proving the laplacian of a vector in cylindrical coordnates












3














I am proving the following identity for the laplacian of a vector $vec{v}=<v_r,v_theta,v_z>$ in cylindrical coordinates:
$$nabla^2 vec{v}=left( frac{partial^2 v_r}{partial r^2}+frac{1}{r^2}frac{partial^2 v_r}{partial theta^2}+frac{partial^2 v_r}{partial z^2}+frac{1}{r}frac{partial v_r}{partial r}-frac{2}{r^2}frac{partial v_theta}{partial theta} -frac{v_r}{r^2}right )vec{e_r} \ + left (frac{partial^2 v_theta}{partial r^2}+frac{1}{r^2}frac{partial^2 v_theta}{partial theta^2}+frac{partial^2 v_theta}{partial z^2}+frac{1}{r}frac{partial v_theta}{partial r}+frac{2}{r^2}frac{partial v_r}{partial theta}-frac{v_theta}{r^2} right )vec{e_theta} \ left( frac{partial^2 v_z}{partial r^2}+frac{1}{r^2}frac{partial^2 v_z}{partial theta^2}+frac{1}{r}frac{partial v_z}{partial r}+frac{partial^2 v_z}{partial z^2} right)vec{e_z}$$ I am able to derive the following identity for the Laplacian operator in cylindrical coordinates $$nabla^2=frac{partial^2}{partial r^2}+frac{1}{r}frac{partial}{partial r}+frac{1}{r^2}frac{partial^2}{partial theta^2}+frac{partial^2}{z^2} $$. So to prove the desired identity, $$nabla^2 vec{v}=left(frac{partial^2}{partial r^2}+frac{1}{r}frac{partial}{partial r}+frac{1}{r^2}frac{partial^2}{partial theta^2}+frac{partial^2}{z^2} right)(v_rvec{e_r}+v_theta vec{e_theta}+v_zvec{e_z}) \
= left(frac{partial^2}{partial r^2}+frac{1}{r}frac{partial}{partial r}+frac{1}{r^2}frac{partial^2}{partial theta^2}+frac{partial^2}{z^2} right)(v_rvec{e_r})+ left(frac{partial^2}{partial r^2}+frac{1}{r}frac{partial}{partial r}+frac{1}{r^2}frac{partial^2}{partial theta^2}+frac{partial^2}{z^2} right)(v_thetavec{e_theta})+ left(frac{partial^2}{partial r^2}+frac{1}{r}frac{partial}{partial r}+frac{1}{r^2}frac{partial^2}{partial theta^2}+frac{partial^2}{z^2} right)(v_zvec{e_z})$$. And upon distributing the vector components to the operator I finally get $$nabla^2 vec{v}=left( frac{partial^2 v_r}{partial r^2}+frac{1}{r}frac{partial v_r}{partial r}+frac{1}{r^2}frac{partial^2 v_r}{partial theta^2}+frac{partial^2 v_r}{partial z^2}-frac{v_r}{r^2} right)vec{e_r} \
+left( frac{partial^2 v_theta}{partial r^2}+frac{1}{r}frac{partial v_theta}{partial r}+frac{1}{r^2}frac{partial^2 v_theta}{partial theta^2}-frac{v_theta}{r^2}+frac{partial^2 v_theta}{partial z^2} right)vec{e_theta} \
left( frac{partial^2 v_z}{partial r^2}+frac{1}{r}frac{partial v_z}{partial r}+frac{1}{r^2}frac{partial^2 v_z}{partial theta^2}+frac{partial^2 v_z}{partial z^2} right)vec{e_z}$$ which is not the same with the identity. I am confused how the $-frac{2}{r^2}frac{partial v_theta}{partial theta}$ and $frac{2}{r^2}frac{partial v_r}{partial theta}$ appeared in the $vec{e_r}$ and $vec{e_theta}$ components, respectively. Where did I go wrong? Need help...thanks










share|cite|improve this question


















  • 3




    The vectors $e_r, e_z$ and $e_theta$ are not constant when $r, theta, z$ vary. (This is a distinctive trait of Cartesian coordinates). You should differentiate those vectors as well. mathworld.wolfram.com/CylindricalCoordinates.html
    – Giuseppe Negro
    Oct 5 '15 at 16:23
















3














I am proving the following identity for the laplacian of a vector $vec{v}=<v_r,v_theta,v_z>$ in cylindrical coordinates:
$$nabla^2 vec{v}=left( frac{partial^2 v_r}{partial r^2}+frac{1}{r^2}frac{partial^2 v_r}{partial theta^2}+frac{partial^2 v_r}{partial z^2}+frac{1}{r}frac{partial v_r}{partial r}-frac{2}{r^2}frac{partial v_theta}{partial theta} -frac{v_r}{r^2}right )vec{e_r} \ + left (frac{partial^2 v_theta}{partial r^2}+frac{1}{r^2}frac{partial^2 v_theta}{partial theta^2}+frac{partial^2 v_theta}{partial z^2}+frac{1}{r}frac{partial v_theta}{partial r}+frac{2}{r^2}frac{partial v_r}{partial theta}-frac{v_theta}{r^2} right )vec{e_theta} \ left( frac{partial^2 v_z}{partial r^2}+frac{1}{r^2}frac{partial^2 v_z}{partial theta^2}+frac{1}{r}frac{partial v_z}{partial r}+frac{partial^2 v_z}{partial z^2} right)vec{e_z}$$ I am able to derive the following identity for the Laplacian operator in cylindrical coordinates $$nabla^2=frac{partial^2}{partial r^2}+frac{1}{r}frac{partial}{partial r}+frac{1}{r^2}frac{partial^2}{partial theta^2}+frac{partial^2}{z^2} $$. So to prove the desired identity, $$nabla^2 vec{v}=left(frac{partial^2}{partial r^2}+frac{1}{r}frac{partial}{partial r}+frac{1}{r^2}frac{partial^2}{partial theta^2}+frac{partial^2}{z^2} right)(v_rvec{e_r}+v_theta vec{e_theta}+v_zvec{e_z}) \
= left(frac{partial^2}{partial r^2}+frac{1}{r}frac{partial}{partial r}+frac{1}{r^2}frac{partial^2}{partial theta^2}+frac{partial^2}{z^2} right)(v_rvec{e_r})+ left(frac{partial^2}{partial r^2}+frac{1}{r}frac{partial}{partial r}+frac{1}{r^2}frac{partial^2}{partial theta^2}+frac{partial^2}{z^2} right)(v_thetavec{e_theta})+ left(frac{partial^2}{partial r^2}+frac{1}{r}frac{partial}{partial r}+frac{1}{r^2}frac{partial^2}{partial theta^2}+frac{partial^2}{z^2} right)(v_zvec{e_z})$$. And upon distributing the vector components to the operator I finally get $$nabla^2 vec{v}=left( frac{partial^2 v_r}{partial r^2}+frac{1}{r}frac{partial v_r}{partial r}+frac{1}{r^2}frac{partial^2 v_r}{partial theta^2}+frac{partial^2 v_r}{partial z^2}-frac{v_r}{r^2} right)vec{e_r} \
+left( frac{partial^2 v_theta}{partial r^2}+frac{1}{r}frac{partial v_theta}{partial r}+frac{1}{r^2}frac{partial^2 v_theta}{partial theta^2}-frac{v_theta}{r^2}+frac{partial^2 v_theta}{partial z^2} right)vec{e_theta} \
left( frac{partial^2 v_z}{partial r^2}+frac{1}{r}frac{partial v_z}{partial r}+frac{1}{r^2}frac{partial^2 v_z}{partial theta^2}+frac{partial^2 v_z}{partial z^2} right)vec{e_z}$$ which is not the same with the identity. I am confused how the $-frac{2}{r^2}frac{partial v_theta}{partial theta}$ and $frac{2}{r^2}frac{partial v_r}{partial theta}$ appeared in the $vec{e_r}$ and $vec{e_theta}$ components, respectively. Where did I go wrong? Need help...thanks










share|cite|improve this question


















  • 3




    The vectors $e_r, e_z$ and $e_theta$ are not constant when $r, theta, z$ vary. (This is a distinctive trait of Cartesian coordinates). You should differentiate those vectors as well. mathworld.wolfram.com/CylindricalCoordinates.html
    – Giuseppe Negro
    Oct 5 '15 at 16:23














3












3








3


3





I am proving the following identity for the laplacian of a vector $vec{v}=<v_r,v_theta,v_z>$ in cylindrical coordinates:
$$nabla^2 vec{v}=left( frac{partial^2 v_r}{partial r^2}+frac{1}{r^2}frac{partial^2 v_r}{partial theta^2}+frac{partial^2 v_r}{partial z^2}+frac{1}{r}frac{partial v_r}{partial r}-frac{2}{r^2}frac{partial v_theta}{partial theta} -frac{v_r}{r^2}right )vec{e_r} \ + left (frac{partial^2 v_theta}{partial r^2}+frac{1}{r^2}frac{partial^2 v_theta}{partial theta^2}+frac{partial^2 v_theta}{partial z^2}+frac{1}{r}frac{partial v_theta}{partial r}+frac{2}{r^2}frac{partial v_r}{partial theta}-frac{v_theta}{r^2} right )vec{e_theta} \ left( frac{partial^2 v_z}{partial r^2}+frac{1}{r^2}frac{partial^2 v_z}{partial theta^2}+frac{1}{r}frac{partial v_z}{partial r}+frac{partial^2 v_z}{partial z^2} right)vec{e_z}$$ I am able to derive the following identity for the Laplacian operator in cylindrical coordinates $$nabla^2=frac{partial^2}{partial r^2}+frac{1}{r}frac{partial}{partial r}+frac{1}{r^2}frac{partial^2}{partial theta^2}+frac{partial^2}{z^2} $$. So to prove the desired identity, $$nabla^2 vec{v}=left(frac{partial^2}{partial r^2}+frac{1}{r}frac{partial}{partial r}+frac{1}{r^2}frac{partial^2}{partial theta^2}+frac{partial^2}{z^2} right)(v_rvec{e_r}+v_theta vec{e_theta}+v_zvec{e_z}) \
= left(frac{partial^2}{partial r^2}+frac{1}{r}frac{partial}{partial r}+frac{1}{r^2}frac{partial^2}{partial theta^2}+frac{partial^2}{z^2} right)(v_rvec{e_r})+ left(frac{partial^2}{partial r^2}+frac{1}{r}frac{partial}{partial r}+frac{1}{r^2}frac{partial^2}{partial theta^2}+frac{partial^2}{z^2} right)(v_thetavec{e_theta})+ left(frac{partial^2}{partial r^2}+frac{1}{r}frac{partial}{partial r}+frac{1}{r^2}frac{partial^2}{partial theta^2}+frac{partial^2}{z^2} right)(v_zvec{e_z})$$. And upon distributing the vector components to the operator I finally get $$nabla^2 vec{v}=left( frac{partial^2 v_r}{partial r^2}+frac{1}{r}frac{partial v_r}{partial r}+frac{1}{r^2}frac{partial^2 v_r}{partial theta^2}+frac{partial^2 v_r}{partial z^2}-frac{v_r}{r^2} right)vec{e_r} \
+left( frac{partial^2 v_theta}{partial r^2}+frac{1}{r}frac{partial v_theta}{partial r}+frac{1}{r^2}frac{partial^2 v_theta}{partial theta^2}-frac{v_theta}{r^2}+frac{partial^2 v_theta}{partial z^2} right)vec{e_theta} \
left( frac{partial^2 v_z}{partial r^2}+frac{1}{r}frac{partial v_z}{partial r}+frac{1}{r^2}frac{partial^2 v_z}{partial theta^2}+frac{partial^2 v_z}{partial z^2} right)vec{e_z}$$ which is not the same with the identity. I am confused how the $-frac{2}{r^2}frac{partial v_theta}{partial theta}$ and $frac{2}{r^2}frac{partial v_r}{partial theta}$ appeared in the $vec{e_r}$ and $vec{e_theta}$ components, respectively. Where did I go wrong? Need help...thanks










share|cite|improve this question













I am proving the following identity for the laplacian of a vector $vec{v}=<v_r,v_theta,v_z>$ in cylindrical coordinates:
$$nabla^2 vec{v}=left( frac{partial^2 v_r}{partial r^2}+frac{1}{r^2}frac{partial^2 v_r}{partial theta^2}+frac{partial^2 v_r}{partial z^2}+frac{1}{r}frac{partial v_r}{partial r}-frac{2}{r^2}frac{partial v_theta}{partial theta} -frac{v_r}{r^2}right )vec{e_r} \ + left (frac{partial^2 v_theta}{partial r^2}+frac{1}{r^2}frac{partial^2 v_theta}{partial theta^2}+frac{partial^2 v_theta}{partial z^2}+frac{1}{r}frac{partial v_theta}{partial r}+frac{2}{r^2}frac{partial v_r}{partial theta}-frac{v_theta}{r^2} right )vec{e_theta} \ left( frac{partial^2 v_z}{partial r^2}+frac{1}{r^2}frac{partial^2 v_z}{partial theta^2}+frac{1}{r}frac{partial v_z}{partial r}+frac{partial^2 v_z}{partial z^2} right)vec{e_z}$$ I am able to derive the following identity for the Laplacian operator in cylindrical coordinates $$nabla^2=frac{partial^2}{partial r^2}+frac{1}{r}frac{partial}{partial r}+frac{1}{r^2}frac{partial^2}{partial theta^2}+frac{partial^2}{z^2} $$. So to prove the desired identity, $$nabla^2 vec{v}=left(frac{partial^2}{partial r^2}+frac{1}{r}frac{partial}{partial r}+frac{1}{r^2}frac{partial^2}{partial theta^2}+frac{partial^2}{z^2} right)(v_rvec{e_r}+v_theta vec{e_theta}+v_zvec{e_z}) \
= left(frac{partial^2}{partial r^2}+frac{1}{r}frac{partial}{partial r}+frac{1}{r^2}frac{partial^2}{partial theta^2}+frac{partial^2}{z^2} right)(v_rvec{e_r})+ left(frac{partial^2}{partial r^2}+frac{1}{r}frac{partial}{partial r}+frac{1}{r^2}frac{partial^2}{partial theta^2}+frac{partial^2}{z^2} right)(v_thetavec{e_theta})+ left(frac{partial^2}{partial r^2}+frac{1}{r}frac{partial}{partial r}+frac{1}{r^2}frac{partial^2}{partial theta^2}+frac{partial^2}{z^2} right)(v_zvec{e_z})$$. And upon distributing the vector components to the operator I finally get $$nabla^2 vec{v}=left( frac{partial^2 v_r}{partial r^2}+frac{1}{r}frac{partial v_r}{partial r}+frac{1}{r^2}frac{partial^2 v_r}{partial theta^2}+frac{partial^2 v_r}{partial z^2}-frac{v_r}{r^2} right)vec{e_r} \
+left( frac{partial^2 v_theta}{partial r^2}+frac{1}{r}frac{partial v_theta}{partial r}+frac{1}{r^2}frac{partial^2 v_theta}{partial theta^2}-frac{v_theta}{r^2}+frac{partial^2 v_theta}{partial z^2} right)vec{e_theta} \
left( frac{partial^2 v_z}{partial r^2}+frac{1}{r}frac{partial v_z}{partial r}+frac{1}{r^2}frac{partial^2 v_z}{partial theta^2}+frac{partial^2 v_z}{partial z^2} right)vec{e_z}$$ which is not the same with the identity. I am confused how the $-frac{2}{r^2}frac{partial v_theta}{partial theta}$ and $frac{2}{r^2}frac{partial v_r}{partial theta}$ appeared in the $vec{e_r}$ and $vec{e_theta}$ components, respectively. Where did I go wrong? Need help...thanks







vector-analysis






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Feb 24 '15 at 18:41









james25

8318




8318








  • 3




    The vectors $e_r, e_z$ and $e_theta$ are not constant when $r, theta, z$ vary. (This is a distinctive trait of Cartesian coordinates). You should differentiate those vectors as well. mathworld.wolfram.com/CylindricalCoordinates.html
    – Giuseppe Negro
    Oct 5 '15 at 16:23














  • 3




    The vectors $e_r, e_z$ and $e_theta$ are not constant when $r, theta, z$ vary. (This is a distinctive trait of Cartesian coordinates). You should differentiate those vectors as well. mathworld.wolfram.com/CylindricalCoordinates.html
    – Giuseppe Negro
    Oct 5 '15 at 16:23








3




3




The vectors $e_r, e_z$ and $e_theta$ are not constant when $r, theta, z$ vary. (This is a distinctive trait of Cartesian coordinates). You should differentiate those vectors as well. mathworld.wolfram.com/CylindricalCoordinates.html
– Giuseppe Negro
Oct 5 '15 at 16:23




The vectors $e_r, e_z$ and $e_theta$ are not constant when $r, theta, z$ vary. (This is a distinctive trait of Cartesian coordinates). You should differentiate those vectors as well. mathworld.wolfram.com/CylindricalCoordinates.html
– Giuseppe Negro
Oct 5 '15 at 16:23










1 Answer
1






active

oldest

votes


















0














The product rule for second order differentiation is $(fg)'' = f''g + 2f'g'+ fg''$. You simply omitted the middle value.






share|cite|improve this answer























    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1163644%2fproving-the-laplacian-of-a-vector-in-cylindrical-coordnates%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0














    The product rule for second order differentiation is $(fg)'' = f''g + 2f'g'+ fg''$. You simply omitted the middle value.






    share|cite|improve this answer




























      0














      The product rule for second order differentiation is $(fg)'' = f''g + 2f'g'+ fg''$. You simply omitted the middle value.






      share|cite|improve this answer


























        0












        0








        0






        The product rule for second order differentiation is $(fg)'' = f''g + 2f'g'+ fg''$. You simply omitted the middle value.






        share|cite|improve this answer














        The product rule for second order differentiation is $(fg)'' = f''g + 2f'g'+ fg''$. You simply omitted the middle value.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Nov 11 '17 at 16:53









        TheSimpliFire

        11.9k62257




        11.9k62257










        answered Nov 11 '17 at 16:17









        katiousa

        1




        1






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1163644%2fproving-the-laplacian-of-a-vector-in-cylindrical-coordnates%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Different font size/position of beamer's navigation symbols template's content depending on regular/plain...

            Berounka

            I want to find a topological embedding $f : X rightarrow Y$ and $g: Y rightarrow X$, yet $X$ is not...