Determining branch points and closed paths











up vote
0
down vote

favorite












My question is: how do we determine, computationally, when a function changes it’s value after we complete a closed path around a potential branch point?



To be specific: take the function $f(z)=log(z^{2}-1)=log(z-1)+log(z+1)$. The branch points are $z=1, z=-1$, and $z=infty$. Now, when we show that $z=1$ is a branch point, we want to show that as we travel around the point $z=1$, on a closed path, $log(z-1)$ changes by a multiple of $2pi i$ but $log(z+1)$ returns to its original value. How do we, computationally, show that a closed path around $z=1$ changes $log(z-1)$ by a multiple of $2pi i$?










share|cite|improve this question






















  • The function will have a discontinuity along some path. For instance, $log z$ computed as $logsqrt{x^2+y^2}+iarctan_2(y, x)$ will has a jump of $i2pi$ when crossing the negative axis.
    – Yves Daoust
    yesterday

















up vote
0
down vote

favorite












My question is: how do we determine, computationally, when a function changes it’s value after we complete a closed path around a potential branch point?



To be specific: take the function $f(z)=log(z^{2}-1)=log(z-1)+log(z+1)$. The branch points are $z=1, z=-1$, and $z=infty$. Now, when we show that $z=1$ is a branch point, we want to show that as we travel around the point $z=1$, on a closed path, $log(z-1)$ changes by a multiple of $2pi i$ but $log(z+1)$ returns to its original value. How do we, computationally, show that a closed path around $z=1$ changes $log(z-1)$ by a multiple of $2pi i$?










share|cite|improve this question






















  • The function will have a discontinuity along some path. For instance, $log z$ computed as $logsqrt{x^2+y^2}+iarctan_2(y, x)$ will has a jump of $i2pi$ when crossing the negative axis.
    – Yves Daoust
    yesterday















up vote
0
down vote

favorite









up vote
0
down vote

favorite











My question is: how do we determine, computationally, when a function changes it’s value after we complete a closed path around a potential branch point?



To be specific: take the function $f(z)=log(z^{2}-1)=log(z-1)+log(z+1)$. The branch points are $z=1, z=-1$, and $z=infty$. Now, when we show that $z=1$ is a branch point, we want to show that as we travel around the point $z=1$, on a closed path, $log(z-1)$ changes by a multiple of $2pi i$ but $log(z+1)$ returns to its original value. How do we, computationally, show that a closed path around $z=1$ changes $log(z-1)$ by a multiple of $2pi i$?










share|cite|improve this question













My question is: how do we determine, computationally, when a function changes it’s value after we complete a closed path around a potential branch point?



To be specific: take the function $f(z)=log(z^{2}-1)=log(z-1)+log(z+1)$. The branch points are $z=1, z=-1$, and $z=infty$. Now, when we show that $z=1$ is a branch point, we want to show that as we travel around the point $z=1$, on a closed path, $log(z-1)$ changes by a multiple of $2pi i$ but $log(z+1)$ returns to its original value. How do we, computationally, show that a closed path around $z=1$ changes $log(z-1)$ by a multiple of $2pi i$?







complex-analysis complex-numbers






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked yesterday









Live Free or π Hard

410213




410213












  • The function will have a discontinuity along some path. For instance, $log z$ computed as $logsqrt{x^2+y^2}+iarctan_2(y, x)$ will has a jump of $i2pi$ when crossing the negative axis.
    – Yves Daoust
    yesterday




















  • The function will have a discontinuity along some path. For instance, $log z$ computed as $logsqrt{x^2+y^2}+iarctan_2(y, x)$ will has a jump of $i2pi$ when crossing the negative axis.
    – Yves Daoust
    yesterday


















The function will have a discontinuity along some path. For instance, $log z$ computed as $logsqrt{x^2+y^2}+iarctan_2(y, x)$ will has a jump of $i2pi$ when crossing the negative axis.
– Yves Daoust
yesterday






The function will have a discontinuity along some path. For instance, $log z$ computed as $logsqrt{x^2+y^2}+iarctan_2(y, x)$ will has a jump of $i2pi$ when crossing the negative axis.
– Yves Daoust
yesterday

















active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














 

draft saved


draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006990%2fdetermining-branch-points-and-closed-paths%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown






























active

oldest

votes













active

oldest

votes









active

oldest

votes






active

oldest

votes
















 

draft saved


draft discarded



















































 


draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006990%2fdetermining-branch-points-and-closed-paths%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Berounka

Different font size/position of beamer's navigation symbols template's content depending on regular/plain...

Sphinx de Gizeh