$lim_{ntoinfty} n^{x}(a_{1}a_{2}ldots a_{n})^{frac{1}{n}}=ae^x$
up vote
2
down vote
favorite
Let $ (a_{n})$ be positive sequence, $a,x in R quad $ and $ lim_{ntoinfty} n^{x}a_{n}=a$.
Prove that $lim_{ntoinfty} n^{x}(a_{1}a_{2}ldots a_{n})^{frac{1}{n}}=ae^x$
I know that $lim_{ntoinfty} (a_{1}a_{2}ldots a_{n})^{frac{1}{n}}=lim_{ntoinfty} a_{n}$ but don't have idea how to use it
limits
add a comment |
up vote
2
down vote
favorite
Let $ (a_{n})$ be positive sequence, $a,x in R quad $ and $ lim_{ntoinfty} n^{x}a_{n}=a$.
Prove that $lim_{ntoinfty} n^{x}(a_{1}a_{2}ldots a_{n})^{frac{1}{n}}=ae^x$
I know that $lim_{ntoinfty} (a_{1}a_{2}ldots a_{n})^{frac{1}{n}}=lim_{ntoinfty} a_{n}$ but don't have idea how to use it
limits
add a comment |
up vote
2
down vote
favorite
up vote
2
down vote
favorite
Let $ (a_{n})$ be positive sequence, $a,x in R quad $ and $ lim_{ntoinfty} n^{x}a_{n}=a$.
Prove that $lim_{ntoinfty} n^{x}(a_{1}a_{2}ldots a_{n})^{frac{1}{n}}=ae^x$
I know that $lim_{ntoinfty} (a_{1}a_{2}ldots a_{n})^{frac{1}{n}}=lim_{ntoinfty} a_{n}$ but don't have idea how to use it
limits
Let $ (a_{n})$ be positive sequence, $a,x in R quad $ and $ lim_{ntoinfty} n^{x}a_{n}=a$.
Prove that $lim_{ntoinfty} n^{x}(a_{1}a_{2}ldots a_{n})^{frac{1}{n}}=ae^x$
I know that $lim_{ntoinfty} (a_{1}a_{2}ldots a_{n})^{frac{1}{n}}=lim_{ntoinfty} a_{n}$ but don't have idea how to use it
limits
limits
edited yesterday
gimusi
86k74292
86k74292
asked yesterday
math.trouble
455
455
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
3
down vote
accepted
HINT
By ratio root criteria we have
$$frac{(n+1)^{x(n+1)}a_{1}a_{2}ldots a_{n+1}}{n^{xn}a_{1}a_{2}ldots a_{n}}=(n+1)^xa_{n+1}left(1+frac1nright)^{nx}$$
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
3
down vote
accepted
HINT
By ratio root criteria we have
$$frac{(n+1)^{x(n+1)}a_{1}a_{2}ldots a_{n+1}}{n^{xn}a_{1}a_{2}ldots a_{n}}=(n+1)^xa_{n+1}left(1+frac1nright)^{nx}$$
add a comment |
up vote
3
down vote
accepted
HINT
By ratio root criteria we have
$$frac{(n+1)^{x(n+1)}a_{1}a_{2}ldots a_{n+1}}{n^{xn}a_{1}a_{2}ldots a_{n}}=(n+1)^xa_{n+1}left(1+frac1nright)^{nx}$$
add a comment |
up vote
3
down vote
accepted
up vote
3
down vote
accepted
HINT
By ratio root criteria we have
$$frac{(n+1)^{x(n+1)}a_{1}a_{2}ldots a_{n+1}}{n^{xn}a_{1}a_{2}ldots a_{n}}=(n+1)^xa_{n+1}left(1+frac1nright)^{nx}$$
HINT
By ratio root criteria we have
$$frac{(n+1)^{x(n+1)}a_{1}a_{2}ldots a_{n+1}}{n^{xn}a_{1}a_{2}ldots a_{n}}=(n+1)^xa_{n+1}left(1+frac1nright)^{nx}$$
answered yesterday
gimusi
86k74292
86k74292
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006994%2flim-n-to-infty-nxa-1a-2-ldots-a-n-frac1n-aex%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown