When to include $r$ when converting to polar coordinates?
up vote
1
down vote
favorite
When evaluating integrals, if you convert to polar/cylindrical coordinates, I know you have to include $r$ ($r, dr , dtheta$).
However, when you parametrize first (for line integrals, or surface integrals) do you still include $r$? For example, I'll parametrize $x = r costheta$, $y = r sintheta$, $z = z$. Plug in as $F(r(r,theta))$, and do the cross product of the partial derivatives. Is the extra $r$ already included in this process?
calculus multivariable-calculus
New contributor
add a comment |
up vote
1
down vote
favorite
When evaluating integrals, if you convert to polar/cylindrical coordinates, I know you have to include $r$ ($r, dr , dtheta$).
However, when you parametrize first (for line integrals, or surface integrals) do you still include $r$? For example, I'll parametrize $x = r costheta$, $y = r sintheta$, $z = z$. Plug in as $F(r(r,theta))$, and do the cross product of the partial derivatives. Is the extra $r$ already included in this process?
calculus multivariable-calculus
New contributor
put an example please, there are a lot of different kinds of integrals
– Masacroso
yesterday
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
When evaluating integrals, if you convert to polar/cylindrical coordinates, I know you have to include $r$ ($r, dr , dtheta$).
However, when you parametrize first (for line integrals, or surface integrals) do you still include $r$? For example, I'll parametrize $x = r costheta$, $y = r sintheta$, $z = z$. Plug in as $F(r(r,theta))$, and do the cross product of the partial derivatives. Is the extra $r$ already included in this process?
calculus multivariable-calculus
New contributor
When evaluating integrals, if you convert to polar/cylindrical coordinates, I know you have to include $r$ ($r, dr , dtheta$).
However, when you parametrize first (for line integrals, or surface integrals) do you still include $r$? For example, I'll parametrize $x = r costheta$, $y = r sintheta$, $z = z$. Plug in as $F(r(r,theta))$, and do the cross product of the partial derivatives. Is the extra $r$ already included in this process?
calculus multivariable-calculus
calculus multivariable-calculus
New contributor
New contributor
edited yesterday
Masacroso
12.2k41746
12.2k41746
New contributor
asked yesterday
LtLame
63
63
New contributor
New contributor
put an example please, there are a lot of different kinds of integrals
– Masacroso
yesterday
add a comment |
put an example please, there are a lot of different kinds of integrals
– Masacroso
yesterday
put an example please, there are a lot of different kinds of integrals
– Masacroso
yesterday
put an example please, there are a lot of different kinds of integrals
– Masacroso
yesterday
add a comment |
1 Answer
1
active
oldest
votes
up vote
0
down vote
In the conversion $dxdy=rdrdtheta$, the factor of $r$ is a Jacobian determinant. This generalises the result $du=u'dx$ in a single-integral substitution. You always need to include Jacobians; the real question is what the Jacobian should be for a particular problem. In general, a switch between two sets of variables $u_i,,v_j$ has $d^n u = |det J|d^n v$ with $J_{ij}:=frac{partial u_i}{partial v_j}$. I recommend proving $dxdy=rdrdtheta$ as an exercise.
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
In the conversion $dxdy=rdrdtheta$, the factor of $r$ is a Jacobian determinant. This generalises the result $du=u'dx$ in a single-integral substitution. You always need to include Jacobians; the real question is what the Jacobian should be for a particular problem. In general, a switch between two sets of variables $u_i,,v_j$ has $d^n u = |det J|d^n v$ with $J_{ij}:=frac{partial u_i}{partial v_j}$. I recommend proving $dxdy=rdrdtheta$ as an exercise.
add a comment |
up vote
0
down vote
In the conversion $dxdy=rdrdtheta$, the factor of $r$ is a Jacobian determinant. This generalises the result $du=u'dx$ in a single-integral substitution. You always need to include Jacobians; the real question is what the Jacobian should be for a particular problem. In general, a switch between two sets of variables $u_i,,v_j$ has $d^n u = |det J|d^n v$ with $J_{ij}:=frac{partial u_i}{partial v_j}$. I recommend proving $dxdy=rdrdtheta$ as an exercise.
add a comment |
up vote
0
down vote
up vote
0
down vote
In the conversion $dxdy=rdrdtheta$, the factor of $r$ is a Jacobian determinant. This generalises the result $du=u'dx$ in a single-integral substitution. You always need to include Jacobians; the real question is what the Jacobian should be for a particular problem. In general, a switch between two sets of variables $u_i,,v_j$ has $d^n u = |det J|d^n v$ with $J_{ij}:=frac{partial u_i}{partial v_j}$. I recommend proving $dxdy=rdrdtheta$ as an exercise.
In the conversion $dxdy=rdrdtheta$, the factor of $r$ is a Jacobian determinant. This generalises the result $du=u'dx$ in a single-integral substitution. You always need to include Jacobians; the real question is what the Jacobian should be for a particular problem. In general, a switch between two sets of variables $u_i,,v_j$ has $d^n u = |det J|d^n v$ with $J_{ij}:=frac{partial u_i}{partial v_j}$. I recommend proving $dxdy=rdrdtheta$ as an exercise.
answered yesterday
J.G.
18.4k21932
18.4k21932
add a comment |
add a comment |
LtLame is a new contributor. Be nice, and check out our Code of Conduct.
LtLame is a new contributor. Be nice, and check out our Code of Conduct.
LtLame is a new contributor. Be nice, and check out our Code of Conduct.
LtLame is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006965%2fwhen-to-include-r-when-converting-to-polar-coordinates%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
put an example please, there are a lot of different kinds of integrals
– Masacroso
yesterday