Prove that $ dfrac{1}{5}+ dfrac{1}{9}+ dfrac{1}{13}+ldots+ dfrac{ 1}{2005}< dfrac{ 7}{4}$.












2














Prove that
$ dfrac{1}{5}+ dfrac{1}{9}+ dfrac{1}{13}+ldots+ dfrac{ 1}{2005}< dfrac{ 7}{4}$.



Solution
$sum_{k=1}^{501}frac 1{4k+1}$ $=frac 15+sum_{k=2}^{501}frac 1{4k+1}$ $<frac 15+int_1^{501}frac{dx}{4x+1}$ $=frac 15+left[frac{ln(4x+1)}4right]_1^{501}$



So $sum_{k=1}^{501}frac 1{4k+1}$ $<frac 15+frac{ln 2005-ln 5}4$ $=frac 15+frac{ln 401}4$ $<frac 74$
Q.E.D.



My questions:



Could you please post a simpler solution?



I just don't understand why $frac 15+frac{ln 401}4<frac 74$. Please explain why is that.



Thank you in advance!










share|cite|improve this question






















  • Just do it on you calculator; ($frac{1}{5} + frac{ln(401)}{4}) approx 1.7$ and $frac{7}{4} = 1.75$
    – Fiticous
    Dec 3 '18 at 6:45












  • $401<e^6$ then $ln(401)<6 implies frac{1}{5}+frac{ln(401)}{4}<frac{17}{10}=1.7 <frac{7}{4}$
    – Fareed AF
    Dec 3 '18 at 7:05


















2














Prove that
$ dfrac{1}{5}+ dfrac{1}{9}+ dfrac{1}{13}+ldots+ dfrac{ 1}{2005}< dfrac{ 7}{4}$.



Solution
$sum_{k=1}^{501}frac 1{4k+1}$ $=frac 15+sum_{k=2}^{501}frac 1{4k+1}$ $<frac 15+int_1^{501}frac{dx}{4x+1}$ $=frac 15+left[frac{ln(4x+1)}4right]_1^{501}$



So $sum_{k=1}^{501}frac 1{4k+1}$ $<frac 15+frac{ln 2005-ln 5}4$ $=frac 15+frac{ln 401}4$ $<frac 74$
Q.E.D.



My questions:



Could you please post a simpler solution?



I just don't understand why $frac 15+frac{ln 401}4<frac 74$. Please explain why is that.



Thank you in advance!










share|cite|improve this question






















  • Just do it on you calculator; ($frac{1}{5} + frac{ln(401)}{4}) approx 1.7$ and $frac{7}{4} = 1.75$
    – Fiticous
    Dec 3 '18 at 6:45












  • $401<e^6$ then $ln(401)<6 implies frac{1}{5}+frac{ln(401)}{4}<frac{17}{10}=1.7 <frac{7}{4}$
    – Fareed AF
    Dec 3 '18 at 7:05
















2












2








2


2





Prove that
$ dfrac{1}{5}+ dfrac{1}{9}+ dfrac{1}{13}+ldots+ dfrac{ 1}{2005}< dfrac{ 7}{4}$.



Solution
$sum_{k=1}^{501}frac 1{4k+1}$ $=frac 15+sum_{k=2}^{501}frac 1{4k+1}$ $<frac 15+int_1^{501}frac{dx}{4x+1}$ $=frac 15+left[frac{ln(4x+1)}4right]_1^{501}$



So $sum_{k=1}^{501}frac 1{4k+1}$ $<frac 15+frac{ln 2005-ln 5}4$ $=frac 15+frac{ln 401}4$ $<frac 74$
Q.E.D.



My questions:



Could you please post a simpler solution?



I just don't understand why $frac 15+frac{ln 401}4<frac 74$. Please explain why is that.



Thank you in advance!










share|cite|improve this question













Prove that
$ dfrac{1}{5}+ dfrac{1}{9}+ dfrac{1}{13}+ldots+ dfrac{ 1}{2005}< dfrac{ 7}{4}$.



Solution
$sum_{k=1}^{501}frac 1{4k+1}$ $=frac 15+sum_{k=2}^{501}frac 1{4k+1}$ $<frac 15+int_1^{501}frac{dx}{4x+1}$ $=frac 15+left[frac{ln(4x+1)}4right]_1^{501}$



So $sum_{k=1}^{501}frac 1{4k+1}$ $<frac 15+frac{ln 2005-ln 5}4$ $=frac 15+frac{ln 401}4$ $<frac 74$
Q.E.D.



My questions:



Could you please post a simpler solution?



I just don't understand why $frac 15+frac{ln 401}4<frac 74$. Please explain why is that.



Thank you in advance!







calculus inequality






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 3 '18 at 6:38









nam

973




973












  • Just do it on you calculator; ($frac{1}{5} + frac{ln(401)}{4}) approx 1.7$ and $frac{7}{4} = 1.75$
    – Fiticous
    Dec 3 '18 at 6:45












  • $401<e^6$ then $ln(401)<6 implies frac{1}{5}+frac{ln(401)}{4}<frac{17}{10}=1.7 <frac{7}{4}$
    – Fareed AF
    Dec 3 '18 at 7:05




















  • Just do it on you calculator; ($frac{1}{5} + frac{ln(401)}{4}) approx 1.7$ and $frac{7}{4} = 1.75$
    – Fiticous
    Dec 3 '18 at 6:45












  • $401<e^6$ then $ln(401)<6 implies frac{1}{5}+frac{ln(401)}{4}<frac{17}{10}=1.7 <frac{7}{4}$
    – Fareed AF
    Dec 3 '18 at 7:05


















Just do it on you calculator; ($frac{1}{5} + frac{ln(401)}{4}) approx 1.7$ and $frac{7}{4} = 1.75$
– Fiticous
Dec 3 '18 at 6:45






Just do it on you calculator; ($frac{1}{5} + frac{ln(401)}{4}) approx 1.7$ and $frac{7}{4} = 1.75$
– Fiticous
Dec 3 '18 at 6:45














$401<e^6$ then $ln(401)<6 implies frac{1}{5}+frac{ln(401)}{4}<frac{17}{10}=1.7 <frac{7}{4}$
– Fareed AF
Dec 3 '18 at 7:05






$401<e^6$ then $ln(401)<6 implies frac{1}{5}+frac{ln(401)}{4}<frac{17}{10}=1.7 <frac{7}{4}$
– Fareed AF
Dec 3 '18 at 7:05












2 Answers
2






active

oldest

votes


















3














This is not necessarily simpler because you have to know the upper bound on harmonic numbers $$H_n=sum_{k=1}^nfrac{1}{k}leq ln{n}+gamma+frac{1}{2n}$$ where $gammaapprox 0.577ldots$, but then you can write $$sum_{k=1}^{500}frac{1}{4k+1}<sum_{k=1}^{500}frac{1}{4k}=frac{1}{4}H_{500}leqfrac{1}{4}(ln{500}+gamma+frac{1}{1000})approx 1.70ldots<1.75$$






share|cite|improve this answer





























    3














    It is enough to invoke the Hermite-Hadamard inequality. Since $f(x)=frac{1}{4x+1}$ is convex over $mathbb{R}^+$,



    $$ int_{1/2}^{501+1/2}f(x),dx geq f(1)+f(2)+ldots+f(501) $$
    hence
    $$ sum_{k=1}^{501}frac{1}{4k+1}leq frac{log(669)}{4} $$
    and it is enough to show that $e^7>669.$ On the other hand $e>2+frac{2}{3}$ and
    $$left(2+frac{2}{3}right)^7=2^7cdotfrac{4}{3}cdotleft(2-frac{2}{9}right)^3=frac{2^{12}}{3}left(1-frac{1}{9}right)^3>frac{2^{13}}{3^2}>frac{8000}{9}>888.$$






    share|cite|improve this answer





















      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3023720%2fprove-that-dfrac15-dfrac19-dfrac113-ldots-dfrac-12005%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      3














      This is not necessarily simpler because you have to know the upper bound on harmonic numbers $$H_n=sum_{k=1}^nfrac{1}{k}leq ln{n}+gamma+frac{1}{2n}$$ where $gammaapprox 0.577ldots$, but then you can write $$sum_{k=1}^{500}frac{1}{4k+1}<sum_{k=1}^{500}frac{1}{4k}=frac{1}{4}H_{500}leqfrac{1}{4}(ln{500}+gamma+frac{1}{1000})approx 1.70ldots<1.75$$






      share|cite|improve this answer


























        3














        This is not necessarily simpler because you have to know the upper bound on harmonic numbers $$H_n=sum_{k=1}^nfrac{1}{k}leq ln{n}+gamma+frac{1}{2n}$$ where $gammaapprox 0.577ldots$, but then you can write $$sum_{k=1}^{500}frac{1}{4k+1}<sum_{k=1}^{500}frac{1}{4k}=frac{1}{4}H_{500}leqfrac{1}{4}(ln{500}+gamma+frac{1}{1000})approx 1.70ldots<1.75$$






        share|cite|improve this answer
























          3












          3








          3






          This is not necessarily simpler because you have to know the upper bound on harmonic numbers $$H_n=sum_{k=1}^nfrac{1}{k}leq ln{n}+gamma+frac{1}{2n}$$ where $gammaapprox 0.577ldots$, but then you can write $$sum_{k=1}^{500}frac{1}{4k+1}<sum_{k=1}^{500}frac{1}{4k}=frac{1}{4}H_{500}leqfrac{1}{4}(ln{500}+gamma+frac{1}{1000})approx 1.70ldots<1.75$$






          share|cite|improve this answer












          This is not necessarily simpler because you have to know the upper bound on harmonic numbers $$H_n=sum_{k=1}^nfrac{1}{k}leq ln{n}+gamma+frac{1}{2n}$$ where $gammaapprox 0.577ldots$, but then you can write $$sum_{k=1}^{500}frac{1}{4k+1}<sum_{k=1}^{500}frac{1}{4k}=frac{1}{4}H_{500}leqfrac{1}{4}(ln{500}+gamma+frac{1}{1000})approx 1.70ldots<1.75$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 3 '18 at 7:16









          Michal Adamaszek

          2,08148




          2,08148























              3














              It is enough to invoke the Hermite-Hadamard inequality. Since $f(x)=frac{1}{4x+1}$ is convex over $mathbb{R}^+$,



              $$ int_{1/2}^{501+1/2}f(x),dx geq f(1)+f(2)+ldots+f(501) $$
              hence
              $$ sum_{k=1}^{501}frac{1}{4k+1}leq frac{log(669)}{4} $$
              and it is enough to show that $e^7>669.$ On the other hand $e>2+frac{2}{3}$ and
              $$left(2+frac{2}{3}right)^7=2^7cdotfrac{4}{3}cdotleft(2-frac{2}{9}right)^3=frac{2^{12}}{3}left(1-frac{1}{9}right)^3>frac{2^{13}}{3^2}>frac{8000}{9}>888.$$






              share|cite|improve this answer


























                3














                It is enough to invoke the Hermite-Hadamard inequality. Since $f(x)=frac{1}{4x+1}$ is convex over $mathbb{R}^+$,



                $$ int_{1/2}^{501+1/2}f(x),dx geq f(1)+f(2)+ldots+f(501) $$
                hence
                $$ sum_{k=1}^{501}frac{1}{4k+1}leq frac{log(669)}{4} $$
                and it is enough to show that $e^7>669.$ On the other hand $e>2+frac{2}{3}$ and
                $$left(2+frac{2}{3}right)^7=2^7cdotfrac{4}{3}cdotleft(2-frac{2}{9}right)^3=frac{2^{12}}{3}left(1-frac{1}{9}right)^3>frac{2^{13}}{3^2}>frac{8000}{9}>888.$$






                share|cite|improve this answer
























                  3












                  3








                  3






                  It is enough to invoke the Hermite-Hadamard inequality. Since $f(x)=frac{1}{4x+1}$ is convex over $mathbb{R}^+$,



                  $$ int_{1/2}^{501+1/2}f(x),dx geq f(1)+f(2)+ldots+f(501) $$
                  hence
                  $$ sum_{k=1}^{501}frac{1}{4k+1}leq frac{log(669)}{4} $$
                  and it is enough to show that $e^7>669.$ On the other hand $e>2+frac{2}{3}$ and
                  $$left(2+frac{2}{3}right)^7=2^7cdotfrac{4}{3}cdotleft(2-frac{2}{9}right)^3=frac{2^{12}}{3}left(1-frac{1}{9}right)^3>frac{2^{13}}{3^2}>frac{8000}{9}>888.$$






                  share|cite|improve this answer












                  It is enough to invoke the Hermite-Hadamard inequality. Since $f(x)=frac{1}{4x+1}$ is convex over $mathbb{R}^+$,



                  $$ int_{1/2}^{501+1/2}f(x),dx geq f(1)+f(2)+ldots+f(501) $$
                  hence
                  $$ sum_{k=1}^{501}frac{1}{4k+1}leq frac{log(669)}{4} $$
                  and it is enough to show that $e^7>669.$ On the other hand $e>2+frac{2}{3}$ and
                  $$left(2+frac{2}{3}right)^7=2^7cdotfrac{4}{3}cdotleft(2-frac{2}{9}right)^3=frac{2^{12}}{3}left(1-frac{1}{9}right)^3>frac{2^{13}}{3^2}>frac{8000}{9}>888.$$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Dec 3 '18 at 12:43









                  Jack D'Aurizio

                  286k33279656




                  286k33279656






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.





                      Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                      Please pay close attention to the following guidance:


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3023720%2fprove-that-dfrac15-dfrac19-dfrac113-ldots-dfrac-12005%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Berounka

                      Sphinx de Gizeh

                      Different font size/position of beamer's navigation symbols template's content depending on regular/plain...