Let $P(X_j=j)=P(X_j=-j)=1/2j^{beta}$ and $P(X_j=0)=1-j^{-beta}$ where $betain(0,1)$, then...
$begingroup$
Suppose $P(X_j=j)=P(X_j=-j)=1/2j^{beta}$ and $P(X_j=0)=1-j^{-beta}$, where $beta>0$. Show that:
(i) If $beta>1$ then $S_nto S_infty$ a.s.
(ii) If $betain(0,1)$ then $S_n/n^{(3-beta)/2}Rightarrow cchi$.
(iii) If $beta=1$ then $S_n/nRightarrowaleph$, where
$$Eexp(italeph)=expleft(-int_0^1 x^{-1}(1-cos(xt),mathrm{d}xright).$$
This is problem 3.4.13 in Durrett's Probability text, part (i) was rather trivial, I feel fine about that part. I am having a difficult time on part (ii) though and would like verification for part (iii).
My ideas so far for part (ii) is to define the triangular array as $S_{n,m}=dfrac{X_m}{n^{(3-beta)/2}}$, and then use the Lindeberg-Feller theorem, but I am getting hung up on the details.
For part (iii) consider:
It is a well-known theorem of Levy that if ${X_n}$ is a collection of random variables and $Y$ is another random variable then $X_n Rightarrow Y$ iff $phi_{X_n}(t) rightarrow phi_Y(t)$ as $n rightarrow infty$ and $phi_Y$ is continuous at $t = 0$. Moreover, by properties of Fourier transforms, $phi_{S_n/n}(t) = prodlimits_{1 leq j leq n} phi_{X_j/n}(t)$. Now,
$$phi_{X_j/n}(t) = int_{mathbb{R}} mathrm{d}lambda e^{itlambda} mathbb{P}left(frac{X_j}{n} = lambdaright) = 1-frac{1}{j} + frac{1}{2j}(e^{itfrac{j}{n}} + e^{-itfrac{j}{n}}) = 1-frac{1}{j}(1-cos(tj/n)).
$$
This is clearly real-valued and positive, so that we can write
$$
logphi_{S_n/n}(t) = sum_{j = 1}^n logleft(1-frac{1}{n}cdot frac{n}{j}(1-cos(tj/n)right),
$$
so, up to an $O(1/n)$ error term, we have
$$
log phi_{S_n/n}(t) = frac{1}{n}sum_{j=1}^n frac{n}{j}(1-cos(tj/n)) + Oleft(frac{1}{n}right).
$$
The sum on the right side is a Riemann sum for the exponential, so taking $n rightarrow infty$, we get $phi_{S_n/n}(t) rightarrow Eleft(e^{italeph}right)$, in our notation, the latter of which is continuous at $0$.
probability-theory central-limit-theorem probability-limit-theorems
$endgroup$
add a comment |
$begingroup$
Suppose $P(X_j=j)=P(X_j=-j)=1/2j^{beta}$ and $P(X_j=0)=1-j^{-beta}$, where $beta>0$. Show that:
(i) If $beta>1$ then $S_nto S_infty$ a.s.
(ii) If $betain(0,1)$ then $S_n/n^{(3-beta)/2}Rightarrow cchi$.
(iii) If $beta=1$ then $S_n/nRightarrowaleph$, where
$$Eexp(italeph)=expleft(-int_0^1 x^{-1}(1-cos(xt),mathrm{d}xright).$$
This is problem 3.4.13 in Durrett's Probability text, part (i) was rather trivial, I feel fine about that part. I am having a difficult time on part (ii) though and would like verification for part (iii).
My ideas so far for part (ii) is to define the triangular array as $S_{n,m}=dfrac{X_m}{n^{(3-beta)/2}}$, and then use the Lindeberg-Feller theorem, but I am getting hung up on the details.
For part (iii) consider:
It is a well-known theorem of Levy that if ${X_n}$ is a collection of random variables and $Y$ is another random variable then $X_n Rightarrow Y$ iff $phi_{X_n}(t) rightarrow phi_Y(t)$ as $n rightarrow infty$ and $phi_Y$ is continuous at $t = 0$. Moreover, by properties of Fourier transforms, $phi_{S_n/n}(t) = prodlimits_{1 leq j leq n} phi_{X_j/n}(t)$. Now,
$$phi_{X_j/n}(t) = int_{mathbb{R}} mathrm{d}lambda e^{itlambda} mathbb{P}left(frac{X_j}{n} = lambdaright) = 1-frac{1}{j} + frac{1}{2j}(e^{itfrac{j}{n}} + e^{-itfrac{j}{n}}) = 1-frac{1}{j}(1-cos(tj/n)).
$$
This is clearly real-valued and positive, so that we can write
$$
logphi_{S_n/n}(t) = sum_{j = 1}^n logleft(1-frac{1}{n}cdot frac{n}{j}(1-cos(tj/n)right),
$$
so, up to an $O(1/n)$ error term, we have
$$
log phi_{S_n/n}(t) = frac{1}{n}sum_{j=1}^n frac{n}{j}(1-cos(tj/n)) + Oleft(frac{1}{n}right).
$$
The sum on the right side is a Riemann sum for the exponential, so taking $n rightarrow infty$, we get $phi_{S_n/n}(t) rightarrow Eleft(e^{italeph}right)$, in our notation, the latter of which is continuous at $0$.
probability-theory central-limit-theorem probability-limit-theorems
$endgroup$
$begingroup$
Use the same technique for part (ii) as you are in part (iii), i.e. characteristic functions.
$endgroup$
– maridia
Dec 9 '18 at 16:30
$begingroup$
@norfair I tried utilizing the same technique but I was not getting the desired result. :-/
$endgroup$
– Dragonite
Dec 9 '18 at 16:47
$begingroup$
Write out the same formula you had for $beta=1$ for general $beta$ and expand out the corresponding $e^{it j/n}$ and $e^{-it j/n}$ terms in Taylor series. You should see some nice cancellation from the constant and linear terms. You're left with a quadratic and higher order terms...from the form of the characteristic function of normal, it should be clear what to do.
$endgroup$
– maridia
Dec 9 '18 at 17:19
2
$begingroup$
@Dragonite You might want to explain what $c_{chi}$ actually means... you didn't introduce the notation.
$endgroup$
– saz
Dec 9 '18 at 18:00
add a comment |
$begingroup$
Suppose $P(X_j=j)=P(X_j=-j)=1/2j^{beta}$ and $P(X_j=0)=1-j^{-beta}$, where $beta>0$. Show that:
(i) If $beta>1$ then $S_nto S_infty$ a.s.
(ii) If $betain(0,1)$ then $S_n/n^{(3-beta)/2}Rightarrow cchi$.
(iii) If $beta=1$ then $S_n/nRightarrowaleph$, where
$$Eexp(italeph)=expleft(-int_0^1 x^{-1}(1-cos(xt),mathrm{d}xright).$$
This is problem 3.4.13 in Durrett's Probability text, part (i) was rather trivial, I feel fine about that part. I am having a difficult time on part (ii) though and would like verification for part (iii).
My ideas so far for part (ii) is to define the triangular array as $S_{n,m}=dfrac{X_m}{n^{(3-beta)/2}}$, and then use the Lindeberg-Feller theorem, but I am getting hung up on the details.
For part (iii) consider:
It is a well-known theorem of Levy that if ${X_n}$ is a collection of random variables and $Y$ is another random variable then $X_n Rightarrow Y$ iff $phi_{X_n}(t) rightarrow phi_Y(t)$ as $n rightarrow infty$ and $phi_Y$ is continuous at $t = 0$. Moreover, by properties of Fourier transforms, $phi_{S_n/n}(t) = prodlimits_{1 leq j leq n} phi_{X_j/n}(t)$. Now,
$$phi_{X_j/n}(t) = int_{mathbb{R}} mathrm{d}lambda e^{itlambda} mathbb{P}left(frac{X_j}{n} = lambdaright) = 1-frac{1}{j} + frac{1}{2j}(e^{itfrac{j}{n}} + e^{-itfrac{j}{n}}) = 1-frac{1}{j}(1-cos(tj/n)).
$$
This is clearly real-valued and positive, so that we can write
$$
logphi_{S_n/n}(t) = sum_{j = 1}^n logleft(1-frac{1}{n}cdot frac{n}{j}(1-cos(tj/n)right),
$$
so, up to an $O(1/n)$ error term, we have
$$
log phi_{S_n/n}(t) = frac{1}{n}sum_{j=1}^n frac{n}{j}(1-cos(tj/n)) + Oleft(frac{1}{n}right).
$$
The sum on the right side is a Riemann sum for the exponential, so taking $n rightarrow infty$, we get $phi_{S_n/n}(t) rightarrow Eleft(e^{italeph}right)$, in our notation, the latter of which is continuous at $0$.
probability-theory central-limit-theorem probability-limit-theorems
$endgroup$
Suppose $P(X_j=j)=P(X_j=-j)=1/2j^{beta}$ and $P(X_j=0)=1-j^{-beta}$, where $beta>0$. Show that:
(i) If $beta>1$ then $S_nto S_infty$ a.s.
(ii) If $betain(0,1)$ then $S_n/n^{(3-beta)/2}Rightarrow cchi$.
(iii) If $beta=1$ then $S_n/nRightarrowaleph$, where
$$Eexp(italeph)=expleft(-int_0^1 x^{-1}(1-cos(xt),mathrm{d}xright).$$
This is problem 3.4.13 in Durrett's Probability text, part (i) was rather trivial, I feel fine about that part. I am having a difficult time on part (ii) though and would like verification for part (iii).
My ideas so far for part (ii) is to define the triangular array as $S_{n,m}=dfrac{X_m}{n^{(3-beta)/2}}$, and then use the Lindeberg-Feller theorem, but I am getting hung up on the details.
For part (iii) consider:
It is a well-known theorem of Levy that if ${X_n}$ is a collection of random variables and $Y$ is another random variable then $X_n Rightarrow Y$ iff $phi_{X_n}(t) rightarrow phi_Y(t)$ as $n rightarrow infty$ and $phi_Y$ is continuous at $t = 0$. Moreover, by properties of Fourier transforms, $phi_{S_n/n}(t) = prodlimits_{1 leq j leq n} phi_{X_j/n}(t)$. Now,
$$phi_{X_j/n}(t) = int_{mathbb{R}} mathrm{d}lambda e^{itlambda} mathbb{P}left(frac{X_j}{n} = lambdaright) = 1-frac{1}{j} + frac{1}{2j}(e^{itfrac{j}{n}} + e^{-itfrac{j}{n}}) = 1-frac{1}{j}(1-cos(tj/n)).
$$
This is clearly real-valued and positive, so that we can write
$$
logphi_{S_n/n}(t) = sum_{j = 1}^n logleft(1-frac{1}{n}cdot frac{n}{j}(1-cos(tj/n)right),
$$
so, up to an $O(1/n)$ error term, we have
$$
log phi_{S_n/n}(t) = frac{1}{n}sum_{j=1}^n frac{n}{j}(1-cos(tj/n)) + Oleft(frac{1}{n}right).
$$
The sum on the right side is a Riemann sum for the exponential, so taking $n rightarrow infty$, we get $phi_{S_n/n}(t) rightarrow Eleft(e^{italeph}right)$, in our notation, the latter of which is continuous at $0$.
probability-theory central-limit-theorem probability-limit-theorems
probability-theory central-limit-theorem probability-limit-theorems
edited Dec 10 '18 at 13:42
Saad
19.7k92352
19.7k92352
asked Dec 7 '18 at 16:12
DragoniteDragonite
1,045420
1,045420
$begingroup$
Use the same technique for part (ii) as you are in part (iii), i.e. characteristic functions.
$endgroup$
– maridia
Dec 9 '18 at 16:30
$begingroup$
@norfair I tried utilizing the same technique but I was not getting the desired result. :-/
$endgroup$
– Dragonite
Dec 9 '18 at 16:47
$begingroup$
Write out the same formula you had for $beta=1$ for general $beta$ and expand out the corresponding $e^{it j/n}$ and $e^{-it j/n}$ terms in Taylor series. You should see some nice cancellation from the constant and linear terms. You're left with a quadratic and higher order terms...from the form of the characteristic function of normal, it should be clear what to do.
$endgroup$
– maridia
Dec 9 '18 at 17:19
2
$begingroup$
@Dragonite You might want to explain what $c_{chi}$ actually means... you didn't introduce the notation.
$endgroup$
– saz
Dec 9 '18 at 18:00
add a comment |
$begingroup$
Use the same technique for part (ii) as you are in part (iii), i.e. characteristic functions.
$endgroup$
– maridia
Dec 9 '18 at 16:30
$begingroup$
@norfair I tried utilizing the same technique but I was not getting the desired result. :-/
$endgroup$
– Dragonite
Dec 9 '18 at 16:47
$begingroup$
Write out the same formula you had for $beta=1$ for general $beta$ and expand out the corresponding $e^{it j/n}$ and $e^{-it j/n}$ terms in Taylor series. You should see some nice cancellation from the constant and linear terms. You're left with a quadratic and higher order terms...from the form of the characteristic function of normal, it should be clear what to do.
$endgroup$
– maridia
Dec 9 '18 at 17:19
2
$begingroup$
@Dragonite You might want to explain what $c_{chi}$ actually means... you didn't introduce the notation.
$endgroup$
– saz
Dec 9 '18 at 18:00
$begingroup$
Use the same technique for part (ii) as you are in part (iii), i.e. characteristic functions.
$endgroup$
– maridia
Dec 9 '18 at 16:30
$begingroup$
Use the same technique for part (ii) as you are in part (iii), i.e. characteristic functions.
$endgroup$
– maridia
Dec 9 '18 at 16:30
$begingroup$
@norfair I tried utilizing the same technique but I was not getting the desired result. :-/
$endgroup$
– Dragonite
Dec 9 '18 at 16:47
$begingroup$
@norfair I tried utilizing the same technique but I was not getting the desired result. :-/
$endgroup$
– Dragonite
Dec 9 '18 at 16:47
$begingroup$
Write out the same formula you had for $beta=1$ for general $beta$ and expand out the corresponding $e^{it j/n}$ and $e^{-it j/n}$ terms in Taylor series. You should see some nice cancellation from the constant and linear terms. You're left with a quadratic and higher order terms...from the form of the characteristic function of normal, it should be clear what to do.
$endgroup$
– maridia
Dec 9 '18 at 17:19
$begingroup$
Write out the same formula you had for $beta=1$ for general $beta$ and expand out the corresponding $e^{it j/n}$ and $e^{-it j/n}$ terms in Taylor series. You should see some nice cancellation from the constant and linear terms. You're left with a quadratic and higher order terms...from the form of the characteristic function of normal, it should be clear what to do.
$endgroup$
– maridia
Dec 9 '18 at 17:19
2
2
$begingroup$
@Dragonite You might want to explain what $c_{chi}$ actually means... you didn't introduce the notation.
$endgroup$
– saz
Dec 9 '18 at 18:00
$begingroup$
@Dragonite You might want to explain what $c_{chi}$ actually means... you didn't introduce the notation.
$endgroup$
– saz
Dec 9 '18 at 18:00
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$defe{mathrm{e}}defi{mathrm{i}}defd{mathrm{d}}$As is written at the start of exercise section, $X_1, X_2, cdots$ are independent.
Define $X_{n, k} = dfrac{X_k}{n^{frac{3 - β}{2}}}$ for $1 leqslant k leqslant n$. Since Lindeberg's condition does not apply for ${X_{n, k} mid 1 leqslant k leqslant n}$, so the proposition has to be proved directly. Since$$
φ_{n, k}(t) := E(exp(i t X_{n, k})) = frac{1}{k^β} cosfrac{kt}{n^{frac{3 - β}{2}}} + left( 1 - frac{1}{k^β} right), quad forall t in mathbb{R}
$$
it suffices to prove that there exists a constant $c$ that$$lim_{t → ∞} prod_{k = 1}^n φ_{n, k}(t) = expleft( -frac{1}{2} c^2 t^2 right). quad forall t in mathbb{R}
$$
For a fixed $t$, in order to apply Exercise 3.1.1., denote $c_{n, k} = φ_{n, k}(t) - 1 = dfrac{1}{k^β} left( cosdfrac{kt}{n^{frac{3 - β}{2}}} - 1 right)$, it suffices to prove that$$
lim_{n → ∞} max_{1 leqslant k leqslant n} |c_{n, k}| = 0, quad lim_{n → ∞} sum_{k = 1}^n c_{n, k} = -frac{1}{2} c^2 t^2, quad sup_{n geqslant 1} sum_{k = 1}^n |c_{n, k}| < +∞.
$$
Since $|c_{n, k}| leqslant dfrac{1}{k^β} · dfrac{1}{2} left( dfrac{kt}{n^{frac{3 - β}{2}}} right)^2 = dfrac{k^{2 - β} t^2}{2n^{3 - β}} leqslant dfrac{t^2}{2n}$, then $limlimits_{n → ∞} maxlimits_{1 leqslant k leqslant n} |c_{n, k}| = 0$ and$$
sum_{k = 1}^n |c_{n, k}| leqslant sum_{k = 1}^n frac{k^{2 - β} t^2}{2n^{3 - β}} leqslant frac{t^2}{2n^{3 - β}} int_1^{n + 1} x^{2 - β} ,d x leqslant frac{t^2}{2(3 - β)} left( frac{n + 1}{n} right)^β,
$$
which implies $suplimits_{n geqslant 1} sumlimits_{k = 1}^n |c_{n, k}| < +∞$.
Now, since $cos x = 1 - dfrac{x^2}{2} + dfrac{x^4}{24} + o(x^5) (x → 0)$, there exists $δ > 0$ such that$$
1 - frac{x^2}{2} < cos x < 1 - frac{x^2}{2} + frac{x^4}{23}. quad forall |x| < δ
$$
For $n > left( dfrac{t}{δ} right)^{frac{2}{1 - β}}$,begin{align*}
sum_{k = 1}^n c_{n, k} &leqslant sum_{k = 1}^n frac{1}{k^β} left( -frac{k^2 t^2}{2n^{3 - β}} + frac{k^4 t^4}{23n^{2(3 - β)}} right) = -sum_{k = 1}^n frac{k^{2 - β} t^2}{2n^{3 - β}} + sum_{k = 1}^n frac{k^{4 - β} t^4}{23n^{2(3 - β)}}\
&leqslant -frac{t^2}{2n^{3 - β}} int_0^n x^{2 - β} ,d x + n · frac{n^{4 - β} t^4}{23n^{2(3 - β)}} = -frac{t^2}{2(3 - β)} + frac{t^4}{23n^{1 - β}},
end{align*}$$
sum_{k = 1}^n c_{n, k} geqslant -sum_{k = 1}^n frac{1}{k^β} · frac{k^2 t^2}{2n^{3 - β}} geqslant -frac{t^2}{2(3 - β)} left( frac{n + 1}{n} right)^β,
$$
thus $limlimits_{n → ∞} sumlimits_{k = 1}^n c_{n, k} = -dfrac{t^2}{2(3 - β)}$. Applying Exercise 3.1.1., $dfrac{S_n}{n^{frac{3 - β}{2}}} Rightarrow cχ$, where $c = dfrac{1}{sqrt{3 - β}}$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3030072%2flet-px-j-j-px-j-j-1-2j-beta-and-px-j-0-1-j-beta-where-beta-i%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$defe{mathrm{e}}defi{mathrm{i}}defd{mathrm{d}}$As is written at the start of exercise section, $X_1, X_2, cdots$ are independent.
Define $X_{n, k} = dfrac{X_k}{n^{frac{3 - β}{2}}}$ for $1 leqslant k leqslant n$. Since Lindeberg's condition does not apply for ${X_{n, k} mid 1 leqslant k leqslant n}$, so the proposition has to be proved directly. Since$$
φ_{n, k}(t) := E(exp(i t X_{n, k})) = frac{1}{k^β} cosfrac{kt}{n^{frac{3 - β}{2}}} + left( 1 - frac{1}{k^β} right), quad forall t in mathbb{R}
$$
it suffices to prove that there exists a constant $c$ that$$lim_{t → ∞} prod_{k = 1}^n φ_{n, k}(t) = expleft( -frac{1}{2} c^2 t^2 right). quad forall t in mathbb{R}
$$
For a fixed $t$, in order to apply Exercise 3.1.1., denote $c_{n, k} = φ_{n, k}(t) - 1 = dfrac{1}{k^β} left( cosdfrac{kt}{n^{frac{3 - β}{2}}} - 1 right)$, it suffices to prove that$$
lim_{n → ∞} max_{1 leqslant k leqslant n} |c_{n, k}| = 0, quad lim_{n → ∞} sum_{k = 1}^n c_{n, k} = -frac{1}{2} c^2 t^2, quad sup_{n geqslant 1} sum_{k = 1}^n |c_{n, k}| < +∞.
$$
Since $|c_{n, k}| leqslant dfrac{1}{k^β} · dfrac{1}{2} left( dfrac{kt}{n^{frac{3 - β}{2}}} right)^2 = dfrac{k^{2 - β} t^2}{2n^{3 - β}} leqslant dfrac{t^2}{2n}$, then $limlimits_{n → ∞} maxlimits_{1 leqslant k leqslant n} |c_{n, k}| = 0$ and$$
sum_{k = 1}^n |c_{n, k}| leqslant sum_{k = 1}^n frac{k^{2 - β} t^2}{2n^{3 - β}} leqslant frac{t^2}{2n^{3 - β}} int_1^{n + 1} x^{2 - β} ,d x leqslant frac{t^2}{2(3 - β)} left( frac{n + 1}{n} right)^β,
$$
which implies $suplimits_{n geqslant 1} sumlimits_{k = 1}^n |c_{n, k}| < +∞$.
Now, since $cos x = 1 - dfrac{x^2}{2} + dfrac{x^4}{24} + o(x^5) (x → 0)$, there exists $δ > 0$ such that$$
1 - frac{x^2}{2} < cos x < 1 - frac{x^2}{2} + frac{x^4}{23}. quad forall |x| < δ
$$
For $n > left( dfrac{t}{δ} right)^{frac{2}{1 - β}}$,begin{align*}
sum_{k = 1}^n c_{n, k} &leqslant sum_{k = 1}^n frac{1}{k^β} left( -frac{k^2 t^2}{2n^{3 - β}} + frac{k^4 t^4}{23n^{2(3 - β)}} right) = -sum_{k = 1}^n frac{k^{2 - β} t^2}{2n^{3 - β}} + sum_{k = 1}^n frac{k^{4 - β} t^4}{23n^{2(3 - β)}}\
&leqslant -frac{t^2}{2n^{3 - β}} int_0^n x^{2 - β} ,d x + n · frac{n^{4 - β} t^4}{23n^{2(3 - β)}} = -frac{t^2}{2(3 - β)} + frac{t^4}{23n^{1 - β}},
end{align*}$$
sum_{k = 1}^n c_{n, k} geqslant -sum_{k = 1}^n frac{1}{k^β} · frac{k^2 t^2}{2n^{3 - β}} geqslant -frac{t^2}{2(3 - β)} left( frac{n + 1}{n} right)^β,
$$
thus $limlimits_{n → ∞} sumlimits_{k = 1}^n c_{n, k} = -dfrac{t^2}{2(3 - β)}$. Applying Exercise 3.1.1., $dfrac{S_n}{n^{frac{3 - β}{2}}} Rightarrow cχ$, where $c = dfrac{1}{sqrt{3 - β}}$.
$endgroup$
add a comment |
$begingroup$
$defe{mathrm{e}}defi{mathrm{i}}defd{mathrm{d}}$As is written at the start of exercise section, $X_1, X_2, cdots$ are independent.
Define $X_{n, k} = dfrac{X_k}{n^{frac{3 - β}{2}}}$ for $1 leqslant k leqslant n$. Since Lindeberg's condition does not apply for ${X_{n, k} mid 1 leqslant k leqslant n}$, so the proposition has to be proved directly. Since$$
φ_{n, k}(t) := E(exp(i t X_{n, k})) = frac{1}{k^β} cosfrac{kt}{n^{frac{3 - β}{2}}} + left( 1 - frac{1}{k^β} right), quad forall t in mathbb{R}
$$
it suffices to prove that there exists a constant $c$ that$$lim_{t → ∞} prod_{k = 1}^n φ_{n, k}(t) = expleft( -frac{1}{2} c^2 t^2 right). quad forall t in mathbb{R}
$$
For a fixed $t$, in order to apply Exercise 3.1.1., denote $c_{n, k} = φ_{n, k}(t) - 1 = dfrac{1}{k^β} left( cosdfrac{kt}{n^{frac{3 - β}{2}}} - 1 right)$, it suffices to prove that$$
lim_{n → ∞} max_{1 leqslant k leqslant n} |c_{n, k}| = 0, quad lim_{n → ∞} sum_{k = 1}^n c_{n, k} = -frac{1}{2} c^2 t^2, quad sup_{n geqslant 1} sum_{k = 1}^n |c_{n, k}| < +∞.
$$
Since $|c_{n, k}| leqslant dfrac{1}{k^β} · dfrac{1}{2} left( dfrac{kt}{n^{frac{3 - β}{2}}} right)^2 = dfrac{k^{2 - β} t^2}{2n^{3 - β}} leqslant dfrac{t^2}{2n}$, then $limlimits_{n → ∞} maxlimits_{1 leqslant k leqslant n} |c_{n, k}| = 0$ and$$
sum_{k = 1}^n |c_{n, k}| leqslant sum_{k = 1}^n frac{k^{2 - β} t^2}{2n^{3 - β}} leqslant frac{t^2}{2n^{3 - β}} int_1^{n + 1} x^{2 - β} ,d x leqslant frac{t^2}{2(3 - β)} left( frac{n + 1}{n} right)^β,
$$
which implies $suplimits_{n geqslant 1} sumlimits_{k = 1}^n |c_{n, k}| < +∞$.
Now, since $cos x = 1 - dfrac{x^2}{2} + dfrac{x^4}{24} + o(x^5) (x → 0)$, there exists $δ > 0$ such that$$
1 - frac{x^2}{2} < cos x < 1 - frac{x^2}{2} + frac{x^4}{23}. quad forall |x| < δ
$$
For $n > left( dfrac{t}{δ} right)^{frac{2}{1 - β}}$,begin{align*}
sum_{k = 1}^n c_{n, k} &leqslant sum_{k = 1}^n frac{1}{k^β} left( -frac{k^2 t^2}{2n^{3 - β}} + frac{k^4 t^4}{23n^{2(3 - β)}} right) = -sum_{k = 1}^n frac{k^{2 - β} t^2}{2n^{3 - β}} + sum_{k = 1}^n frac{k^{4 - β} t^4}{23n^{2(3 - β)}}\
&leqslant -frac{t^2}{2n^{3 - β}} int_0^n x^{2 - β} ,d x + n · frac{n^{4 - β} t^4}{23n^{2(3 - β)}} = -frac{t^2}{2(3 - β)} + frac{t^4}{23n^{1 - β}},
end{align*}$$
sum_{k = 1}^n c_{n, k} geqslant -sum_{k = 1}^n frac{1}{k^β} · frac{k^2 t^2}{2n^{3 - β}} geqslant -frac{t^2}{2(3 - β)} left( frac{n + 1}{n} right)^β,
$$
thus $limlimits_{n → ∞} sumlimits_{k = 1}^n c_{n, k} = -dfrac{t^2}{2(3 - β)}$. Applying Exercise 3.1.1., $dfrac{S_n}{n^{frac{3 - β}{2}}} Rightarrow cχ$, where $c = dfrac{1}{sqrt{3 - β}}$.
$endgroup$
add a comment |
$begingroup$
$defe{mathrm{e}}defi{mathrm{i}}defd{mathrm{d}}$As is written at the start of exercise section, $X_1, X_2, cdots$ are independent.
Define $X_{n, k} = dfrac{X_k}{n^{frac{3 - β}{2}}}$ for $1 leqslant k leqslant n$. Since Lindeberg's condition does not apply for ${X_{n, k} mid 1 leqslant k leqslant n}$, so the proposition has to be proved directly. Since$$
φ_{n, k}(t) := E(exp(i t X_{n, k})) = frac{1}{k^β} cosfrac{kt}{n^{frac{3 - β}{2}}} + left( 1 - frac{1}{k^β} right), quad forall t in mathbb{R}
$$
it suffices to prove that there exists a constant $c$ that$$lim_{t → ∞} prod_{k = 1}^n φ_{n, k}(t) = expleft( -frac{1}{2} c^2 t^2 right). quad forall t in mathbb{R}
$$
For a fixed $t$, in order to apply Exercise 3.1.1., denote $c_{n, k} = φ_{n, k}(t) - 1 = dfrac{1}{k^β} left( cosdfrac{kt}{n^{frac{3 - β}{2}}} - 1 right)$, it suffices to prove that$$
lim_{n → ∞} max_{1 leqslant k leqslant n} |c_{n, k}| = 0, quad lim_{n → ∞} sum_{k = 1}^n c_{n, k} = -frac{1}{2} c^2 t^2, quad sup_{n geqslant 1} sum_{k = 1}^n |c_{n, k}| < +∞.
$$
Since $|c_{n, k}| leqslant dfrac{1}{k^β} · dfrac{1}{2} left( dfrac{kt}{n^{frac{3 - β}{2}}} right)^2 = dfrac{k^{2 - β} t^2}{2n^{3 - β}} leqslant dfrac{t^2}{2n}$, then $limlimits_{n → ∞} maxlimits_{1 leqslant k leqslant n} |c_{n, k}| = 0$ and$$
sum_{k = 1}^n |c_{n, k}| leqslant sum_{k = 1}^n frac{k^{2 - β} t^2}{2n^{3 - β}} leqslant frac{t^2}{2n^{3 - β}} int_1^{n + 1} x^{2 - β} ,d x leqslant frac{t^2}{2(3 - β)} left( frac{n + 1}{n} right)^β,
$$
which implies $suplimits_{n geqslant 1} sumlimits_{k = 1}^n |c_{n, k}| < +∞$.
Now, since $cos x = 1 - dfrac{x^2}{2} + dfrac{x^4}{24} + o(x^5) (x → 0)$, there exists $δ > 0$ such that$$
1 - frac{x^2}{2} < cos x < 1 - frac{x^2}{2} + frac{x^4}{23}. quad forall |x| < δ
$$
For $n > left( dfrac{t}{δ} right)^{frac{2}{1 - β}}$,begin{align*}
sum_{k = 1}^n c_{n, k} &leqslant sum_{k = 1}^n frac{1}{k^β} left( -frac{k^2 t^2}{2n^{3 - β}} + frac{k^4 t^4}{23n^{2(3 - β)}} right) = -sum_{k = 1}^n frac{k^{2 - β} t^2}{2n^{3 - β}} + sum_{k = 1}^n frac{k^{4 - β} t^4}{23n^{2(3 - β)}}\
&leqslant -frac{t^2}{2n^{3 - β}} int_0^n x^{2 - β} ,d x + n · frac{n^{4 - β} t^4}{23n^{2(3 - β)}} = -frac{t^2}{2(3 - β)} + frac{t^4}{23n^{1 - β}},
end{align*}$$
sum_{k = 1}^n c_{n, k} geqslant -sum_{k = 1}^n frac{1}{k^β} · frac{k^2 t^2}{2n^{3 - β}} geqslant -frac{t^2}{2(3 - β)} left( frac{n + 1}{n} right)^β,
$$
thus $limlimits_{n → ∞} sumlimits_{k = 1}^n c_{n, k} = -dfrac{t^2}{2(3 - β)}$. Applying Exercise 3.1.1., $dfrac{S_n}{n^{frac{3 - β}{2}}} Rightarrow cχ$, where $c = dfrac{1}{sqrt{3 - β}}$.
$endgroup$
$defe{mathrm{e}}defi{mathrm{i}}defd{mathrm{d}}$As is written at the start of exercise section, $X_1, X_2, cdots$ are independent.
Define $X_{n, k} = dfrac{X_k}{n^{frac{3 - β}{2}}}$ for $1 leqslant k leqslant n$. Since Lindeberg's condition does not apply for ${X_{n, k} mid 1 leqslant k leqslant n}$, so the proposition has to be proved directly. Since$$
φ_{n, k}(t) := E(exp(i t X_{n, k})) = frac{1}{k^β} cosfrac{kt}{n^{frac{3 - β}{2}}} + left( 1 - frac{1}{k^β} right), quad forall t in mathbb{R}
$$
it suffices to prove that there exists a constant $c$ that$$lim_{t → ∞} prod_{k = 1}^n φ_{n, k}(t) = expleft( -frac{1}{2} c^2 t^2 right). quad forall t in mathbb{R}
$$
For a fixed $t$, in order to apply Exercise 3.1.1., denote $c_{n, k} = φ_{n, k}(t) - 1 = dfrac{1}{k^β} left( cosdfrac{kt}{n^{frac{3 - β}{2}}} - 1 right)$, it suffices to prove that$$
lim_{n → ∞} max_{1 leqslant k leqslant n} |c_{n, k}| = 0, quad lim_{n → ∞} sum_{k = 1}^n c_{n, k} = -frac{1}{2} c^2 t^2, quad sup_{n geqslant 1} sum_{k = 1}^n |c_{n, k}| < +∞.
$$
Since $|c_{n, k}| leqslant dfrac{1}{k^β} · dfrac{1}{2} left( dfrac{kt}{n^{frac{3 - β}{2}}} right)^2 = dfrac{k^{2 - β} t^2}{2n^{3 - β}} leqslant dfrac{t^2}{2n}$, then $limlimits_{n → ∞} maxlimits_{1 leqslant k leqslant n} |c_{n, k}| = 0$ and$$
sum_{k = 1}^n |c_{n, k}| leqslant sum_{k = 1}^n frac{k^{2 - β} t^2}{2n^{3 - β}} leqslant frac{t^2}{2n^{3 - β}} int_1^{n + 1} x^{2 - β} ,d x leqslant frac{t^2}{2(3 - β)} left( frac{n + 1}{n} right)^β,
$$
which implies $suplimits_{n geqslant 1} sumlimits_{k = 1}^n |c_{n, k}| < +∞$.
Now, since $cos x = 1 - dfrac{x^2}{2} + dfrac{x^4}{24} + o(x^5) (x → 0)$, there exists $δ > 0$ such that$$
1 - frac{x^2}{2} < cos x < 1 - frac{x^2}{2} + frac{x^4}{23}. quad forall |x| < δ
$$
For $n > left( dfrac{t}{δ} right)^{frac{2}{1 - β}}$,begin{align*}
sum_{k = 1}^n c_{n, k} &leqslant sum_{k = 1}^n frac{1}{k^β} left( -frac{k^2 t^2}{2n^{3 - β}} + frac{k^4 t^4}{23n^{2(3 - β)}} right) = -sum_{k = 1}^n frac{k^{2 - β} t^2}{2n^{3 - β}} + sum_{k = 1}^n frac{k^{4 - β} t^4}{23n^{2(3 - β)}}\
&leqslant -frac{t^2}{2n^{3 - β}} int_0^n x^{2 - β} ,d x + n · frac{n^{4 - β} t^4}{23n^{2(3 - β)}} = -frac{t^2}{2(3 - β)} + frac{t^4}{23n^{1 - β}},
end{align*}$$
sum_{k = 1}^n c_{n, k} geqslant -sum_{k = 1}^n frac{1}{k^β} · frac{k^2 t^2}{2n^{3 - β}} geqslant -frac{t^2}{2(3 - β)} left( frac{n + 1}{n} right)^β,
$$
thus $limlimits_{n → ∞} sumlimits_{k = 1}^n c_{n, k} = -dfrac{t^2}{2(3 - β)}$. Applying Exercise 3.1.1., $dfrac{S_n}{n^{frac{3 - β}{2}}} Rightarrow cχ$, where $c = dfrac{1}{sqrt{3 - β}}$.
answered Dec 10 '18 at 13:38
SaadSaad
19.7k92352
19.7k92352
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3030072%2flet-px-j-j-px-j-j-1-2j-beta-and-px-j-0-1-j-beta-where-beta-i%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Use the same technique for part (ii) as you are in part (iii), i.e. characteristic functions.
$endgroup$
– maridia
Dec 9 '18 at 16:30
$begingroup$
@norfair I tried utilizing the same technique but I was not getting the desired result. :-/
$endgroup$
– Dragonite
Dec 9 '18 at 16:47
$begingroup$
Write out the same formula you had for $beta=1$ for general $beta$ and expand out the corresponding $e^{it j/n}$ and $e^{-it j/n}$ terms in Taylor series. You should see some nice cancellation from the constant and linear terms. You're left with a quadratic and higher order terms...from the form of the characteristic function of normal, it should be clear what to do.
$endgroup$
– maridia
Dec 9 '18 at 17:19
2
$begingroup$
@Dragonite You might want to explain what $c_{chi}$ actually means... you didn't introduce the notation.
$endgroup$
– saz
Dec 9 '18 at 18:00