Skew product of Hilbert Spaces
up vote
0
down vote
favorite
I’m researching into relations of Fock spaces (in particular so-called “exponential types”) and in the book “Introduction to Algebraic and Constructive Quantum Field Theory” by Segal, Baez and Zhou they write that the antisymmitrised Fock space over a direct sum of 2 Hilbert spaces is isomorphic to the “skew product” of the antisymmitrised Fock spaces of both Hilbert spaces. I’m not familiar with this operation of a skew product, it isn’t defined in the book explictely and I can’t find anything written on it in the context of Hilbert spaces. It carries the symbol of a tensor product symbol with a line underneath, that is:
$$ H_1 underline{otimes } H_2$$
Would denote the skew product of two Hilbert spaces $H_1$ and $H_2$.
Anybody know the definition of this operation?
real-analysis functional-analysis hilbert-spaces tensor-products quantum-field-theory
add a comment |
up vote
0
down vote
favorite
I’m researching into relations of Fock spaces (in particular so-called “exponential types”) and in the book “Introduction to Algebraic and Constructive Quantum Field Theory” by Segal, Baez and Zhou they write that the antisymmitrised Fock space over a direct sum of 2 Hilbert spaces is isomorphic to the “skew product” of the antisymmitrised Fock spaces of both Hilbert spaces. I’m not familiar with this operation of a skew product, it isn’t defined in the book explictely and I can’t find anything written on it in the context of Hilbert spaces. It carries the symbol of a tensor product symbol with a line underneath, that is:
$$ H_1 underline{otimes } H_2$$
Would denote the skew product of two Hilbert spaces $H_1$ and $H_2$.
Anybody know the definition of this operation?
real-analysis functional-analysis hilbert-spaces tensor-products quantum-field-theory
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I’m researching into relations of Fock spaces (in particular so-called “exponential types”) and in the book “Introduction to Algebraic and Constructive Quantum Field Theory” by Segal, Baez and Zhou they write that the antisymmitrised Fock space over a direct sum of 2 Hilbert spaces is isomorphic to the “skew product” of the antisymmitrised Fock spaces of both Hilbert spaces. I’m not familiar with this operation of a skew product, it isn’t defined in the book explictely and I can’t find anything written on it in the context of Hilbert spaces. It carries the symbol of a tensor product symbol with a line underneath, that is:
$$ H_1 underline{otimes } H_2$$
Would denote the skew product of two Hilbert spaces $H_1$ and $H_2$.
Anybody know the definition of this operation?
real-analysis functional-analysis hilbert-spaces tensor-products quantum-field-theory
I’m researching into relations of Fock spaces (in particular so-called “exponential types”) and in the book “Introduction to Algebraic and Constructive Quantum Field Theory” by Segal, Baez and Zhou they write that the antisymmitrised Fock space over a direct sum of 2 Hilbert spaces is isomorphic to the “skew product” of the antisymmitrised Fock spaces of both Hilbert spaces. I’m not familiar with this operation of a skew product, it isn’t defined in the book explictely and I can’t find anything written on it in the context of Hilbert spaces. It carries the symbol of a tensor product symbol with a line underneath, that is:
$$ H_1 underline{otimes } H_2$$
Would denote the skew product of two Hilbert spaces $H_1$ and $H_2$.
Anybody know the definition of this operation?
real-analysis functional-analysis hilbert-spaces tensor-products quantum-field-theory
real-analysis functional-analysis hilbert-spaces tensor-products quantum-field-theory
asked Nov 27 at 17:48
CS1994
1464
1464
add a comment |
add a comment |
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3016080%2fskew-product-of-hilbert-spaces%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3016080%2fskew-product-of-hilbert-spaces%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown