Exponential integral of translation invariant function
up vote
0
down vote
favorite
Consider function $f: (mathbb{R}^{d})^{n} rightarrow mathbb{R}$ with spatial invariance property of the form :
$f(x_1,x_2,...,x_n) = f(x_1 + zeta, x_2 + zeta,..., x_n + zeta)$ for $zeta in mathbb{R}^{d} $.
I want to show that $int limits_{(mathbb{R}^{d})^{n}} exp(,f(x_1,...,x_n) ,) dx_1..dx_n ,=, infty $.
I would like some help.
My only idea is to fix ball $B(0,r) subseteq mathbb{R}^{d}$ and $zeta in mathbb{R}^{d}$ and then compute $int limits_{{B(0,r)}^{n}} exp(,f(x_1,...,x_n) ,) dx_1..dx_n , = int limits_{{B(zeta,r)}^{n}} exp(,f(y_1 - zeta,...,y_n - zeta) ,) dy_1..dy_n = $
$ int limits_{{B(zeta,r)}^{n}} exp(,f(y_1,...,y_n) ,) dy_1..dy_n , $, where the first equality comes from setting $x_i = y_i - zeta $ and the second from the spatial invariance property.
So we get that the integral of this strictly positive f over any ball is the same. But does it imply that the integral over $(mathbb{R}^{d})^{n}$ is $infty$ ?
multivariable-calculus vector-analysis
add a comment |
up vote
0
down vote
favorite
Consider function $f: (mathbb{R}^{d})^{n} rightarrow mathbb{R}$ with spatial invariance property of the form :
$f(x_1,x_2,...,x_n) = f(x_1 + zeta, x_2 + zeta,..., x_n + zeta)$ for $zeta in mathbb{R}^{d} $.
I want to show that $int limits_{(mathbb{R}^{d})^{n}} exp(,f(x_1,...,x_n) ,) dx_1..dx_n ,=, infty $.
I would like some help.
My only idea is to fix ball $B(0,r) subseteq mathbb{R}^{d}$ and $zeta in mathbb{R}^{d}$ and then compute $int limits_{{B(0,r)}^{n}} exp(,f(x_1,...,x_n) ,) dx_1..dx_n , = int limits_{{B(zeta,r)}^{n}} exp(,f(y_1 - zeta,...,y_n - zeta) ,) dy_1..dy_n = $
$ int limits_{{B(zeta,r)}^{n}} exp(,f(y_1,...,y_n) ,) dy_1..dy_n , $, where the first equality comes from setting $x_i = y_i - zeta $ and the second from the spatial invariance property.
So we get that the integral of this strictly positive f over any ball is the same. But does it imply that the integral over $(mathbb{R}^{d})^{n}$ is $infty$ ?
multivariable-calculus vector-analysis
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Consider function $f: (mathbb{R}^{d})^{n} rightarrow mathbb{R}$ with spatial invariance property of the form :
$f(x_1,x_2,...,x_n) = f(x_1 + zeta, x_2 + zeta,..., x_n + zeta)$ for $zeta in mathbb{R}^{d} $.
I want to show that $int limits_{(mathbb{R}^{d})^{n}} exp(,f(x_1,...,x_n) ,) dx_1..dx_n ,=, infty $.
I would like some help.
My only idea is to fix ball $B(0,r) subseteq mathbb{R}^{d}$ and $zeta in mathbb{R}^{d}$ and then compute $int limits_{{B(0,r)}^{n}} exp(,f(x_1,...,x_n) ,) dx_1..dx_n , = int limits_{{B(zeta,r)}^{n}} exp(,f(y_1 - zeta,...,y_n - zeta) ,) dy_1..dy_n = $
$ int limits_{{B(zeta,r)}^{n}} exp(,f(y_1,...,y_n) ,) dy_1..dy_n , $, where the first equality comes from setting $x_i = y_i - zeta $ and the second from the spatial invariance property.
So we get that the integral of this strictly positive f over any ball is the same. But does it imply that the integral over $(mathbb{R}^{d})^{n}$ is $infty$ ?
multivariable-calculus vector-analysis
Consider function $f: (mathbb{R}^{d})^{n} rightarrow mathbb{R}$ with spatial invariance property of the form :
$f(x_1,x_2,...,x_n) = f(x_1 + zeta, x_2 + zeta,..., x_n + zeta)$ for $zeta in mathbb{R}^{d} $.
I want to show that $int limits_{(mathbb{R}^{d})^{n}} exp(,f(x_1,...,x_n) ,) dx_1..dx_n ,=, infty $.
I would like some help.
My only idea is to fix ball $B(0,r) subseteq mathbb{R}^{d}$ and $zeta in mathbb{R}^{d}$ and then compute $int limits_{{B(0,r)}^{n}} exp(,f(x_1,...,x_n) ,) dx_1..dx_n , = int limits_{{B(zeta,r)}^{n}} exp(,f(y_1 - zeta,...,y_n - zeta) ,) dy_1..dy_n = $
$ int limits_{{B(zeta,r)}^{n}} exp(,f(y_1,...,y_n) ,) dy_1..dy_n , $, where the first equality comes from setting $x_i = y_i - zeta $ and the second from the spatial invariance property.
So we get that the integral of this strictly positive f over any ball is the same. But does it imply that the integral over $(mathbb{R}^{d})^{n}$ is $infty$ ?
multivariable-calculus vector-analysis
multivariable-calculus vector-analysis
asked Nov 27 at 17:52
vl.ath
317
317
add a comment |
add a comment |
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3016086%2fexponential-integral-of-translation-invariant-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3016086%2fexponential-integral-of-translation-invariant-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown