &=sum_{i=0}^na_i(x^i-alpha^i) \
          &=sum_{i=0}^na_i(x-alpha)sum_{k=0}^{i-1}x^{k}alpha^{i-k-1} \
          &=(x-alpha)sum_{i=0}^nsum_{k=0}^{i-1}a_ialpha^{i-k-1} x^{k}.
          end{align*}



          Now we interchange the two sums to get
          begin{align*}
          f[x]-f[alpha]&=(x-alpha)sum_{k=0}^{n-1}sum_{i=k+1}^{n}a_ialpha^{i-k-1}x^{k} \
          &=(x-alpha)sum_{k=0}^{n-1}bar{a}_kx^k \
          &=(x-alpha)f_1[x].
          end{align*}






          share|cite|improve this answer









          $endgroup$



          Well,
          begin{align*}
          f[x]-f[alpha]&=sum_{i=0}^na_ix^i-sum_{i=0}^na_ialpha^i \
          &=sum_{i=0}^na_i(x^i-alpha^i) \
          &=sum_{i=0}^na_i(x-alpha)sum_{k=0}^{i-1}x^{k}alpha^{i-k-1} \
          &=(x-alpha)sum_{i=0}^nsum_{k=0}^{i-1}a_ialpha^{i-k-1} x^{k}.
          end{align*}



          Now we interchange the two sums to get
          begin{align*}
          f[x]-f[alpha]&=(x-alpha)sum_{k=0}^{n-1}sum_{i=k+1}^{n}a_ialpha^{i-k-1}x^{k} \
          &=(x-alpha)sum_{k=0}^{n-1}bar{a}_kx^k \
          &=(x-alpha)f_1[x].
          end{align*}







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 7 '18 at 23:35









          Eric WofseyEric Wofsey

          182k12209337




          182k12209337












          • $begingroup$
            I did find a way to do it by working backward from my brute-force method. But I'm glad I asked. Your way is better than mine.
            $endgroup$
            – Steven Hatton
            Dec 8 '18 at 16:17










          • $begingroup$
            I get $f_{1}left[xright]=sum_{i=1}^{n}sum_{k=0}^{i-1}a_{i}x^{k}alpha^{i-k-1}$ which is OK since the $a_0$ terms cancel in $fleft[xright]-fleft[alpharight]$. I will argue that your sum over $i$ in $(x-alpha)sum_{i=0}^nsum_{k=0}^{i-1}a_ialpha^{i-k-1} x^{k}$ should begin at $i=1$ rather than $i=0$. Do you agree?
            $endgroup$
            – Steven Hatton
            Dec 8 '18 at 21:26










          • $begingroup$
            It doesn't make a difference whether it starts at $i=0$ or $i=1$. The $i=0$ term is $0$ anyways (there are no values of $k$ in the second summation if $i=0$).
            $endgroup$
            – Eric Wofsey
            Dec 8 '18 at 21:29


















          • $begingroup$
            I did find a way to do it by working backward from my brute-force method. But I'm glad I asked. Your way is better than mine.
            $endgroup$
            – Steven Hatton
            Dec 8 '18 at 16:17










          • $begingroup$
            I get $f_{1}left[xright]=sum_{i=1}^{n}sum_{k=0}^{i-1}a_{i}x^{k}alpha^{i-k-1}$ which is OK since the $a_0$ terms cancel in $fleft[xright]-fleft[alpharight]$. I will argue that your sum over $i$ in $(x-alpha)sum_{i=0}^nsum_{k=0}^{i-1}a_ialpha^{i-k-1} x^{k}$ should begin at $i=1$ rather than $i=0$. Do you agree?
            $endgroup$
            – Steven Hatton
            Dec 8 '18 at 21:26










          • $begingroup$
            It doesn't make a difference whether it starts at $i=0$ or $i=1$. The $i=0$ term is $0$ anyways (there are no values of $k$ in the second summation if $i=0$).
            $endgroup$
            – Eric Wofsey
            Dec 8 '18 at 21:29
















          $begingroup$
          I did find a way to do it by working backward from my brute-force method. But I'm glad I asked. Your way is better than mine.
          $endgroup$
          – Steven Hatton
          Dec 8 '18 at 16:17




          $begingroup$
          I did find a way to do it by working backward from my brute-force method. But I'm glad I asked. Your way is better than mine.
          $endgroup$
          – Steven Hatton
          Dec 8 '18 at 16:17












          $begingroup$
          I get $f_{1}left[xright]=sum_{i=1}^{n}sum_{k=0}^{i-1}a_{i}x^{k}alpha^{i-k-1}$ which is OK since the $a_0$ terms cancel in $fleft[xright]-fleft[alpharight]$. I will argue that your sum over $i$ in $(x-alpha)sum_{i=0}^nsum_{k=0}^{i-1}a_ialpha^{i-k-1} x^{k}$ should begin at $i=1$ rather than $i=0$. Do you agree?
          $endgroup$
          – Steven Hatton
          Dec 8 '18 at 21:26




          $begingroup$
          I get $f_{1}left[xright]=sum_{i=1}^{n}sum_{k=0}^{i-1}a_{i}x^{k}alpha^{i-k-1}$ which is OK since the $a_0$ terms cancel in $fleft[xright]-fleft[alpharight]$. I will argue that your sum over $i$ in $(x-alpha)sum_{i=0}^nsum_{k=0}^{i-1}a_ialpha^{i-k-1} x^{k}$ should begin at $i=1$ rather than $i=0$. Do you agree?
          $endgroup$
          – Steven Hatton
          Dec 8 '18 at 21:26












          $begingroup$
          It doesn't make a difference whether it starts at $i=0$ or $i=1$. The $i=0$ term is $0$ anyways (there are no values of $k$ in the second summation if $i=0$).
          $endgroup$
          – Eric Wofsey
          Dec 8 '18 at 21:29




          $begingroup$
          It doesn't make a difference whether it starts at $i=0$ or $i=1$. The $i=0$ term is $0$ anyways (there are no values of $k$ in the second summation if $i=0$).
          $endgroup$
          – Eric Wofsey
          Dec 8 '18 at 21:29


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3030116%2fhow-is-the-suggested-method-used-to-estabish-the-stated-result-in-proof-that-a%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Berounka

          Sphinx de Gizeh

          Different font size/position of beamer's navigation symbols template's content depending on regular/plain...