Proof that $exp(x+y) = exp(x)*exp(y)$ using limit definition of $exp(x)$











up vote
4
down vote

favorite












I want to prove: $exp(x+y) = exp(x)cdot exp(y)$ using the definition: $exp(x) = lim_{ntoinfty} (1+frac{x}{n})^n$



I am having trouble completing the proof, but here is my idea so far: $$lim_{ntoinfty} left(1+frac{x+y}{n}right)^n = lim_{ntoinfty} left(1+frac{x}{n}right)^n cdot lim_{ntoinfty} left(1+frac{y}{n}right)^n =
lim_{ntoinfty} left(left(1+frac{x}{n}right)^n cdot left(1+frac{y}{n}right)^n right) $$



Now I rearrange the last expression: $$lim_{ntoinfty} left(1+frac{x+y+frac{xy}{n}}{n}right)^n $$



From here my idea is to somehow show that this limit is equal to $$lim_{ntoinfty} left(1+frac{x+y}{n}right)^n = exp(x+y)$$ using the Squeeze Theorem and perhaps Bernoulli's Inequality, but I am at a loss as to how exactly to do it. I'd appreciate your help.










share|cite|improve this question




















  • 9




    These should be the limit as $nrightarrowinfty$?
    – gd1035
    Nov 27 at 18:59










  • Thank you, yes. Fixed.
    – TomRatTUM
    Nov 27 at 19:16










  • See this answer math.stackexchange.com/a/3000717/72031
    – Paramanand Singh
    Nov 28 at 1:50















up vote
4
down vote

favorite












I want to prove: $exp(x+y) = exp(x)cdot exp(y)$ using the definition: $exp(x) = lim_{ntoinfty} (1+frac{x}{n})^n$



I am having trouble completing the proof, but here is my idea so far: $$lim_{ntoinfty} left(1+frac{x+y}{n}right)^n = lim_{ntoinfty} left(1+frac{x}{n}right)^n cdot lim_{ntoinfty} left(1+frac{y}{n}right)^n =
lim_{ntoinfty} left(left(1+frac{x}{n}right)^n cdot left(1+frac{y}{n}right)^n right) $$



Now I rearrange the last expression: $$lim_{ntoinfty} left(1+frac{x+y+frac{xy}{n}}{n}right)^n $$



From here my idea is to somehow show that this limit is equal to $$lim_{ntoinfty} left(1+frac{x+y}{n}right)^n = exp(x+y)$$ using the Squeeze Theorem and perhaps Bernoulli's Inequality, but I am at a loss as to how exactly to do it. I'd appreciate your help.










share|cite|improve this question




















  • 9




    These should be the limit as $nrightarrowinfty$?
    – gd1035
    Nov 27 at 18:59










  • Thank you, yes. Fixed.
    – TomRatTUM
    Nov 27 at 19:16










  • See this answer math.stackexchange.com/a/3000717/72031
    – Paramanand Singh
    Nov 28 at 1:50













up vote
4
down vote

favorite









up vote
4
down vote

favorite











I want to prove: $exp(x+y) = exp(x)cdot exp(y)$ using the definition: $exp(x) = lim_{ntoinfty} (1+frac{x}{n})^n$



I am having trouble completing the proof, but here is my idea so far: $$lim_{ntoinfty} left(1+frac{x+y}{n}right)^n = lim_{ntoinfty} left(1+frac{x}{n}right)^n cdot lim_{ntoinfty} left(1+frac{y}{n}right)^n =
lim_{ntoinfty} left(left(1+frac{x}{n}right)^n cdot left(1+frac{y}{n}right)^n right) $$



Now I rearrange the last expression: $$lim_{ntoinfty} left(1+frac{x+y+frac{xy}{n}}{n}right)^n $$



From here my idea is to somehow show that this limit is equal to $$lim_{ntoinfty} left(1+frac{x+y}{n}right)^n = exp(x+y)$$ using the Squeeze Theorem and perhaps Bernoulli's Inequality, but I am at a loss as to how exactly to do it. I'd appreciate your help.










share|cite|improve this question















I want to prove: $exp(x+y) = exp(x)cdot exp(y)$ using the definition: $exp(x) = lim_{ntoinfty} (1+frac{x}{n})^n$



I am having trouble completing the proof, but here is my idea so far: $$lim_{ntoinfty} left(1+frac{x+y}{n}right)^n = lim_{ntoinfty} left(1+frac{x}{n}right)^n cdot lim_{ntoinfty} left(1+frac{y}{n}right)^n =
lim_{ntoinfty} left(left(1+frac{x}{n}right)^n cdot left(1+frac{y}{n}right)^n right) $$



Now I rearrange the last expression: $$lim_{ntoinfty} left(1+frac{x+y+frac{xy}{n}}{n}right)^n $$



From here my idea is to somehow show that this limit is equal to $$lim_{ntoinfty} left(1+frac{x+y}{n}right)^n = exp(x+y)$$ using the Squeeze Theorem and perhaps Bernoulli's Inequality, but I am at a loss as to how exactly to do it. I'd appreciate your help.







real-analysis limits exponential-function






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 27 at 19:15

























asked Nov 27 at 18:57









TomRatTUM

234




234








  • 9




    These should be the limit as $nrightarrowinfty$?
    – gd1035
    Nov 27 at 18:59










  • Thank you, yes. Fixed.
    – TomRatTUM
    Nov 27 at 19:16










  • See this answer math.stackexchange.com/a/3000717/72031
    – Paramanand Singh
    Nov 28 at 1:50














  • 9




    These should be the limit as $nrightarrowinfty$?
    – gd1035
    Nov 27 at 18:59










  • Thank you, yes. Fixed.
    – TomRatTUM
    Nov 27 at 19:16










  • See this answer math.stackexchange.com/a/3000717/72031
    – Paramanand Singh
    Nov 28 at 1:50








9




9




These should be the limit as $nrightarrowinfty$?
– gd1035
Nov 27 at 18:59




These should be the limit as $nrightarrowinfty$?
– gd1035
Nov 27 at 18:59












Thank you, yes. Fixed.
– TomRatTUM
Nov 27 at 19:16




Thank you, yes. Fixed.
– TomRatTUM
Nov 27 at 19:16












See this answer math.stackexchange.com/a/3000717/72031
– Paramanand Singh
Nov 28 at 1:50




See this answer math.stackexchange.com/a/3000717/72031
– Paramanand Singh
Nov 28 at 1:50










2 Answers
2






active

oldest

votes

















up vote
1
down vote



accepted










$$
\dfrac{e^{x+y}}{e^x}=lim_{nto+infty}{Big(dfrac{1+frac {x+y} n}{1+frac x n}Big)^n}=
\lim_{nto+infty}Big(frac{x+y+n}{x+n}Big)^n=lim_{nto+infty}Big(1+frac y{x+n}Big)^n=
\lim_{nto+infty}frac{Big(1+frac y {x+n}Big)^{n+x}}{Big(1+frac y {x+n}Big)^x}=e^y
$$

Because $lim_{nto+infty}{Big(1+frac y {x+n}Big)^{n+x}}=e^y$ and $lim_{nto+infty}{Big(1+frac y {x+n}Big)^x}=1$






share|cite|improve this answer





















  • $x+n$ is not necessarily a positive integer.
    – Paramanand Singh
    Nov 28 at 1:52


















up vote
2
down vote













It suffices to show that
$$
lim_{ntoinfty}frac{left(1+frac{x+y}{n}+frac{xy}{n^2}right)^n}{left(1+frac{x+y}{n}right)^n}=1 tag{1}
$$

But
$$
frac{left(1+frac{x+y}{n}+frac{xy}{n^2}right)^n}{left(1+frac{x+y}{n}right)^n}=
left(1+frac{xy}{n^2(1+frac{x+y}{n})}right)^n
$$

and as, for suitably large $n$, say $nge n_0$, we have that
$$
frac{1}{2}<1+frac{x+y}{n}<2,
$$

then
$$
left(1+frac{xy}{2n^2}right)^n<frac{left(1+frac{x+y}{n}+frac{xy}{n^2}right)^n}{left(1+frac{x+y}{n}right)^n}=
left(1+frac{xy}{n^2(1+frac{x+y}{n})}right)^n<left(1+frac{2xy}{n^2}right)^n
$$

Now, for all $zinmathbb R$, we have
$$
left(1+frac{z}{n^2}right)^n=left(left(1+frac{z}{n^2}right)^{n^2}right)^{1/n}to 1,
$$

since $left(1+frac{z}{n^2}right)^{n^2}to e^z$.



Thus
$$
lim_{ntoinfty}left(1+frac{xy}{2n^2}right)^n=lim_{ntoinfty}left(1+frac{2xy}{n^2}right)^n=1,
$$

and hence $(1)$ holds.






share|cite|improve this answer





















    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3016162%2fproof-that-expxy-expx-expy-using-limit-definition-of-expx%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    1
    down vote



    accepted










    $$
    \dfrac{e^{x+y}}{e^x}=lim_{nto+infty}{Big(dfrac{1+frac {x+y} n}{1+frac x n}Big)^n}=
    \lim_{nto+infty}Big(frac{x+y+n}{x+n}Big)^n=lim_{nto+infty}Big(1+frac y{x+n}Big)^n=
    \lim_{nto+infty}frac{Big(1+frac y {x+n}Big)^{n+x}}{Big(1+frac y {x+n}Big)^x}=e^y
    $$

    Because $lim_{nto+infty}{Big(1+frac y {x+n}Big)^{n+x}}=e^y$ and $lim_{nto+infty}{Big(1+frac y {x+n}Big)^x}=1$






    share|cite|improve this answer





















    • $x+n$ is not necessarily a positive integer.
      – Paramanand Singh
      Nov 28 at 1:52















    up vote
    1
    down vote



    accepted










    $$
    \dfrac{e^{x+y}}{e^x}=lim_{nto+infty}{Big(dfrac{1+frac {x+y} n}{1+frac x n}Big)^n}=
    \lim_{nto+infty}Big(frac{x+y+n}{x+n}Big)^n=lim_{nto+infty}Big(1+frac y{x+n}Big)^n=
    \lim_{nto+infty}frac{Big(1+frac y {x+n}Big)^{n+x}}{Big(1+frac y {x+n}Big)^x}=e^y
    $$

    Because $lim_{nto+infty}{Big(1+frac y {x+n}Big)^{n+x}}=e^y$ and $lim_{nto+infty}{Big(1+frac y {x+n}Big)^x}=1$






    share|cite|improve this answer





















    • $x+n$ is not necessarily a positive integer.
      – Paramanand Singh
      Nov 28 at 1:52













    up vote
    1
    down vote



    accepted







    up vote
    1
    down vote



    accepted






    $$
    \dfrac{e^{x+y}}{e^x}=lim_{nto+infty}{Big(dfrac{1+frac {x+y} n}{1+frac x n}Big)^n}=
    \lim_{nto+infty}Big(frac{x+y+n}{x+n}Big)^n=lim_{nto+infty}Big(1+frac y{x+n}Big)^n=
    \lim_{nto+infty}frac{Big(1+frac y {x+n}Big)^{n+x}}{Big(1+frac y {x+n}Big)^x}=e^y
    $$

    Because $lim_{nto+infty}{Big(1+frac y {x+n}Big)^{n+x}}=e^y$ and $lim_{nto+infty}{Big(1+frac y {x+n}Big)^x}=1$






    share|cite|improve this answer












    $$
    \dfrac{e^{x+y}}{e^x}=lim_{nto+infty}{Big(dfrac{1+frac {x+y} n}{1+frac x n}Big)^n}=
    \lim_{nto+infty}Big(frac{x+y+n}{x+n}Big)^n=lim_{nto+infty}Big(1+frac y{x+n}Big)^n=
    \lim_{nto+infty}frac{Big(1+frac y {x+n}Big)^{n+x}}{Big(1+frac y {x+n}Big)^x}=e^y
    $$

    Because $lim_{nto+infty}{Big(1+frac y {x+n}Big)^{n+x}}=e^y$ and $lim_{nto+infty}{Big(1+frac y {x+n}Big)^x}=1$







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Nov 27 at 19:06









    Samvel Safaryan

    509111




    509111












    • $x+n$ is not necessarily a positive integer.
      – Paramanand Singh
      Nov 28 at 1:52


















    • $x+n$ is not necessarily a positive integer.
      – Paramanand Singh
      Nov 28 at 1:52
















    $x+n$ is not necessarily a positive integer.
    – Paramanand Singh
    Nov 28 at 1:52




    $x+n$ is not necessarily a positive integer.
    – Paramanand Singh
    Nov 28 at 1:52










    up vote
    2
    down vote













    It suffices to show that
    $$
    lim_{ntoinfty}frac{left(1+frac{x+y}{n}+frac{xy}{n^2}right)^n}{left(1+frac{x+y}{n}right)^n}=1 tag{1}
    $$

    But
    $$
    frac{left(1+frac{x+y}{n}+frac{xy}{n^2}right)^n}{left(1+frac{x+y}{n}right)^n}=
    left(1+frac{xy}{n^2(1+frac{x+y}{n})}right)^n
    $$

    and as, for suitably large $n$, say $nge n_0$, we have that
    $$
    frac{1}{2}<1+frac{x+y}{n}<2,
    $$

    then
    $$
    left(1+frac{xy}{2n^2}right)^n<frac{left(1+frac{x+y}{n}+frac{xy}{n^2}right)^n}{left(1+frac{x+y}{n}right)^n}=
    left(1+frac{xy}{n^2(1+frac{x+y}{n})}right)^n<left(1+frac{2xy}{n^2}right)^n
    $$

    Now, for all $zinmathbb R$, we have
    $$
    left(1+frac{z}{n^2}right)^n=left(left(1+frac{z}{n^2}right)^{n^2}right)^{1/n}to 1,
    $$

    since $left(1+frac{z}{n^2}right)^{n^2}to e^z$.



    Thus
    $$
    lim_{ntoinfty}left(1+frac{xy}{2n^2}right)^n=lim_{ntoinfty}left(1+frac{2xy}{n^2}right)^n=1,
    $$

    and hence $(1)$ holds.






    share|cite|improve this answer

























      up vote
      2
      down vote













      It suffices to show that
      $$
      lim_{ntoinfty}frac{left(1+frac{x+y}{n}+frac{xy}{n^2}right)^n}{left(1+frac{x+y}{n}right)^n}=1 tag{1}
      $$

      But
      $$
      frac{left(1+frac{x+y}{n}+frac{xy}{n^2}right)^n}{left(1+frac{x+y}{n}right)^n}=
      left(1+frac{xy}{n^2(1+frac{x+y}{n})}right)^n
      $$

      and as, for suitably large $n$, say $nge n_0$, we have that
      $$
      frac{1}{2}<1+frac{x+y}{n}<2,
      $$

      then
      $$
      left(1+frac{xy}{2n^2}right)^n<frac{left(1+frac{x+y}{n}+frac{xy}{n^2}right)^n}{left(1+frac{x+y}{n}right)^n}=
      left(1+frac{xy}{n^2(1+frac{x+y}{n})}right)^n<left(1+frac{2xy}{n^2}right)^n
      $$

      Now, for all $zinmathbb R$, we have
      $$
      left(1+frac{z}{n^2}right)^n=left(left(1+frac{z}{n^2}right)^{n^2}right)^{1/n}to 1,
      $$

      since $left(1+frac{z}{n^2}right)^{n^2}to e^z$.



      Thus
      $$
      lim_{ntoinfty}left(1+frac{xy}{2n^2}right)^n=lim_{ntoinfty}left(1+frac{2xy}{n^2}right)^n=1,
      $$

      and hence $(1)$ holds.






      share|cite|improve this answer























        up vote
        2
        down vote










        up vote
        2
        down vote









        It suffices to show that
        $$
        lim_{ntoinfty}frac{left(1+frac{x+y}{n}+frac{xy}{n^2}right)^n}{left(1+frac{x+y}{n}right)^n}=1 tag{1}
        $$

        But
        $$
        frac{left(1+frac{x+y}{n}+frac{xy}{n^2}right)^n}{left(1+frac{x+y}{n}right)^n}=
        left(1+frac{xy}{n^2(1+frac{x+y}{n})}right)^n
        $$

        and as, for suitably large $n$, say $nge n_0$, we have that
        $$
        frac{1}{2}<1+frac{x+y}{n}<2,
        $$

        then
        $$
        left(1+frac{xy}{2n^2}right)^n<frac{left(1+frac{x+y}{n}+frac{xy}{n^2}right)^n}{left(1+frac{x+y}{n}right)^n}=
        left(1+frac{xy}{n^2(1+frac{x+y}{n})}right)^n<left(1+frac{2xy}{n^2}right)^n
        $$

        Now, for all $zinmathbb R$, we have
        $$
        left(1+frac{z}{n^2}right)^n=left(left(1+frac{z}{n^2}right)^{n^2}right)^{1/n}to 1,
        $$

        since $left(1+frac{z}{n^2}right)^{n^2}to e^z$.



        Thus
        $$
        lim_{ntoinfty}left(1+frac{xy}{2n^2}right)^n=lim_{ntoinfty}left(1+frac{2xy}{n^2}right)^n=1,
        $$

        and hence $(1)$ holds.






        share|cite|improve this answer












        It suffices to show that
        $$
        lim_{ntoinfty}frac{left(1+frac{x+y}{n}+frac{xy}{n^2}right)^n}{left(1+frac{x+y}{n}right)^n}=1 tag{1}
        $$

        But
        $$
        frac{left(1+frac{x+y}{n}+frac{xy}{n^2}right)^n}{left(1+frac{x+y}{n}right)^n}=
        left(1+frac{xy}{n^2(1+frac{x+y}{n})}right)^n
        $$

        and as, for suitably large $n$, say $nge n_0$, we have that
        $$
        frac{1}{2}<1+frac{x+y}{n}<2,
        $$

        then
        $$
        left(1+frac{xy}{2n^2}right)^n<frac{left(1+frac{x+y}{n}+frac{xy}{n^2}right)^n}{left(1+frac{x+y}{n}right)^n}=
        left(1+frac{xy}{n^2(1+frac{x+y}{n})}right)^n<left(1+frac{2xy}{n^2}right)^n
        $$

        Now, for all $zinmathbb R$, we have
        $$
        left(1+frac{z}{n^2}right)^n=left(left(1+frac{z}{n^2}right)^{n^2}right)^{1/n}to 1,
        $$

        since $left(1+frac{z}{n^2}right)^{n^2}to e^z$.



        Thus
        $$
        lim_{ntoinfty}left(1+frac{xy}{2n^2}right)^n=lim_{ntoinfty}left(1+frac{2xy}{n^2}right)^n=1,
        $$

        and hence $(1)$ holds.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Nov 27 at 19:10









        Yiorgos S. Smyrlis

        62.2k1383162




        62.2k1383162






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3016162%2fproof-that-expxy-expx-expy-using-limit-definition-of-expx%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Berounka

            Different font size/position of beamer's navigation symbols template's content depending on regular/plain...

            Sphinx de Gizeh