Exponential integral of translation invariant function











up vote
0
down vote

favorite












Consider function $f: (mathbb{R}^{d})^{n} rightarrow mathbb{R}$ with spatial invariance property of the form :
$f(x_1,x_2,...,x_n) = f(x_1 + zeta, x_2 + zeta,..., x_n + zeta)$ for $zeta in mathbb{R}^{d} $.



I want to show that $int limits_{(mathbb{R}^{d})^{n}} exp(,f(x_1,...,x_n) ,) dx_1..dx_n ,=, infty $.



I would like some help.



My only idea is to fix ball $B(0,r) subseteq mathbb{R}^{d}$ and $zeta in mathbb{R}^{d}$ and then compute $int limits_{{B(0,r)}^{n}} exp(,f(x_1,...,x_n) ,) dx_1..dx_n , = int limits_{{B(zeta,r)}^{n}} exp(,f(y_1 - zeta,...,y_n - zeta) ,) dy_1..dy_n = $
$ int limits_{{B(zeta,r)}^{n}} exp(,f(y_1,...,y_n) ,) dy_1..dy_n , $, where the first equality comes from setting $x_i = y_i - zeta $ and the second from the spatial invariance property.



So we get that the integral of this strictly positive f over any ball is the same. But does it imply that the integral over $(mathbb{R}^{d})^{n}$ is $infty$ ?










share|cite|improve this question


























    up vote
    0
    down vote

    favorite












    Consider function $f: (mathbb{R}^{d})^{n} rightarrow mathbb{R}$ with spatial invariance property of the form :
    $f(x_1,x_2,...,x_n) = f(x_1 + zeta, x_2 + zeta,..., x_n + zeta)$ for $zeta in mathbb{R}^{d} $.



    I want to show that $int limits_{(mathbb{R}^{d})^{n}} exp(,f(x_1,...,x_n) ,) dx_1..dx_n ,=, infty $.



    I would like some help.



    My only idea is to fix ball $B(0,r) subseteq mathbb{R}^{d}$ and $zeta in mathbb{R}^{d}$ and then compute $int limits_{{B(0,r)}^{n}} exp(,f(x_1,...,x_n) ,) dx_1..dx_n , = int limits_{{B(zeta,r)}^{n}} exp(,f(y_1 - zeta,...,y_n - zeta) ,) dy_1..dy_n = $
    $ int limits_{{B(zeta,r)}^{n}} exp(,f(y_1,...,y_n) ,) dy_1..dy_n , $, where the first equality comes from setting $x_i = y_i - zeta $ and the second from the spatial invariance property.



    So we get that the integral of this strictly positive f over any ball is the same. But does it imply that the integral over $(mathbb{R}^{d})^{n}$ is $infty$ ?










    share|cite|improve this question
























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      Consider function $f: (mathbb{R}^{d})^{n} rightarrow mathbb{R}$ with spatial invariance property of the form :
      $f(x_1,x_2,...,x_n) = f(x_1 + zeta, x_2 + zeta,..., x_n + zeta)$ for $zeta in mathbb{R}^{d} $.



      I want to show that $int limits_{(mathbb{R}^{d})^{n}} exp(,f(x_1,...,x_n) ,) dx_1..dx_n ,=, infty $.



      I would like some help.



      My only idea is to fix ball $B(0,r) subseteq mathbb{R}^{d}$ and $zeta in mathbb{R}^{d}$ and then compute $int limits_{{B(0,r)}^{n}} exp(,f(x_1,...,x_n) ,) dx_1..dx_n , = int limits_{{B(zeta,r)}^{n}} exp(,f(y_1 - zeta,...,y_n - zeta) ,) dy_1..dy_n = $
      $ int limits_{{B(zeta,r)}^{n}} exp(,f(y_1,...,y_n) ,) dy_1..dy_n , $, where the first equality comes from setting $x_i = y_i - zeta $ and the second from the spatial invariance property.



      So we get that the integral of this strictly positive f over any ball is the same. But does it imply that the integral over $(mathbb{R}^{d})^{n}$ is $infty$ ?










      share|cite|improve this question













      Consider function $f: (mathbb{R}^{d})^{n} rightarrow mathbb{R}$ with spatial invariance property of the form :
      $f(x_1,x_2,...,x_n) = f(x_1 + zeta, x_2 + zeta,..., x_n + zeta)$ for $zeta in mathbb{R}^{d} $.



      I want to show that $int limits_{(mathbb{R}^{d})^{n}} exp(,f(x_1,...,x_n) ,) dx_1..dx_n ,=, infty $.



      I would like some help.



      My only idea is to fix ball $B(0,r) subseteq mathbb{R}^{d}$ and $zeta in mathbb{R}^{d}$ and then compute $int limits_{{B(0,r)}^{n}} exp(,f(x_1,...,x_n) ,) dx_1..dx_n , = int limits_{{B(zeta,r)}^{n}} exp(,f(y_1 - zeta,...,y_n - zeta) ,) dy_1..dy_n = $
      $ int limits_{{B(zeta,r)}^{n}} exp(,f(y_1,...,y_n) ,) dy_1..dy_n , $, where the first equality comes from setting $x_i = y_i - zeta $ and the second from the spatial invariance property.



      So we get that the integral of this strictly positive f over any ball is the same. But does it imply that the integral over $(mathbb{R}^{d})^{n}$ is $infty$ ?







      multivariable-calculus vector-analysis






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Nov 27 at 17:52









      vl.ath

      317




      317



























          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3016086%2fexponential-integral-of-translation-invariant-function%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown






























          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3016086%2fexponential-integral-of-translation-invariant-function%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Berounka

          Different font size/position of beamer's navigation symbols template's content depending on regular/plain...

          Sphinx de Gizeh