Find sum of series $ sum_{n=1}^{infty} (ncdot ln frac{2n+1}{2n-1} - 1) $
how can I find sum of series $ sum_{n=1}^{infty} (ncdot ln frac{2n+1}{2n-1} - 1) $?
It is so weird for me because I put this to Mathematica and it tells me that sum does not converge...
Let consider sum no to infinity, but to n
$$ sum_{k=1}^{n} (kcdot ln frac{2k+1}{2k-1} - 1) =$$
$$ ln frac{3}{1}cdot left(frac{5}{3}right)^2 cdot...cdot left(frac{2n+1}{2n-1}right)^n - n = ln frac{1}{1}cdot frac{1}{3}cdot frac{1}{5}cdot ... frac{1}{2n-1} - n $$
but $$ n = ln e^n $$
so
it will be $$lnfrac{1}{e^n} cdot frac{1}{1}cdot frac{1}{3}cdot frac{1}{5}cdot ... frac{1}{2n-1}$$
So the limit of it is $-infty$
Have I done this well or I missed sth?
real-analysis sequences-and-series
|
show 3 more comments
how can I find sum of series $ sum_{n=1}^{infty} (ncdot ln frac{2n+1}{2n-1} - 1) $?
It is so weird for me because I put this to Mathematica and it tells me that sum does not converge...
Let consider sum no to infinity, but to n
$$ sum_{k=1}^{n} (kcdot ln frac{2k+1}{2k-1} - 1) =$$
$$ ln frac{3}{1}cdot left(frac{5}{3}right)^2 cdot...cdot left(frac{2n+1}{2n-1}right)^n - n = ln frac{1}{1}cdot frac{1}{3}cdot frac{1}{5}cdot ... frac{1}{2n-1} - n $$
but $$ n = ln e^n $$
so
it will be $$lnfrac{1}{e^n} cdot frac{1}{1}cdot frac{1}{3}cdot frac{1}{5}cdot ... frac{1}{2n-1}$$
So the limit of it is $-infty$
Have I done this well or I missed sth?
real-analysis sequences-and-series
2
it doesn't converge because the summand is around $nln(1+frac{2}{2n-1})-1 approx nfrac{2}{2n-1}-1 = frac{1}{2n-1}$.
– mathworker21
Nov 29 at 19:08
1
It certainly converges, since the $n$'th term is asymptotic to $1/(12 n^2)$.
– Robert Israel
Nov 29 at 19:09
@RobertIsrael where did I go wrong
– mathworker21
Nov 29 at 19:14
@mathworker21 seems correct to me.
– Connor Harris
Nov 29 at 19:16
where should it be?
– mvxxx
Nov 29 at 19:28
|
show 3 more comments
how can I find sum of series $ sum_{n=1}^{infty} (ncdot ln frac{2n+1}{2n-1} - 1) $?
It is so weird for me because I put this to Mathematica and it tells me that sum does not converge...
Let consider sum no to infinity, but to n
$$ sum_{k=1}^{n} (kcdot ln frac{2k+1}{2k-1} - 1) =$$
$$ ln frac{3}{1}cdot left(frac{5}{3}right)^2 cdot...cdot left(frac{2n+1}{2n-1}right)^n - n = ln frac{1}{1}cdot frac{1}{3}cdot frac{1}{5}cdot ... frac{1}{2n-1} - n $$
but $$ n = ln e^n $$
so
it will be $$lnfrac{1}{e^n} cdot frac{1}{1}cdot frac{1}{3}cdot frac{1}{5}cdot ... frac{1}{2n-1}$$
So the limit of it is $-infty$
Have I done this well or I missed sth?
real-analysis sequences-and-series
how can I find sum of series $ sum_{n=1}^{infty} (ncdot ln frac{2n+1}{2n-1} - 1) $?
It is so weird for me because I put this to Mathematica and it tells me that sum does not converge...
Let consider sum no to infinity, but to n
$$ sum_{k=1}^{n} (kcdot ln frac{2k+1}{2k-1} - 1) =$$
$$ ln frac{3}{1}cdot left(frac{5}{3}right)^2 cdot...cdot left(frac{2n+1}{2n-1}right)^n - n = ln frac{1}{1}cdot frac{1}{3}cdot frac{1}{5}cdot ... frac{1}{2n-1} - n $$
but $$ n = ln e^n $$
so
it will be $$lnfrac{1}{e^n} cdot frac{1}{1}cdot frac{1}{3}cdot frac{1}{5}cdot ... frac{1}{2n-1}$$
So the limit of it is $-infty$
Have I done this well or I missed sth?
real-analysis sequences-and-series
real-analysis sequences-and-series
edited Nov 29 at 19:25
asked Nov 29 at 19:06
mvxxx
124
124
2
it doesn't converge because the summand is around $nln(1+frac{2}{2n-1})-1 approx nfrac{2}{2n-1}-1 = frac{1}{2n-1}$.
– mathworker21
Nov 29 at 19:08
1
It certainly converges, since the $n$'th term is asymptotic to $1/(12 n^2)$.
– Robert Israel
Nov 29 at 19:09
@RobertIsrael where did I go wrong
– mathworker21
Nov 29 at 19:14
@mathworker21 seems correct to me.
– Connor Harris
Nov 29 at 19:16
where should it be?
– mvxxx
Nov 29 at 19:28
|
show 3 more comments
2
it doesn't converge because the summand is around $nln(1+frac{2}{2n-1})-1 approx nfrac{2}{2n-1}-1 = frac{1}{2n-1}$.
– mathworker21
Nov 29 at 19:08
1
It certainly converges, since the $n$'th term is asymptotic to $1/(12 n^2)$.
– Robert Israel
Nov 29 at 19:09
@RobertIsrael where did I go wrong
– mathworker21
Nov 29 at 19:14
@mathworker21 seems correct to me.
– Connor Harris
Nov 29 at 19:16
where should it be?
– mvxxx
Nov 29 at 19:28
2
2
it doesn't converge because the summand is around $nln(1+frac{2}{2n-1})-1 approx nfrac{2}{2n-1}-1 = frac{1}{2n-1}$.
– mathworker21
Nov 29 at 19:08
it doesn't converge because the summand is around $nln(1+frac{2}{2n-1})-1 approx nfrac{2}{2n-1}-1 = frac{1}{2n-1}$.
– mathworker21
Nov 29 at 19:08
1
1
It certainly converges, since the $n$'th term is asymptotic to $1/(12 n^2)$.
– Robert Israel
Nov 29 at 19:09
It certainly converges, since the $n$'th term is asymptotic to $1/(12 n^2)$.
– Robert Israel
Nov 29 at 19:09
@RobertIsrael where did I go wrong
– mathworker21
Nov 29 at 19:14
@RobertIsrael where did I go wrong
– mathworker21
Nov 29 at 19:14
@mathworker21 seems correct to me.
– Connor Harris
Nov 29 at 19:16
@mathworker21 seems correct to me.
– Connor Harris
Nov 29 at 19:16
where should it be?
– mvxxx
Nov 29 at 19:28
where should it be?
– mvxxx
Nov 29 at 19:28
|
show 3 more comments
4 Answers
4
active
oldest
votes
We have that
$$sum_{n=1}^{N} left(ncdot ln frac{2n+1}{2n-1} - 1right)=sum_{n=1}^{N} left(ncdot ln (2n+1)-nln (2n-1) - 1right)=$$
$$=(1cdot ln 3-1cdot ln1-1)+(2cdot ln 5-2cdot ln3-1)+(3cdot ln 7-3cdot ln5-1)+ldots=$$
$$=-ln(3cdot 5cdot 7cdot ldotscdot (2N-1))+Ncdotln(2N+1)-N=$$$$=-lnleft(frac{(2N)!}{2^NN!}right)+Ncdotln(2N+1)-N=$$
$$=lnleft(frac{(2^N)^2N!N^N}{(2N)!e^N}right)+Ncdotlnleft(1+frac1{2N}right)$$
and by Stirling's approximation $N!sim sqrt{2pi N}left(frac{N}{e}right)^N$
$$frac{(2^N)^2N!N^N}{(2N!)e^N}simfrac{(2^N)^2N^N}{e^N}frac{sqrt{2pi N}}{sqrt{4pi N}}frac{N^Ne^{2N}}{e^N4^NN^{2N}}=frac{1}{sqrt 2}$$
I edited my post, can you look at this?
– mvxxx
Nov 29 at 19:25
As noticed the limit exists since the term is asymthotic to $1/(12n^2)$. Starting by the first step indicated you see that the sum telescopes.
– gimusi
Nov 29 at 19:28
@gimusi: Just was curious how did you precisely say the term is asymptotic to $1/(12n^2)$?
– Yadati Kiran
Nov 29 at 19:36
@YadatiKiran It is not difficult to see by $ln frac{2n+1}{2n-1}=ln (1+1/2n)-ln (1-1/2n)$ and then using Taylor's series for log.
– gimusi
Nov 29 at 19:46
@gimusi: Got it! Thanks.
– Yadati Kiran
Nov 29 at 19:55
|
show 11 more comments
If I'm not mistaken, the actual sum is
$$ frac{1 - ln(2)}{2}$$
Yes that's agree with my result also.
– gimusi
Nov 29 at 19:56
add a comment |
Let $f(x)=displaystylesum_{n=1}^{infty}left(nlnfrac{n+x}{n-x}-2xright)$ for $xin(-1,1)$. Then
$$f'(x)=displaystylesum_{n=1}^{infty}frac{2x^2}{n^2-x^2}=1-pi xcotpi x$$
(termwise differentiation is admissible because of uniform convergence of the latter series in $[-a,a]$ for any $0<a<1$; the second equality is known). Thus,
$$f(x)=x-frac{1}{pi}int_{0}^{pi x}tcot t,dt=x(1-lnsinpi x)+frac{1}{pi}int_{0}^{pi x}lnsin t,dt.$$
Your sum is $f(1/2)=(1-ln2)/2$.
add a comment |
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
With $ds{N in mathbb{N}_{geq 1}}$:
begin{align}
&bbox[#ffd,10px]{sum_{n = 1}^{N}bracks{nlnpars{2n + 1 over 2n - 1} - 1}}
\[5mm] = &
sum_{n = 1}^{N}nlnpars{2n + 1} - sum_{n = 1}^{N}nlnpars{2n - 1} - N
\[5mm] = &
-N + sum_{n = 0}^{N}nlnpars{2n + 1} -
sum_{n = 0}^{N - 1}pars{n + 1}lnpars{2n + 1}
\[5mm] = &
-N + Nlnpars{2N + 1} -Nlnpars{2} -
sum_{n = 0}^{N - 1}lnpars{n + {1 over 2}}
\[5mm] = &
-N + Nlnpars{N + {1 over 2}} -
lnpars{prod_{n = 0}^{N - 1}bracks{n + {1 over 2}}}
\[5mm] = &
-N + Nlnpars{N + {1 over 2}} -
lnpars{bracks{N - 1/2}! over Gammapars{1/2}}
\[5mm] stackrel{mrm{as} N to infty}{sim}&
-N + Nlnpars{N + {1 over 2}} -
lnpars{root{2pi}bracks{N - 1/2}^{N}expo{-N + 1/2} over root{pi}}
\[5mm] = &
-N + Nlnpars{N + {1 over 2}} -
lnpars{2^{1/2}N^{N}bracks{1 - {1/2 over N}}^{N}
expo{-N + 1/2}}
\[5mm] stackrel{mrm{as} N to infty}{sim} &
-N + Nlnpars{N + {1 over 2}} -
bracks{{1 over 2},lnpars{2} + Nlnpars{N} - N}
\[5mm] = &
underbrace{Nlnpars{1 + {1 over 2N}}}
_{ds{stackrel{mrm{as} N to infty}{to} {1 over 2}}}
- {1 over 2},lnpars{2}label{1}tag{1}
\[5mm] stackrel{mrm{as} N to infty}{to} &
bbx{1 - lnpars{2} over 2} approx 0.1534
end{align}
How have you moved from one before last to last line?
– mvxxx
Nov 29 at 21:16
@mvxxx I add one more line ( line (1) ) where you can see that the first $displaystyle -N$ cancels with the $displaystyle -left(-Nright)$ at the far right and $displaystyle Nlnleft(N + {1 over 2}right) - Nlnleft(Nright) = Nlnleft(1 + {1 over 2N}right) to {large{1 over 2}}$
– Felix Marin
Nov 29 at 21:34
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3019050%2ffind-sum-of-series-sum-n-1-infty-n-cdot-ln-frac2n12n-1-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
We have that
$$sum_{n=1}^{N} left(ncdot ln frac{2n+1}{2n-1} - 1right)=sum_{n=1}^{N} left(ncdot ln (2n+1)-nln (2n-1) - 1right)=$$
$$=(1cdot ln 3-1cdot ln1-1)+(2cdot ln 5-2cdot ln3-1)+(3cdot ln 7-3cdot ln5-1)+ldots=$$
$$=-ln(3cdot 5cdot 7cdot ldotscdot (2N-1))+Ncdotln(2N+1)-N=$$$$=-lnleft(frac{(2N)!}{2^NN!}right)+Ncdotln(2N+1)-N=$$
$$=lnleft(frac{(2^N)^2N!N^N}{(2N)!e^N}right)+Ncdotlnleft(1+frac1{2N}right)$$
and by Stirling's approximation $N!sim sqrt{2pi N}left(frac{N}{e}right)^N$
$$frac{(2^N)^2N!N^N}{(2N!)e^N}simfrac{(2^N)^2N^N}{e^N}frac{sqrt{2pi N}}{sqrt{4pi N}}frac{N^Ne^{2N}}{e^N4^NN^{2N}}=frac{1}{sqrt 2}$$
I edited my post, can you look at this?
– mvxxx
Nov 29 at 19:25
As noticed the limit exists since the term is asymthotic to $1/(12n^2)$. Starting by the first step indicated you see that the sum telescopes.
– gimusi
Nov 29 at 19:28
@gimusi: Just was curious how did you precisely say the term is asymptotic to $1/(12n^2)$?
– Yadati Kiran
Nov 29 at 19:36
@YadatiKiran It is not difficult to see by $ln frac{2n+1}{2n-1}=ln (1+1/2n)-ln (1-1/2n)$ and then using Taylor's series for log.
– gimusi
Nov 29 at 19:46
@gimusi: Got it! Thanks.
– Yadati Kiran
Nov 29 at 19:55
|
show 11 more comments
We have that
$$sum_{n=1}^{N} left(ncdot ln frac{2n+1}{2n-1} - 1right)=sum_{n=1}^{N} left(ncdot ln (2n+1)-nln (2n-1) - 1right)=$$
$$=(1cdot ln 3-1cdot ln1-1)+(2cdot ln 5-2cdot ln3-1)+(3cdot ln 7-3cdot ln5-1)+ldots=$$
$$=-ln(3cdot 5cdot 7cdot ldotscdot (2N-1))+Ncdotln(2N+1)-N=$$$$=-lnleft(frac{(2N)!}{2^NN!}right)+Ncdotln(2N+1)-N=$$
$$=lnleft(frac{(2^N)^2N!N^N}{(2N)!e^N}right)+Ncdotlnleft(1+frac1{2N}right)$$
and by Stirling's approximation $N!sim sqrt{2pi N}left(frac{N}{e}right)^N$
$$frac{(2^N)^2N!N^N}{(2N!)e^N}simfrac{(2^N)^2N^N}{e^N}frac{sqrt{2pi N}}{sqrt{4pi N}}frac{N^Ne^{2N}}{e^N4^NN^{2N}}=frac{1}{sqrt 2}$$
I edited my post, can you look at this?
– mvxxx
Nov 29 at 19:25
As noticed the limit exists since the term is asymthotic to $1/(12n^2)$. Starting by the first step indicated you see that the sum telescopes.
– gimusi
Nov 29 at 19:28
@gimusi: Just was curious how did you precisely say the term is asymptotic to $1/(12n^2)$?
– Yadati Kiran
Nov 29 at 19:36
@YadatiKiran It is not difficult to see by $ln frac{2n+1}{2n-1}=ln (1+1/2n)-ln (1-1/2n)$ and then using Taylor's series for log.
– gimusi
Nov 29 at 19:46
@gimusi: Got it! Thanks.
– Yadati Kiran
Nov 29 at 19:55
|
show 11 more comments
We have that
$$sum_{n=1}^{N} left(ncdot ln frac{2n+1}{2n-1} - 1right)=sum_{n=1}^{N} left(ncdot ln (2n+1)-nln (2n-1) - 1right)=$$
$$=(1cdot ln 3-1cdot ln1-1)+(2cdot ln 5-2cdot ln3-1)+(3cdot ln 7-3cdot ln5-1)+ldots=$$
$$=-ln(3cdot 5cdot 7cdot ldotscdot (2N-1))+Ncdotln(2N+1)-N=$$$$=-lnleft(frac{(2N)!}{2^NN!}right)+Ncdotln(2N+1)-N=$$
$$=lnleft(frac{(2^N)^2N!N^N}{(2N)!e^N}right)+Ncdotlnleft(1+frac1{2N}right)$$
and by Stirling's approximation $N!sim sqrt{2pi N}left(frac{N}{e}right)^N$
$$frac{(2^N)^2N!N^N}{(2N!)e^N}simfrac{(2^N)^2N^N}{e^N}frac{sqrt{2pi N}}{sqrt{4pi N}}frac{N^Ne^{2N}}{e^N4^NN^{2N}}=frac{1}{sqrt 2}$$
We have that
$$sum_{n=1}^{N} left(ncdot ln frac{2n+1}{2n-1} - 1right)=sum_{n=1}^{N} left(ncdot ln (2n+1)-nln (2n-1) - 1right)=$$
$$=(1cdot ln 3-1cdot ln1-1)+(2cdot ln 5-2cdot ln3-1)+(3cdot ln 7-3cdot ln5-1)+ldots=$$
$$=-ln(3cdot 5cdot 7cdot ldotscdot (2N-1))+Ncdotln(2N+1)-N=$$$$=-lnleft(frac{(2N)!}{2^NN!}right)+Ncdotln(2N+1)-N=$$
$$=lnleft(frac{(2^N)^2N!N^N}{(2N)!e^N}right)+Ncdotlnleft(1+frac1{2N}right)$$
and by Stirling's approximation $N!sim sqrt{2pi N}left(frac{N}{e}right)^N$
$$frac{(2^N)^2N!N^N}{(2N!)e^N}simfrac{(2^N)^2N^N}{e^N}frac{sqrt{2pi N}}{sqrt{4pi N}}frac{N^Ne^{2N}}{e^N4^NN^{2N}}=frac{1}{sqrt 2}$$
edited Nov 29 at 21:30
answered Nov 29 at 19:21
gimusi
1
1
I edited my post, can you look at this?
– mvxxx
Nov 29 at 19:25
As noticed the limit exists since the term is asymthotic to $1/(12n^2)$. Starting by the first step indicated you see that the sum telescopes.
– gimusi
Nov 29 at 19:28
@gimusi: Just was curious how did you precisely say the term is asymptotic to $1/(12n^2)$?
– Yadati Kiran
Nov 29 at 19:36
@YadatiKiran It is not difficult to see by $ln frac{2n+1}{2n-1}=ln (1+1/2n)-ln (1-1/2n)$ and then using Taylor's series for log.
– gimusi
Nov 29 at 19:46
@gimusi: Got it! Thanks.
– Yadati Kiran
Nov 29 at 19:55
|
show 11 more comments
I edited my post, can you look at this?
– mvxxx
Nov 29 at 19:25
As noticed the limit exists since the term is asymthotic to $1/(12n^2)$. Starting by the first step indicated you see that the sum telescopes.
– gimusi
Nov 29 at 19:28
@gimusi: Just was curious how did you precisely say the term is asymptotic to $1/(12n^2)$?
– Yadati Kiran
Nov 29 at 19:36
@YadatiKiran It is not difficult to see by $ln frac{2n+1}{2n-1}=ln (1+1/2n)-ln (1-1/2n)$ and then using Taylor's series for log.
– gimusi
Nov 29 at 19:46
@gimusi: Got it! Thanks.
– Yadati Kiran
Nov 29 at 19:55
I edited my post, can you look at this?
– mvxxx
Nov 29 at 19:25
I edited my post, can you look at this?
– mvxxx
Nov 29 at 19:25
As noticed the limit exists since the term is asymthotic to $1/(12n^2)$. Starting by the first step indicated you see that the sum telescopes.
– gimusi
Nov 29 at 19:28
As noticed the limit exists since the term is asymthotic to $1/(12n^2)$. Starting by the first step indicated you see that the sum telescopes.
– gimusi
Nov 29 at 19:28
@gimusi: Just was curious how did you precisely say the term is asymptotic to $1/(12n^2)$?
– Yadati Kiran
Nov 29 at 19:36
@gimusi: Just was curious how did you precisely say the term is asymptotic to $1/(12n^2)$?
– Yadati Kiran
Nov 29 at 19:36
@YadatiKiran It is not difficult to see by $ln frac{2n+1}{2n-1}=ln (1+1/2n)-ln (1-1/2n)$ and then using Taylor's series for log.
– gimusi
Nov 29 at 19:46
@YadatiKiran It is not difficult to see by $ln frac{2n+1}{2n-1}=ln (1+1/2n)-ln (1-1/2n)$ and then using Taylor's series for log.
– gimusi
Nov 29 at 19:46
@gimusi: Got it! Thanks.
– Yadati Kiran
Nov 29 at 19:55
@gimusi: Got it! Thanks.
– Yadati Kiran
Nov 29 at 19:55
|
show 11 more comments
If I'm not mistaken, the actual sum is
$$ frac{1 - ln(2)}{2}$$
Yes that's agree with my result also.
– gimusi
Nov 29 at 19:56
add a comment |
If I'm not mistaken, the actual sum is
$$ frac{1 - ln(2)}{2}$$
Yes that's agree with my result also.
– gimusi
Nov 29 at 19:56
add a comment |
If I'm not mistaken, the actual sum is
$$ frac{1 - ln(2)}{2}$$
If I'm not mistaken, the actual sum is
$$ frac{1 - ln(2)}{2}$$
answered Nov 29 at 19:42
Robert Israel
317k23206457
317k23206457
Yes that's agree with my result also.
– gimusi
Nov 29 at 19:56
add a comment |
Yes that's agree with my result also.
– gimusi
Nov 29 at 19:56
Yes that's agree with my result also.
– gimusi
Nov 29 at 19:56
Yes that's agree with my result also.
– gimusi
Nov 29 at 19:56
add a comment |
Let $f(x)=displaystylesum_{n=1}^{infty}left(nlnfrac{n+x}{n-x}-2xright)$ for $xin(-1,1)$. Then
$$f'(x)=displaystylesum_{n=1}^{infty}frac{2x^2}{n^2-x^2}=1-pi xcotpi x$$
(termwise differentiation is admissible because of uniform convergence of the latter series in $[-a,a]$ for any $0<a<1$; the second equality is known). Thus,
$$f(x)=x-frac{1}{pi}int_{0}^{pi x}tcot t,dt=x(1-lnsinpi x)+frac{1}{pi}int_{0}^{pi x}lnsin t,dt.$$
Your sum is $f(1/2)=(1-ln2)/2$.
add a comment |
Let $f(x)=displaystylesum_{n=1}^{infty}left(nlnfrac{n+x}{n-x}-2xright)$ for $xin(-1,1)$. Then
$$f'(x)=displaystylesum_{n=1}^{infty}frac{2x^2}{n^2-x^2}=1-pi xcotpi x$$
(termwise differentiation is admissible because of uniform convergence of the latter series in $[-a,a]$ for any $0<a<1$; the second equality is known). Thus,
$$f(x)=x-frac{1}{pi}int_{0}^{pi x}tcot t,dt=x(1-lnsinpi x)+frac{1}{pi}int_{0}^{pi x}lnsin t,dt.$$
Your sum is $f(1/2)=(1-ln2)/2$.
add a comment |
Let $f(x)=displaystylesum_{n=1}^{infty}left(nlnfrac{n+x}{n-x}-2xright)$ for $xin(-1,1)$. Then
$$f'(x)=displaystylesum_{n=1}^{infty}frac{2x^2}{n^2-x^2}=1-pi xcotpi x$$
(termwise differentiation is admissible because of uniform convergence of the latter series in $[-a,a]$ for any $0<a<1$; the second equality is known). Thus,
$$f(x)=x-frac{1}{pi}int_{0}^{pi x}tcot t,dt=x(1-lnsinpi x)+frac{1}{pi}int_{0}^{pi x}lnsin t,dt.$$
Your sum is $f(1/2)=(1-ln2)/2$.
Let $f(x)=displaystylesum_{n=1}^{infty}left(nlnfrac{n+x}{n-x}-2xright)$ for $xin(-1,1)$. Then
$$f'(x)=displaystylesum_{n=1}^{infty}frac{2x^2}{n^2-x^2}=1-pi xcotpi x$$
(termwise differentiation is admissible because of uniform convergence of the latter series in $[-a,a]$ for any $0<a<1$; the second equality is known). Thus,
$$f(x)=x-frac{1}{pi}int_{0}^{pi x}tcot t,dt=x(1-lnsinpi x)+frac{1}{pi}int_{0}^{pi x}lnsin t,dt.$$
Your sum is $f(1/2)=(1-ln2)/2$.
answered Nov 29 at 19:53
metamorphy
3,2221520
3,2221520
add a comment |
add a comment |
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
With $ds{N in mathbb{N}_{geq 1}}$:
begin{align}
&bbox[#ffd,10px]{sum_{n = 1}^{N}bracks{nlnpars{2n + 1 over 2n - 1} - 1}}
\[5mm] = &
sum_{n = 1}^{N}nlnpars{2n + 1} - sum_{n = 1}^{N}nlnpars{2n - 1} - N
\[5mm] = &
-N + sum_{n = 0}^{N}nlnpars{2n + 1} -
sum_{n = 0}^{N - 1}pars{n + 1}lnpars{2n + 1}
\[5mm] = &
-N + Nlnpars{2N + 1} -Nlnpars{2} -
sum_{n = 0}^{N - 1}lnpars{n + {1 over 2}}
\[5mm] = &
-N + Nlnpars{N + {1 over 2}} -
lnpars{prod_{n = 0}^{N - 1}bracks{n + {1 over 2}}}
\[5mm] = &
-N + Nlnpars{N + {1 over 2}} -
lnpars{bracks{N - 1/2}! over Gammapars{1/2}}
\[5mm] stackrel{mrm{as} N to infty}{sim}&
-N + Nlnpars{N + {1 over 2}} -
lnpars{root{2pi}bracks{N - 1/2}^{N}expo{-N + 1/2} over root{pi}}
\[5mm] = &
-N + Nlnpars{N + {1 over 2}} -
lnpars{2^{1/2}N^{N}bracks{1 - {1/2 over N}}^{N}
expo{-N + 1/2}}
\[5mm] stackrel{mrm{as} N to infty}{sim} &
-N + Nlnpars{N + {1 over 2}} -
bracks{{1 over 2},lnpars{2} + Nlnpars{N} - N}
\[5mm] = &
underbrace{Nlnpars{1 + {1 over 2N}}}
_{ds{stackrel{mrm{as} N to infty}{to} {1 over 2}}}
- {1 over 2},lnpars{2}label{1}tag{1}
\[5mm] stackrel{mrm{as} N to infty}{to} &
bbx{1 - lnpars{2} over 2} approx 0.1534
end{align}
How have you moved from one before last to last line?
– mvxxx
Nov 29 at 21:16
@mvxxx I add one more line ( line (1) ) where you can see that the first $displaystyle -N$ cancels with the $displaystyle -left(-Nright)$ at the far right and $displaystyle Nlnleft(N + {1 over 2}right) - Nlnleft(Nright) = Nlnleft(1 + {1 over 2N}right) to {large{1 over 2}}$
– Felix Marin
Nov 29 at 21:34
add a comment |
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
With $ds{N in mathbb{N}_{geq 1}}$:
begin{align}
&bbox[#ffd,10px]{sum_{n = 1}^{N}bracks{nlnpars{2n + 1 over 2n - 1} - 1}}
\[5mm] = &
sum_{n = 1}^{N}nlnpars{2n + 1} - sum_{n = 1}^{N}nlnpars{2n - 1} - N
\[5mm] = &
-N + sum_{n = 0}^{N}nlnpars{2n + 1} -
sum_{n = 0}^{N - 1}pars{n + 1}lnpars{2n + 1}
\[5mm] = &
-N + Nlnpars{2N + 1} -Nlnpars{2} -
sum_{n = 0}^{N - 1}lnpars{n + {1 over 2}}
\[5mm] = &
-N + Nlnpars{N + {1 over 2}} -
lnpars{prod_{n = 0}^{N - 1}bracks{n + {1 over 2}}}
\[5mm] = &
-N + Nlnpars{N + {1 over 2}} -
lnpars{bracks{N - 1/2}! over Gammapars{1/2}}
\[5mm] stackrel{mrm{as} N to infty}{sim}&
-N + Nlnpars{N + {1 over 2}} -
lnpars{root{2pi}bracks{N - 1/2}^{N}expo{-N + 1/2} over root{pi}}
\[5mm] = &
-N + Nlnpars{N + {1 over 2}} -
lnpars{2^{1/2}N^{N}bracks{1 - {1/2 over N}}^{N}
expo{-N + 1/2}}
\[5mm] stackrel{mrm{as} N to infty}{sim} &
-N + Nlnpars{N + {1 over 2}} -
bracks{{1 over 2},lnpars{2} + Nlnpars{N} - N}
\[5mm] = &
underbrace{Nlnpars{1 + {1 over 2N}}}
_{ds{stackrel{mrm{as} N to infty}{to} {1 over 2}}}
- {1 over 2},lnpars{2}label{1}tag{1}
\[5mm] stackrel{mrm{as} N to infty}{to} &
bbx{1 - lnpars{2} over 2} approx 0.1534
end{align}
How have you moved from one before last to last line?
– mvxxx
Nov 29 at 21:16
@mvxxx I add one more line ( line (1) ) where you can see that the first $displaystyle -N$ cancels with the $displaystyle -left(-Nright)$ at the far right and $displaystyle Nlnleft(N + {1 over 2}right) - Nlnleft(Nright) = Nlnleft(1 + {1 over 2N}right) to {large{1 over 2}}$
– Felix Marin
Nov 29 at 21:34
add a comment |
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
With $ds{N in mathbb{N}_{geq 1}}$:
begin{align}
&bbox[#ffd,10px]{sum_{n = 1}^{N}bracks{nlnpars{2n + 1 over 2n - 1} - 1}}
\[5mm] = &
sum_{n = 1}^{N}nlnpars{2n + 1} - sum_{n = 1}^{N}nlnpars{2n - 1} - N
\[5mm] = &
-N + sum_{n = 0}^{N}nlnpars{2n + 1} -
sum_{n = 0}^{N - 1}pars{n + 1}lnpars{2n + 1}
\[5mm] = &
-N + Nlnpars{2N + 1} -Nlnpars{2} -
sum_{n = 0}^{N - 1}lnpars{n + {1 over 2}}
\[5mm] = &
-N + Nlnpars{N + {1 over 2}} -
lnpars{prod_{n = 0}^{N - 1}bracks{n + {1 over 2}}}
\[5mm] = &
-N + Nlnpars{N + {1 over 2}} -
lnpars{bracks{N - 1/2}! over Gammapars{1/2}}
\[5mm] stackrel{mrm{as} N to infty}{sim}&
-N + Nlnpars{N + {1 over 2}} -
lnpars{root{2pi}bracks{N - 1/2}^{N}expo{-N + 1/2} over root{pi}}
\[5mm] = &
-N + Nlnpars{N + {1 over 2}} -
lnpars{2^{1/2}N^{N}bracks{1 - {1/2 over N}}^{N}
expo{-N + 1/2}}
\[5mm] stackrel{mrm{as} N to infty}{sim} &
-N + Nlnpars{N + {1 over 2}} -
bracks{{1 over 2},lnpars{2} + Nlnpars{N} - N}
\[5mm] = &
underbrace{Nlnpars{1 + {1 over 2N}}}
_{ds{stackrel{mrm{as} N to infty}{to} {1 over 2}}}
- {1 over 2},lnpars{2}label{1}tag{1}
\[5mm] stackrel{mrm{as} N to infty}{to} &
bbx{1 - lnpars{2} over 2} approx 0.1534
end{align}
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
With $ds{N in mathbb{N}_{geq 1}}$:
begin{align}
&bbox[#ffd,10px]{sum_{n = 1}^{N}bracks{nlnpars{2n + 1 over 2n - 1} - 1}}
\[5mm] = &
sum_{n = 1}^{N}nlnpars{2n + 1} - sum_{n = 1}^{N}nlnpars{2n - 1} - N
\[5mm] = &
-N + sum_{n = 0}^{N}nlnpars{2n + 1} -
sum_{n = 0}^{N - 1}pars{n + 1}lnpars{2n + 1}
\[5mm] = &
-N + Nlnpars{2N + 1} -Nlnpars{2} -
sum_{n = 0}^{N - 1}lnpars{n + {1 over 2}}
\[5mm] = &
-N + Nlnpars{N + {1 over 2}} -
lnpars{prod_{n = 0}^{N - 1}bracks{n + {1 over 2}}}
\[5mm] = &
-N + Nlnpars{N + {1 over 2}} -
lnpars{bracks{N - 1/2}! over Gammapars{1/2}}
\[5mm] stackrel{mrm{as} N to infty}{sim}&
-N + Nlnpars{N + {1 over 2}} -
lnpars{root{2pi}bracks{N - 1/2}^{N}expo{-N + 1/2} over root{pi}}
\[5mm] = &
-N + Nlnpars{N + {1 over 2}} -
lnpars{2^{1/2}N^{N}bracks{1 - {1/2 over N}}^{N}
expo{-N + 1/2}}
\[5mm] stackrel{mrm{as} N to infty}{sim} &
-N + Nlnpars{N + {1 over 2}} -
bracks{{1 over 2},lnpars{2} + Nlnpars{N} - N}
\[5mm] = &
underbrace{Nlnpars{1 + {1 over 2N}}}
_{ds{stackrel{mrm{as} N to infty}{to} {1 over 2}}}
- {1 over 2},lnpars{2}label{1}tag{1}
\[5mm] stackrel{mrm{as} N to infty}{to} &
bbx{1 - lnpars{2} over 2} approx 0.1534
end{align}
edited Nov 29 at 21:30
answered Nov 29 at 21:00
Felix Marin
66.9k7107139
66.9k7107139
How have you moved from one before last to last line?
– mvxxx
Nov 29 at 21:16
@mvxxx I add one more line ( line (1) ) where you can see that the first $displaystyle -N$ cancels with the $displaystyle -left(-Nright)$ at the far right and $displaystyle Nlnleft(N + {1 over 2}right) - Nlnleft(Nright) = Nlnleft(1 + {1 over 2N}right) to {large{1 over 2}}$
– Felix Marin
Nov 29 at 21:34
add a comment |
How have you moved from one before last to last line?
– mvxxx
Nov 29 at 21:16
@mvxxx I add one more line ( line (1) ) where you can see that the first $displaystyle -N$ cancels with the $displaystyle -left(-Nright)$ at the far right and $displaystyle Nlnleft(N + {1 over 2}right) - Nlnleft(Nright) = Nlnleft(1 + {1 over 2N}right) to {large{1 over 2}}$
– Felix Marin
Nov 29 at 21:34
How have you moved from one before last to last line?
– mvxxx
Nov 29 at 21:16
How have you moved from one before last to last line?
– mvxxx
Nov 29 at 21:16
@mvxxx I add one more line ( line (1) ) where you can see that the first $displaystyle -N$ cancels with the $displaystyle -left(-Nright)$ at the far right and $displaystyle Nlnleft(N + {1 over 2}right) - Nlnleft(Nright) = Nlnleft(1 + {1 over 2N}right) to {large{1 over 2}}$
– Felix Marin
Nov 29 at 21:34
@mvxxx I add one more line ( line (1) ) where you can see that the first $displaystyle -N$ cancels with the $displaystyle -left(-Nright)$ at the far right and $displaystyle Nlnleft(N + {1 over 2}right) - Nlnleft(Nright) = Nlnleft(1 + {1 over 2N}right) to {large{1 over 2}}$
– Felix Marin
Nov 29 at 21:34
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3019050%2ffind-sum-of-series-sum-n-1-infty-n-cdot-ln-frac2n12n-1-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
it doesn't converge because the summand is around $nln(1+frac{2}{2n-1})-1 approx nfrac{2}{2n-1}-1 = frac{1}{2n-1}$.
– mathworker21
Nov 29 at 19:08
1
It certainly converges, since the $n$'th term is asymptotic to $1/(12 n^2)$.
– Robert Israel
Nov 29 at 19:09
@RobertIsrael where did I go wrong
– mathworker21
Nov 29 at 19:14
@mathworker21 seems correct to me.
– Connor Harris
Nov 29 at 19:16
where should it be?
– mvxxx
Nov 29 at 19:28