Does $(alpha=int_{-infty}^{infty} f(x), mathrm{d}x)$ follow from $(lim_{kto infty} int_{a_k}^{b_k}...
Today I learned a bit about integrals and I'd like to know if that is true, or if there is a counterexample that disproves the following:
When an $(alphain mathbb{R})$ exists, so that for all sequences $((a_k)_{kin mathbb{N}}, (b_k)_{kin mathbb{N}} subsetmathbb{R})$ with $(a_kto -infty, b_kto infty)$ for $(kto infty)$ already $(lim_{kto infty} int_{a_k}^{b_k} f(x),mathrm{d}x=alpha)$ applies, then the following $(alpha=int_{-infty}^{infty} f(x), mathrm{d}x)$ applies too.
My thoughts are that when $(a_kto -infty, b_kto infty)$ for $(kto infty)$ applies, then at some time (meaning for $(kgeq k_0)$ with a $(k_0in mathbb{N}))$ the following: $(a_k<0)$ and $(b_k>0)$ hold.
So the integral can be split like that: $(int_{a_k}^{b_k} f(x)mathrm{d}x=int_{a_k}^{0} f(x)mathrm{d}x+int_{0}^{b_k} f(x)mathrm{d}x)$ which leads us to the definition of improper integrals.
Is my argumentation correct or wrong? Because from $(lim_{nto infty} (c_n+d_n))$ the existence of $(lim_{nto infty}c_n)$ or $(lim_{nto infty}d_n))$ do not follow...
real-analysis integration limits improper-integrals
add a comment |
Today I learned a bit about integrals and I'd like to know if that is true, or if there is a counterexample that disproves the following:
When an $(alphain mathbb{R})$ exists, so that for all sequences $((a_k)_{kin mathbb{N}}, (b_k)_{kin mathbb{N}} subsetmathbb{R})$ with $(a_kto -infty, b_kto infty)$ for $(kto infty)$ already $(lim_{kto infty} int_{a_k}^{b_k} f(x),mathrm{d}x=alpha)$ applies, then the following $(alpha=int_{-infty}^{infty} f(x), mathrm{d}x)$ applies too.
My thoughts are that when $(a_kto -infty, b_kto infty)$ for $(kto infty)$ applies, then at some time (meaning for $(kgeq k_0)$ with a $(k_0in mathbb{N}))$ the following: $(a_k<0)$ and $(b_k>0)$ hold.
So the integral can be split like that: $(int_{a_k}^{b_k} f(x)mathrm{d}x=int_{a_k}^{0} f(x)mathrm{d}x+int_{0}^{b_k} f(x)mathrm{d}x)$ which leads us to the definition of improper integrals.
Is my argumentation correct or wrong? Because from $(lim_{nto infty} (c_n+d_n))$ the existence of $(lim_{nto infty}c_n)$ or $(lim_{nto infty}d_n))$ do not follow...
real-analysis integration limits improper-integrals
add a comment |
Today I learned a bit about integrals and I'd like to know if that is true, or if there is a counterexample that disproves the following:
When an $(alphain mathbb{R})$ exists, so that for all sequences $((a_k)_{kin mathbb{N}}, (b_k)_{kin mathbb{N}} subsetmathbb{R})$ with $(a_kto -infty, b_kto infty)$ for $(kto infty)$ already $(lim_{kto infty} int_{a_k}^{b_k} f(x),mathrm{d}x=alpha)$ applies, then the following $(alpha=int_{-infty}^{infty} f(x), mathrm{d}x)$ applies too.
My thoughts are that when $(a_kto -infty, b_kto infty)$ for $(kto infty)$ applies, then at some time (meaning for $(kgeq k_0)$ with a $(k_0in mathbb{N}))$ the following: $(a_k<0)$ and $(b_k>0)$ hold.
So the integral can be split like that: $(int_{a_k}^{b_k} f(x)mathrm{d}x=int_{a_k}^{0} f(x)mathrm{d}x+int_{0}^{b_k} f(x)mathrm{d}x)$ which leads us to the definition of improper integrals.
Is my argumentation correct or wrong? Because from $(lim_{nto infty} (c_n+d_n))$ the existence of $(lim_{nto infty}c_n)$ or $(lim_{nto infty}d_n))$ do not follow...
real-analysis integration limits improper-integrals
Today I learned a bit about integrals and I'd like to know if that is true, or if there is a counterexample that disproves the following:
When an $(alphain mathbb{R})$ exists, so that for all sequences $((a_k)_{kin mathbb{N}}, (b_k)_{kin mathbb{N}} subsetmathbb{R})$ with $(a_kto -infty, b_kto infty)$ for $(kto infty)$ already $(lim_{kto infty} int_{a_k}^{b_k} f(x),mathrm{d}x=alpha)$ applies, then the following $(alpha=int_{-infty}^{infty} f(x), mathrm{d}x)$ applies too.
My thoughts are that when $(a_kto -infty, b_kto infty)$ for $(kto infty)$ applies, then at some time (meaning for $(kgeq k_0)$ with a $(k_0in mathbb{N}))$ the following: $(a_k<0)$ and $(b_k>0)$ hold.
So the integral can be split like that: $(int_{a_k}^{b_k} f(x)mathrm{d}x=int_{a_k}^{0} f(x)mathrm{d}x+int_{0}^{b_k} f(x)mathrm{d}x)$ which leads us to the definition of improper integrals.
Is my argumentation correct or wrong? Because from $(lim_{nto infty} (c_n+d_n))$ the existence of $(lim_{nto infty}c_n)$ or $(lim_{nto infty}d_n))$ do not follow...
real-analysis integration limits improper-integrals
real-analysis integration limits improper-integrals
edited Dec 4 '18 at 23:51
MOMO
354110
354110
asked Dec 4 '18 at 21:37
NotEinsteinNotEinstein
1424
1424
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
The claim is correct: Using the assumption show that
$$lim_{krightarrowinfty}int_{c_k}^{d_k}f=0$$
for any two sequences $c_k,d_krightarrowinfty$, or equivalently
$$lim_{x,yrightarrowinfty}int_x^yf=0$$
Hence By Cauchy $lim_{xrightarrowinfty}int_0^xf$ converges. Similarly $lim_{xrightarrow-infty}int_x^0f$ converges so overall $f$ is integrable over $mathbb{R}$. Choosing $a_k=-k, b_k=k$ gives you the integral is $alpha$.
Your argument is wrong for the reason you have mentioned.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3026210%2fdoes-alpha-int-infty-infty-fx-mathrmdx-follow-from-lim-k%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
The claim is correct: Using the assumption show that
$$lim_{krightarrowinfty}int_{c_k}^{d_k}f=0$$
for any two sequences $c_k,d_krightarrowinfty$, or equivalently
$$lim_{x,yrightarrowinfty}int_x^yf=0$$
Hence By Cauchy $lim_{xrightarrowinfty}int_0^xf$ converges. Similarly $lim_{xrightarrow-infty}int_x^0f$ converges so overall $f$ is integrable over $mathbb{R}$. Choosing $a_k=-k, b_k=k$ gives you the integral is $alpha$.
Your argument is wrong for the reason you have mentioned.
add a comment |
The claim is correct: Using the assumption show that
$$lim_{krightarrowinfty}int_{c_k}^{d_k}f=0$$
for any two sequences $c_k,d_krightarrowinfty$, or equivalently
$$lim_{x,yrightarrowinfty}int_x^yf=0$$
Hence By Cauchy $lim_{xrightarrowinfty}int_0^xf$ converges. Similarly $lim_{xrightarrow-infty}int_x^0f$ converges so overall $f$ is integrable over $mathbb{R}$. Choosing $a_k=-k, b_k=k$ gives you the integral is $alpha$.
Your argument is wrong for the reason you have mentioned.
add a comment |
The claim is correct: Using the assumption show that
$$lim_{krightarrowinfty}int_{c_k}^{d_k}f=0$$
for any two sequences $c_k,d_krightarrowinfty$, or equivalently
$$lim_{x,yrightarrowinfty}int_x^yf=0$$
Hence By Cauchy $lim_{xrightarrowinfty}int_0^xf$ converges. Similarly $lim_{xrightarrow-infty}int_x^0f$ converges so overall $f$ is integrable over $mathbb{R}$. Choosing $a_k=-k, b_k=k$ gives you the integral is $alpha$.
Your argument is wrong for the reason you have mentioned.
The claim is correct: Using the assumption show that
$$lim_{krightarrowinfty}int_{c_k}^{d_k}f=0$$
for any two sequences $c_k,d_krightarrowinfty$, or equivalently
$$lim_{x,yrightarrowinfty}int_x^yf=0$$
Hence By Cauchy $lim_{xrightarrowinfty}int_0^xf$ converges. Similarly $lim_{xrightarrow-infty}int_x^0f$ converges so overall $f$ is integrable over $mathbb{R}$. Choosing $a_k=-k, b_k=k$ gives you the integral is $alpha$.
Your argument is wrong for the reason you have mentioned.
answered Dec 4 '18 at 23:39
MOMOMOMO
354110
354110
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3026210%2fdoes-alpha-int-infty-infty-fx-mathrmdx-follow-from-lim-k%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown