Consider the Integral $ int_{0}^1left( x^3-3x^2right)dx $ and evaluate using Riemann Sum
$begingroup$
Consider the integral $$int_{0}^1left(x^3-3x^2right)dx$$
$delta x=frac{1}{n}$
$x_i=0+frac{1}{n}i$
Plugging everything in I get $$lim_{nrightarrowinfty}sum_{i=1}^n left(frac{1}{n}i right)^3 -3left(frac{1}{n}iright)^2 frac{1}{n}$$
Then I follow through with the exponents and distrubution to get
$$lim_{nrightarrowinfty}sum_{i=1}^n left(frac{1}{n^4}i^3 right) -left(frac{3}{n^3}i^2right)$$
Continuing the problem I get
$$lim_{nrightarrowinfty} frac{1}{n^4}left(sum_{i=1}^n i^3right)-frac{3}{n^3} left(sum_{i=1}^ni^2 right)$$
which leads me to
$$frac{1}{n^4}left(left(frac{n(n+1)}{2}right)^2right)- frac{3}{n^3}left(frac{n^3}{3}+frac{n^2}{2}+frac{n}{6}right)$$
After distributing I get
$$lim_{nrightarrowinfty} frac{n^2+2n+1}{4n^2}-frac{2n^2+3n+1}{2n^2}$$
The answer is $-frac{3}{4}$ but I keep getting 1.
calculus riemann-sum
$endgroup$
add a comment |
$begingroup$
Consider the integral $$int_{0}^1left(x^3-3x^2right)dx$$
$delta x=frac{1}{n}$
$x_i=0+frac{1}{n}i$
Plugging everything in I get $$lim_{nrightarrowinfty}sum_{i=1}^n left(frac{1}{n}i right)^3 -3left(frac{1}{n}iright)^2 frac{1}{n}$$
Then I follow through with the exponents and distrubution to get
$$lim_{nrightarrowinfty}sum_{i=1}^n left(frac{1}{n^4}i^3 right) -left(frac{3}{n^3}i^2right)$$
Continuing the problem I get
$$lim_{nrightarrowinfty} frac{1}{n^4}left(sum_{i=1}^n i^3right)-frac{3}{n^3} left(sum_{i=1}^ni^2 right)$$
which leads me to
$$frac{1}{n^4}left(left(frac{n(n+1)}{2}right)^2right)- frac{3}{n^3}left(frac{n^3}{3}+frac{n^2}{2}+frac{n}{6}right)$$
After distributing I get
$$lim_{nrightarrowinfty} frac{n^2+2n+1}{4n^2}-frac{2n^2+3n+1}{2n^2}$$
The answer is $-frac{3}{4}$ but I keep getting 1.
calculus riemann-sum
$endgroup$
$begingroup$
I don't see anything wrong with what you've done so far. The second last displayed expression is missing a pair of parens, but otherwise, it's fine.
$endgroup$
– B. Goddard
Dec 9 '18 at 23:26
$begingroup$
What's the problem? Simplify the rational expression, and after that take the limit to infinity. Certain terms will vanish which gives you a nice constant number which is the value of the integral.
$endgroup$
– YiFan
Dec 9 '18 at 23:48
add a comment |
$begingroup$
Consider the integral $$int_{0}^1left(x^3-3x^2right)dx$$
$delta x=frac{1}{n}$
$x_i=0+frac{1}{n}i$
Plugging everything in I get $$lim_{nrightarrowinfty}sum_{i=1}^n left(frac{1}{n}i right)^3 -3left(frac{1}{n}iright)^2 frac{1}{n}$$
Then I follow through with the exponents and distrubution to get
$$lim_{nrightarrowinfty}sum_{i=1}^n left(frac{1}{n^4}i^3 right) -left(frac{3}{n^3}i^2right)$$
Continuing the problem I get
$$lim_{nrightarrowinfty} frac{1}{n^4}left(sum_{i=1}^n i^3right)-frac{3}{n^3} left(sum_{i=1}^ni^2 right)$$
which leads me to
$$frac{1}{n^4}left(left(frac{n(n+1)}{2}right)^2right)- frac{3}{n^3}left(frac{n^3}{3}+frac{n^2}{2}+frac{n}{6}right)$$
After distributing I get
$$lim_{nrightarrowinfty} frac{n^2+2n+1}{4n^2}-frac{2n^2+3n+1}{2n^2}$$
The answer is $-frac{3}{4}$ but I keep getting 1.
calculus riemann-sum
$endgroup$
Consider the integral $$int_{0}^1left(x^3-3x^2right)dx$$
$delta x=frac{1}{n}$
$x_i=0+frac{1}{n}i$
Plugging everything in I get $$lim_{nrightarrowinfty}sum_{i=1}^n left(frac{1}{n}i right)^3 -3left(frac{1}{n}iright)^2 frac{1}{n}$$
Then I follow through with the exponents and distrubution to get
$$lim_{nrightarrowinfty}sum_{i=1}^n left(frac{1}{n^4}i^3 right) -left(frac{3}{n^3}i^2right)$$
Continuing the problem I get
$$lim_{nrightarrowinfty} frac{1}{n^4}left(sum_{i=1}^n i^3right)-frac{3}{n^3} left(sum_{i=1}^ni^2 right)$$
which leads me to
$$frac{1}{n^4}left(left(frac{n(n+1)}{2}right)^2right)- frac{3}{n^3}left(frac{n^3}{3}+frac{n^2}{2}+frac{n}{6}right)$$
After distributing I get
$$lim_{nrightarrowinfty} frac{n^2+2n+1}{4n^2}-frac{2n^2+3n+1}{2n^2}$$
The answer is $-frac{3}{4}$ but I keep getting 1.
calculus riemann-sum
calculus riemann-sum
edited Dec 10 '18 at 0:02
Eric Brown
asked Dec 9 '18 at 23:16
Eric BrownEric Brown
737
737
$begingroup$
I don't see anything wrong with what you've done so far. The second last displayed expression is missing a pair of parens, but otherwise, it's fine.
$endgroup$
– B. Goddard
Dec 9 '18 at 23:26
$begingroup$
What's the problem? Simplify the rational expression, and after that take the limit to infinity. Certain terms will vanish which gives you a nice constant number which is the value of the integral.
$endgroup$
– YiFan
Dec 9 '18 at 23:48
add a comment |
$begingroup$
I don't see anything wrong with what you've done so far. The second last displayed expression is missing a pair of parens, but otherwise, it's fine.
$endgroup$
– B. Goddard
Dec 9 '18 at 23:26
$begingroup$
What's the problem? Simplify the rational expression, and after that take the limit to infinity. Certain terms will vanish which gives you a nice constant number which is the value of the integral.
$endgroup$
– YiFan
Dec 9 '18 at 23:48
$begingroup$
I don't see anything wrong with what you've done so far. The second last displayed expression is missing a pair of parens, but otherwise, it's fine.
$endgroup$
– B. Goddard
Dec 9 '18 at 23:26
$begingroup$
I don't see anything wrong with what you've done so far. The second last displayed expression is missing a pair of parens, but otherwise, it's fine.
$endgroup$
– B. Goddard
Dec 9 '18 at 23:26
$begingroup$
What's the problem? Simplify the rational expression, and after that take the limit to infinity. Certain terms will vanish which gives you a nice constant number which is the value of the integral.
$endgroup$
– YiFan
Dec 9 '18 at 23:48
$begingroup$
What's the problem? Simplify the rational expression, and after that take the limit to infinity. Certain terms will vanish which gives you a nice constant number which is the value of the integral.
$endgroup$
– YiFan
Dec 9 '18 at 23:48
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
I think you made a careless mistake.
$$lim_{nrightarrowinfty} left(frac{n^2+2n+1}{4n^2}-frac{2n^2+3n+1}{2n^2}right)=lim_{ntoinfty}left(frac14+frac1{2n}+frac1{4n^2}-1-frac3{2n}-frac1{2n^2}right)=frac14-1=-frac34.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033169%2fconsider-the-integral-int-01-left-x3-3x2-rightdx-and-evaluate-using%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I think you made a careless mistake.
$$lim_{nrightarrowinfty} left(frac{n^2+2n+1}{4n^2}-frac{2n^2+3n+1}{2n^2}right)=lim_{ntoinfty}left(frac14+frac1{2n}+frac1{4n^2}-1-frac3{2n}-frac1{2n^2}right)=frac14-1=-frac34.$$
$endgroup$
add a comment |
$begingroup$
I think you made a careless mistake.
$$lim_{nrightarrowinfty} left(frac{n^2+2n+1}{4n^2}-frac{2n^2+3n+1}{2n^2}right)=lim_{ntoinfty}left(frac14+frac1{2n}+frac1{4n^2}-1-frac3{2n}-frac1{2n^2}right)=frac14-1=-frac34.$$
$endgroup$
add a comment |
$begingroup$
I think you made a careless mistake.
$$lim_{nrightarrowinfty} left(frac{n^2+2n+1}{4n^2}-frac{2n^2+3n+1}{2n^2}right)=lim_{ntoinfty}left(frac14+frac1{2n}+frac1{4n^2}-1-frac3{2n}-frac1{2n^2}right)=frac14-1=-frac34.$$
$endgroup$
I think you made a careless mistake.
$$lim_{nrightarrowinfty} left(frac{n^2+2n+1}{4n^2}-frac{2n^2+3n+1}{2n^2}right)=lim_{ntoinfty}left(frac14+frac1{2n}+frac1{4n^2}-1-frac3{2n}-frac1{2n^2}right)=frac14-1=-frac34.$$
answered Dec 10 '18 at 0:05
YiFanYiFan
2,8291422
2,8291422
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033169%2fconsider-the-integral-int-01-left-x3-3x2-rightdx-and-evaluate-using%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
I don't see anything wrong with what you've done so far. The second last displayed expression is missing a pair of parens, but otherwise, it's fine.
$endgroup$
– B. Goddard
Dec 9 '18 at 23:26
$begingroup$
What's the problem? Simplify the rational expression, and after that take the limit to infinity. Certain terms will vanish which gives you a nice constant number which is the value of the integral.
$endgroup$
– YiFan
Dec 9 '18 at 23:48