Prove that $ dfrac{1}{5}+ dfrac{1}{9}+ dfrac{1}{13}+ldots+ dfrac{ 1}{2005}< dfrac{ 7}{4}$.
Prove that
$ dfrac{1}{5}+ dfrac{1}{9}+ dfrac{1}{13}+ldots+ dfrac{ 1}{2005}< dfrac{ 7}{4}$.
Solution
$sum_{k=1}^{501}frac 1{4k+1}$ $=frac 15+sum_{k=2}^{501}frac 1{4k+1}$ $<frac 15+int_1^{501}frac{dx}{4x+1}$ $=frac 15+left[frac{ln(4x+1)}4right]_1^{501}$
So $sum_{k=1}^{501}frac 1{4k+1}$ $<frac 15+frac{ln 2005-ln 5}4$ $=frac 15+frac{ln 401}4$ $<frac 74$
Q.E.D.
My questions:
Could you please post a simpler solution?
I just don't understand why $frac 15+frac{ln 401}4<frac 74$. Please explain why is that.
Thank you in advance!
calculus inequality
add a comment |
Prove that
$ dfrac{1}{5}+ dfrac{1}{9}+ dfrac{1}{13}+ldots+ dfrac{ 1}{2005}< dfrac{ 7}{4}$.
Solution
$sum_{k=1}^{501}frac 1{4k+1}$ $=frac 15+sum_{k=2}^{501}frac 1{4k+1}$ $<frac 15+int_1^{501}frac{dx}{4x+1}$ $=frac 15+left[frac{ln(4x+1)}4right]_1^{501}$
So $sum_{k=1}^{501}frac 1{4k+1}$ $<frac 15+frac{ln 2005-ln 5}4$ $=frac 15+frac{ln 401}4$ $<frac 74$
Q.E.D.
My questions:
Could you please post a simpler solution?
I just don't understand why $frac 15+frac{ln 401}4<frac 74$. Please explain why is that.
Thank you in advance!
calculus inequality
Just do it on you calculator; ($frac{1}{5} + frac{ln(401)}{4}) approx 1.7$ and $frac{7}{4} = 1.75$
– Fiticous
Dec 3 '18 at 6:45
$401<e^6$ then $ln(401)<6 implies frac{1}{5}+frac{ln(401)}{4}<frac{17}{10}=1.7 <frac{7}{4}$
– Fareed AF
Dec 3 '18 at 7:05
add a comment |
Prove that
$ dfrac{1}{5}+ dfrac{1}{9}+ dfrac{1}{13}+ldots+ dfrac{ 1}{2005}< dfrac{ 7}{4}$.
Solution
$sum_{k=1}^{501}frac 1{4k+1}$ $=frac 15+sum_{k=2}^{501}frac 1{4k+1}$ $<frac 15+int_1^{501}frac{dx}{4x+1}$ $=frac 15+left[frac{ln(4x+1)}4right]_1^{501}$
So $sum_{k=1}^{501}frac 1{4k+1}$ $<frac 15+frac{ln 2005-ln 5}4$ $=frac 15+frac{ln 401}4$ $<frac 74$
Q.E.D.
My questions:
Could you please post a simpler solution?
I just don't understand why $frac 15+frac{ln 401}4<frac 74$. Please explain why is that.
Thank you in advance!
calculus inequality
Prove that
$ dfrac{1}{5}+ dfrac{1}{9}+ dfrac{1}{13}+ldots+ dfrac{ 1}{2005}< dfrac{ 7}{4}$.
Solution
$sum_{k=1}^{501}frac 1{4k+1}$ $=frac 15+sum_{k=2}^{501}frac 1{4k+1}$ $<frac 15+int_1^{501}frac{dx}{4x+1}$ $=frac 15+left[frac{ln(4x+1)}4right]_1^{501}$
So $sum_{k=1}^{501}frac 1{4k+1}$ $<frac 15+frac{ln 2005-ln 5}4$ $=frac 15+frac{ln 401}4$ $<frac 74$
Q.E.D.
My questions:
Could you please post a simpler solution?
I just don't understand why $frac 15+frac{ln 401}4<frac 74$. Please explain why is that.
Thank you in advance!
calculus inequality
calculus inequality
asked Dec 3 '18 at 6:38
nam
973
973
Just do it on you calculator; ($frac{1}{5} + frac{ln(401)}{4}) approx 1.7$ and $frac{7}{4} = 1.75$
– Fiticous
Dec 3 '18 at 6:45
$401<e^6$ then $ln(401)<6 implies frac{1}{5}+frac{ln(401)}{4}<frac{17}{10}=1.7 <frac{7}{4}$
– Fareed AF
Dec 3 '18 at 7:05
add a comment |
Just do it on you calculator; ($frac{1}{5} + frac{ln(401)}{4}) approx 1.7$ and $frac{7}{4} = 1.75$
– Fiticous
Dec 3 '18 at 6:45
$401<e^6$ then $ln(401)<6 implies frac{1}{5}+frac{ln(401)}{4}<frac{17}{10}=1.7 <frac{7}{4}$
– Fareed AF
Dec 3 '18 at 7:05
Just do it on you calculator; ($frac{1}{5} + frac{ln(401)}{4}) approx 1.7$ and $frac{7}{4} = 1.75$
– Fiticous
Dec 3 '18 at 6:45
Just do it on you calculator; ($frac{1}{5} + frac{ln(401)}{4}) approx 1.7$ and $frac{7}{4} = 1.75$
– Fiticous
Dec 3 '18 at 6:45
$401<e^6$ then $ln(401)<6 implies frac{1}{5}+frac{ln(401)}{4}<frac{17}{10}=1.7 <frac{7}{4}$
– Fareed AF
Dec 3 '18 at 7:05
$401<e^6$ then $ln(401)<6 implies frac{1}{5}+frac{ln(401)}{4}<frac{17}{10}=1.7 <frac{7}{4}$
– Fareed AF
Dec 3 '18 at 7:05
add a comment |
2 Answers
2
active
oldest
votes
This is not necessarily simpler because you have to know the upper bound on harmonic numbers $$H_n=sum_{k=1}^nfrac{1}{k}leq ln{n}+gamma+frac{1}{2n}$$ where $gammaapprox 0.577ldots$, but then you can write $$sum_{k=1}^{500}frac{1}{4k+1}<sum_{k=1}^{500}frac{1}{4k}=frac{1}{4}H_{500}leqfrac{1}{4}(ln{500}+gamma+frac{1}{1000})approx 1.70ldots<1.75$$
add a comment |
It is enough to invoke the Hermite-Hadamard inequality. Since $f(x)=frac{1}{4x+1}$ is convex over $mathbb{R}^+$,
$$ int_{1/2}^{501+1/2}f(x),dx geq f(1)+f(2)+ldots+f(501) $$
hence
$$ sum_{k=1}^{501}frac{1}{4k+1}leq frac{log(669)}{4} $$
and it is enough to show that $e^7>669.$ On the other hand $e>2+frac{2}{3}$ and
$$left(2+frac{2}{3}right)^7=2^7cdotfrac{4}{3}cdotleft(2-frac{2}{9}right)^3=frac{2^{12}}{3}left(1-frac{1}{9}right)^3>frac{2^{13}}{3^2}>frac{8000}{9}>888.$$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3023720%2fprove-that-dfrac15-dfrac19-dfrac113-ldots-dfrac-12005%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
This is not necessarily simpler because you have to know the upper bound on harmonic numbers $$H_n=sum_{k=1}^nfrac{1}{k}leq ln{n}+gamma+frac{1}{2n}$$ where $gammaapprox 0.577ldots$, but then you can write $$sum_{k=1}^{500}frac{1}{4k+1}<sum_{k=1}^{500}frac{1}{4k}=frac{1}{4}H_{500}leqfrac{1}{4}(ln{500}+gamma+frac{1}{1000})approx 1.70ldots<1.75$$
add a comment |
This is not necessarily simpler because you have to know the upper bound on harmonic numbers $$H_n=sum_{k=1}^nfrac{1}{k}leq ln{n}+gamma+frac{1}{2n}$$ where $gammaapprox 0.577ldots$, but then you can write $$sum_{k=1}^{500}frac{1}{4k+1}<sum_{k=1}^{500}frac{1}{4k}=frac{1}{4}H_{500}leqfrac{1}{4}(ln{500}+gamma+frac{1}{1000})approx 1.70ldots<1.75$$
add a comment |
This is not necessarily simpler because you have to know the upper bound on harmonic numbers $$H_n=sum_{k=1}^nfrac{1}{k}leq ln{n}+gamma+frac{1}{2n}$$ where $gammaapprox 0.577ldots$, but then you can write $$sum_{k=1}^{500}frac{1}{4k+1}<sum_{k=1}^{500}frac{1}{4k}=frac{1}{4}H_{500}leqfrac{1}{4}(ln{500}+gamma+frac{1}{1000})approx 1.70ldots<1.75$$
This is not necessarily simpler because you have to know the upper bound on harmonic numbers $$H_n=sum_{k=1}^nfrac{1}{k}leq ln{n}+gamma+frac{1}{2n}$$ where $gammaapprox 0.577ldots$, but then you can write $$sum_{k=1}^{500}frac{1}{4k+1}<sum_{k=1}^{500}frac{1}{4k}=frac{1}{4}H_{500}leqfrac{1}{4}(ln{500}+gamma+frac{1}{1000})approx 1.70ldots<1.75$$
answered Dec 3 '18 at 7:16
Michal Adamaszek
2,08148
2,08148
add a comment |
add a comment |
It is enough to invoke the Hermite-Hadamard inequality. Since $f(x)=frac{1}{4x+1}$ is convex over $mathbb{R}^+$,
$$ int_{1/2}^{501+1/2}f(x),dx geq f(1)+f(2)+ldots+f(501) $$
hence
$$ sum_{k=1}^{501}frac{1}{4k+1}leq frac{log(669)}{4} $$
and it is enough to show that $e^7>669.$ On the other hand $e>2+frac{2}{3}$ and
$$left(2+frac{2}{3}right)^7=2^7cdotfrac{4}{3}cdotleft(2-frac{2}{9}right)^3=frac{2^{12}}{3}left(1-frac{1}{9}right)^3>frac{2^{13}}{3^2}>frac{8000}{9}>888.$$
add a comment |
It is enough to invoke the Hermite-Hadamard inequality. Since $f(x)=frac{1}{4x+1}$ is convex over $mathbb{R}^+$,
$$ int_{1/2}^{501+1/2}f(x),dx geq f(1)+f(2)+ldots+f(501) $$
hence
$$ sum_{k=1}^{501}frac{1}{4k+1}leq frac{log(669)}{4} $$
and it is enough to show that $e^7>669.$ On the other hand $e>2+frac{2}{3}$ and
$$left(2+frac{2}{3}right)^7=2^7cdotfrac{4}{3}cdotleft(2-frac{2}{9}right)^3=frac{2^{12}}{3}left(1-frac{1}{9}right)^3>frac{2^{13}}{3^2}>frac{8000}{9}>888.$$
add a comment |
It is enough to invoke the Hermite-Hadamard inequality. Since $f(x)=frac{1}{4x+1}$ is convex over $mathbb{R}^+$,
$$ int_{1/2}^{501+1/2}f(x),dx geq f(1)+f(2)+ldots+f(501) $$
hence
$$ sum_{k=1}^{501}frac{1}{4k+1}leq frac{log(669)}{4} $$
and it is enough to show that $e^7>669.$ On the other hand $e>2+frac{2}{3}$ and
$$left(2+frac{2}{3}right)^7=2^7cdotfrac{4}{3}cdotleft(2-frac{2}{9}right)^3=frac{2^{12}}{3}left(1-frac{1}{9}right)^3>frac{2^{13}}{3^2}>frac{8000}{9}>888.$$
It is enough to invoke the Hermite-Hadamard inequality. Since $f(x)=frac{1}{4x+1}$ is convex over $mathbb{R}^+$,
$$ int_{1/2}^{501+1/2}f(x),dx geq f(1)+f(2)+ldots+f(501) $$
hence
$$ sum_{k=1}^{501}frac{1}{4k+1}leq frac{log(669)}{4} $$
and it is enough to show that $e^7>669.$ On the other hand $e>2+frac{2}{3}$ and
$$left(2+frac{2}{3}right)^7=2^7cdotfrac{4}{3}cdotleft(2-frac{2}{9}right)^3=frac{2^{12}}{3}left(1-frac{1}{9}right)^3>frac{2^{13}}{3^2}>frac{8000}{9}>888.$$
answered Dec 3 '18 at 12:43
Jack D'Aurizio
286k33279656
286k33279656
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3023720%2fprove-that-dfrac15-dfrac19-dfrac113-ldots-dfrac-12005%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Just do it on you calculator; ($frac{1}{5} + frac{ln(401)}{4}) approx 1.7$ and $frac{7}{4} = 1.75$
– Fiticous
Dec 3 '18 at 6:45
$401<e^6$ then $ln(401)<6 implies frac{1}{5}+frac{ln(401)}{4}<frac{17}{10}=1.7 <frac{7}{4}$
– Fareed AF
Dec 3 '18 at 7:05