Proof that $exp(x+y) = exp(x)*exp(y)$ using limit definition of $exp(x)$
up vote
4
down vote
favorite
I want to prove: $exp(x+y) = exp(x)cdot exp(y)$ using the definition: $exp(x) = lim_{ntoinfty} (1+frac{x}{n})^n$
I am having trouble completing the proof, but here is my idea so far: $$lim_{ntoinfty} left(1+frac{x+y}{n}right)^n = lim_{ntoinfty} left(1+frac{x}{n}right)^n cdot lim_{ntoinfty} left(1+frac{y}{n}right)^n =
lim_{ntoinfty} left(left(1+frac{x}{n}right)^n cdot left(1+frac{y}{n}right)^n right) $$
Now I rearrange the last expression: $$lim_{ntoinfty} left(1+frac{x+y+frac{xy}{n}}{n}right)^n $$
From here my idea is to somehow show that this limit is equal to $$lim_{ntoinfty} left(1+frac{x+y}{n}right)^n = exp(x+y)$$ using the Squeeze Theorem and perhaps Bernoulli's Inequality, but I am at a loss as to how exactly to do it. I'd appreciate your help.
real-analysis limits exponential-function
add a comment |
up vote
4
down vote
favorite
I want to prove: $exp(x+y) = exp(x)cdot exp(y)$ using the definition: $exp(x) = lim_{ntoinfty} (1+frac{x}{n})^n$
I am having trouble completing the proof, but here is my idea so far: $$lim_{ntoinfty} left(1+frac{x+y}{n}right)^n = lim_{ntoinfty} left(1+frac{x}{n}right)^n cdot lim_{ntoinfty} left(1+frac{y}{n}right)^n =
lim_{ntoinfty} left(left(1+frac{x}{n}right)^n cdot left(1+frac{y}{n}right)^n right) $$
Now I rearrange the last expression: $$lim_{ntoinfty} left(1+frac{x+y+frac{xy}{n}}{n}right)^n $$
From here my idea is to somehow show that this limit is equal to $$lim_{ntoinfty} left(1+frac{x+y}{n}right)^n = exp(x+y)$$ using the Squeeze Theorem and perhaps Bernoulli's Inequality, but I am at a loss as to how exactly to do it. I'd appreciate your help.
real-analysis limits exponential-function
9
These should be the limit as $nrightarrowinfty$?
– gd1035
Nov 27 at 18:59
Thank you, yes. Fixed.
– TomRatTUM
Nov 27 at 19:16
See this answer math.stackexchange.com/a/3000717/72031
– Paramanand Singh
Nov 28 at 1:50
add a comment |
up vote
4
down vote
favorite
up vote
4
down vote
favorite
I want to prove: $exp(x+y) = exp(x)cdot exp(y)$ using the definition: $exp(x) = lim_{ntoinfty} (1+frac{x}{n})^n$
I am having trouble completing the proof, but here is my idea so far: $$lim_{ntoinfty} left(1+frac{x+y}{n}right)^n = lim_{ntoinfty} left(1+frac{x}{n}right)^n cdot lim_{ntoinfty} left(1+frac{y}{n}right)^n =
lim_{ntoinfty} left(left(1+frac{x}{n}right)^n cdot left(1+frac{y}{n}right)^n right) $$
Now I rearrange the last expression: $$lim_{ntoinfty} left(1+frac{x+y+frac{xy}{n}}{n}right)^n $$
From here my idea is to somehow show that this limit is equal to $$lim_{ntoinfty} left(1+frac{x+y}{n}right)^n = exp(x+y)$$ using the Squeeze Theorem and perhaps Bernoulli's Inequality, but I am at a loss as to how exactly to do it. I'd appreciate your help.
real-analysis limits exponential-function
I want to prove: $exp(x+y) = exp(x)cdot exp(y)$ using the definition: $exp(x) = lim_{ntoinfty} (1+frac{x}{n})^n$
I am having trouble completing the proof, but here is my idea so far: $$lim_{ntoinfty} left(1+frac{x+y}{n}right)^n = lim_{ntoinfty} left(1+frac{x}{n}right)^n cdot lim_{ntoinfty} left(1+frac{y}{n}right)^n =
lim_{ntoinfty} left(left(1+frac{x}{n}right)^n cdot left(1+frac{y}{n}right)^n right) $$
Now I rearrange the last expression: $$lim_{ntoinfty} left(1+frac{x+y+frac{xy}{n}}{n}right)^n $$
From here my idea is to somehow show that this limit is equal to $$lim_{ntoinfty} left(1+frac{x+y}{n}right)^n = exp(x+y)$$ using the Squeeze Theorem and perhaps Bernoulli's Inequality, but I am at a loss as to how exactly to do it. I'd appreciate your help.
real-analysis limits exponential-function
real-analysis limits exponential-function
edited Nov 27 at 19:15
asked Nov 27 at 18:57
TomRatTUM
234
234
9
These should be the limit as $nrightarrowinfty$?
– gd1035
Nov 27 at 18:59
Thank you, yes. Fixed.
– TomRatTUM
Nov 27 at 19:16
See this answer math.stackexchange.com/a/3000717/72031
– Paramanand Singh
Nov 28 at 1:50
add a comment |
9
These should be the limit as $nrightarrowinfty$?
– gd1035
Nov 27 at 18:59
Thank you, yes. Fixed.
– TomRatTUM
Nov 27 at 19:16
See this answer math.stackexchange.com/a/3000717/72031
– Paramanand Singh
Nov 28 at 1:50
9
9
These should be the limit as $nrightarrowinfty$?
– gd1035
Nov 27 at 18:59
These should be the limit as $nrightarrowinfty$?
– gd1035
Nov 27 at 18:59
Thank you, yes. Fixed.
– TomRatTUM
Nov 27 at 19:16
Thank you, yes. Fixed.
– TomRatTUM
Nov 27 at 19:16
See this answer math.stackexchange.com/a/3000717/72031
– Paramanand Singh
Nov 28 at 1:50
See this answer math.stackexchange.com/a/3000717/72031
– Paramanand Singh
Nov 28 at 1:50
add a comment |
2 Answers
2
active
oldest
votes
up vote
1
down vote
accepted
$$
\dfrac{e^{x+y}}{e^x}=lim_{nto+infty}{Big(dfrac{1+frac {x+y} n}{1+frac x n}Big)^n}=
\lim_{nto+infty}Big(frac{x+y+n}{x+n}Big)^n=lim_{nto+infty}Big(1+frac y{x+n}Big)^n=
\lim_{nto+infty}frac{Big(1+frac y {x+n}Big)^{n+x}}{Big(1+frac y {x+n}Big)^x}=e^y
$$
Because $lim_{nto+infty}{Big(1+frac y {x+n}Big)^{n+x}}=e^y$ and $lim_{nto+infty}{Big(1+frac y {x+n}Big)^x}=1$
$x+n$ is not necessarily a positive integer.
– Paramanand Singh
Nov 28 at 1:52
add a comment |
up vote
2
down vote
It suffices to show that
$$
lim_{ntoinfty}frac{left(1+frac{x+y}{n}+frac{xy}{n^2}right)^n}{left(1+frac{x+y}{n}right)^n}=1 tag{1}
$$
But
$$
frac{left(1+frac{x+y}{n}+frac{xy}{n^2}right)^n}{left(1+frac{x+y}{n}right)^n}=
left(1+frac{xy}{n^2(1+frac{x+y}{n})}right)^n
$$
and as, for suitably large $n$, say $nge n_0$, we have that
$$
frac{1}{2}<1+frac{x+y}{n}<2,
$$
then
$$
left(1+frac{xy}{2n^2}right)^n<frac{left(1+frac{x+y}{n}+frac{xy}{n^2}right)^n}{left(1+frac{x+y}{n}right)^n}=
left(1+frac{xy}{n^2(1+frac{x+y}{n})}right)^n<left(1+frac{2xy}{n^2}right)^n
$$
Now, for all $zinmathbb R$, we have
$$
left(1+frac{z}{n^2}right)^n=left(left(1+frac{z}{n^2}right)^{n^2}right)^{1/n}to 1,
$$
since $left(1+frac{z}{n^2}right)^{n^2}to e^z$.
Thus
$$
lim_{ntoinfty}left(1+frac{xy}{2n^2}right)^n=lim_{ntoinfty}left(1+frac{2xy}{n^2}right)^n=1,
$$
and hence $(1)$ holds.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3016162%2fproof-that-expxy-expx-expy-using-limit-definition-of-expx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
$$
\dfrac{e^{x+y}}{e^x}=lim_{nto+infty}{Big(dfrac{1+frac {x+y} n}{1+frac x n}Big)^n}=
\lim_{nto+infty}Big(frac{x+y+n}{x+n}Big)^n=lim_{nto+infty}Big(1+frac y{x+n}Big)^n=
\lim_{nto+infty}frac{Big(1+frac y {x+n}Big)^{n+x}}{Big(1+frac y {x+n}Big)^x}=e^y
$$
Because $lim_{nto+infty}{Big(1+frac y {x+n}Big)^{n+x}}=e^y$ and $lim_{nto+infty}{Big(1+frac y {x+n}Big)^x}=1$
$x+n$ is not necessarily a positive integer.
– Paramanand Singh
Nov 28 at 1:52
add a comment |
up vote
1
down vote
accepted
$$
\dfrac{e^{x+y}}{e^x}=lim_{nto+infty}{Big(dfrac{1+frac {x+y} n}{1+frac x n}Big)^n}=
\lim_{nto+infty}Big(frac{x+y+n}{x+n}Big)^n=lim_{nto+infty}Big(1+frac y{x+n}Big)^n=
\lim_{nto+infty}frac{Big(1+frac y {x+n}Big)^{n+x}}{Big(1+frac y {x+n}Big)^x}=e^y
$$
Because $lim_{nto+infty}{Big(1+frac y {x+n}Big)^{n+x}}=e^y$ and $lim_{nto+infty}{Big(1+frac y {x+n}Big)^x}=1$
$x+n$ is not necessarily a positive integer.
– Paramanand Singh
Nov 28 at 1:52
add a comment |
up vote
1
down vote
accepted
up vote
1
down vote
accepted
$$
\dfrac{e^{x+y}}{e^x}=lim_{nto+infty}{Big(dfrac{1+frac {x+y} n}{1+frac x n}Big)^n}=
\lim_{nto+infty}Big(frac{x+y+n}{x+n}Big)^n=lim_{nto+infty}Big(1+frac y{x+n}Big)^n=
\lim_{nto+infty}frac{Big(1+frac y {x+n}Big)^{n+x}}{Big(1+frac y {x+n}Big)^x}=e^y
$$
Because $lim_{nto+infty}{Big(1+frac y {x+n}Big)^{n+x}}=e^y$ and $lim_{nto+infty}{Big(1+frac y {x+n}Big)^x}=1$
$$
\dfrac{e^{x+y}}{e^x}=lim_{nto+infty}{Big(dfrac{1+frac {x+y} n}{1+frac x n}Big)^n}=
\lim_{nto+infty}Big(frac{x+y+n}{x+n}Big)^n=lim_{nto+infty}Big(1+frac y{x+n}Big)^n=
\lim_{nto+infty}frac{Big(1+frac y {x+n}Big)^{n+x}}{Big(1+frac y {x+n}Big)^x}=e^y
$$
Because $lim_{nto+infty}{Big(1+frac y {x+n}Big)^{n+x}}=e^y$ and $lim_{nto+infty}{Big(1+frac y {x+n}Big)^x}=1$
answered Nov 27 at 19:06
Samvel Safaryan
509111
509111
$x+n$ is not necessarily a positive integer.
– Paramanand Singh
Nov 28 at 1:52
add a comment |
$x+n$ is not necessarily a positive integer.
– Paramanand Singh
Nov 28 at 1:52
$x+n$ is not necessarily a positive integer.
– Paramanand Singh
Nov 28 at 1:52
$x+n$ is not necessarily a positive integer.
– Paramanand Singh
Nov 28 at 1:52
add a comment |
up vote
2
down vote
It suffices to show that
$$
lim_{ntoinfty}frac{left(1+frac{x+y}{n}+frac{xy}{n^2}right)^n}{left(1+frac{x+y}{n}right)^n}=1 tag{1}
$$
But
$$
frac{left(1+frac{x+y}{n}+frac{xy}{n^2}right)^n}{left(1+frac{x+y}{n}right)^n}=
left(1+frac{xy}{n^2(1+frac{x+y}{n})}right)^n
$$
and as, for suitably large $n$, say $nge n_0$, we have that
$$
frac{1}{2}<1+frac{x+y}{n}<2,
$$
then
$$
left(1+frac{xy}{2n^2}right)^n<frac{left(1+frac{x+y}{n}+frac{xy}{n^2}right)^n}{left(1+frac{x+y}{n}right)^n}=
left(1+frac{xy}{n^2(1+frac{x+y}{n})}right)^n<left(1+frac{2xy}{n^2}right)^n
$$
Now, for all $zinmathbb R$, we have
$$
left(1+frac{z}{n^2}right)^n=left(left(1+frac{z}{n^2}right)^{n^2}right)^{1/n}to 1,
$$
since $left(1+frac{z}{n^2}right)^{n^2}to e^z$.
Thus
$$
lim_{ntoinfty}left(1+frac{xy}{2n^2}right)^n=lim_{ntoinfty}left(1+frac{2xy}{n^2}right)^n=1,
$$
and hence $(1)$ holds.
add a comment |
up vote
2
down vote
It suffices to show that
$$
lim_{ntoinfty}frac{left(1+frac{x+y}{n}+frac{xy}{n^2}right)^n}{left(1+frac{x+y}{n}right)^n}=1 tag{1}
$$
But
$$
frac{left(1+frac{x+y}{n}+frac{xy}{n^2}right)^n}{left(1+frac{x+y}{n}right)^n}=
left(1+frac{xy}{n^2(1+frac{x+y}{n})}right)^n
$$
and as, for suitably large $n$, say $nge n_0$, we have that
$$
frac{1}{2}<1+frac{x+y}{n}<2,
$$
then
$$
left(1+frac{xy}{2n^2}right)^n<frac{left(1+frac{x+y}{n}+frac{xy}{n^2}right)^n}{left(1+frac{x+y}{n}right)^n}=
left(1+frac{xy}{n^2(1+frac{x+y}{n})}right)^n<left(1+frac{2xy}{n^2}right)^n
$$
Now, for all $zinmathbb R$, we have
$$
left(1+frac{z}{n^2}right)^n=left(left(1+frac{z}{n^2}right)^{n^2}right)^{1/n}to 1,
$$
since $left(1+frac{z}{n^2}right)^{n^2}to e^z$.
Thus
$$
lim_{ntoinfty}left(1+frac{xy}{2n^2}right)^n=lim_{ntoinfty}left(1+frac{2xy}{n^2}right)^n=1,
$$
and hence $(1)$ holds.
add a comment |
up vote
2
down vote
up vote
2
down vote
It suffices to show that
$$
lim_{ntoinfty}frac{left(1+frac{x+y}{n}+frac{xy}{n^2}right)^n}{left(1+frac{x+y}{n}right)^n}=1 tag{1}
$$
But
$$
frac{left(1+frac{x+y}{n}+frac{xy}{n^2}right)^n}{left(1+frac{x+y}{n}right)^n}=
left(1+frac{xy}{n^2(1+frac{x+y}{n})}right)^n
$$
and as, for suitably large $n$, say $nge n_0$, we have that
$$
frac{1}{2}<1+frac{x+y}{n}<2,
$$
then
$$
left(1+frac{xy}{2n^2}right)^n<frac{left(1+frac{x+y}{n}+frac{xy}{n^2}right)^n}{left(1+frac{x+y}{n}right)^n}=
left(1+frac{xy}{n^2(1+frac{x+y}{n})}right)^n<left(1+frac{2xy}{n^2}right)^n
$$
Now, for all $zinmathbb R$, we have
$$
left(1+frac{z}{n^2}right)^n=left(left(1+frac{z}{n^2}right)^{n^2}right)^{1/n}to 1,
$$
since $left(1+frac{z}{n^2}right)^{n^2}to e^z$.
Thus
$$
lim_{ntoinfty}left(1+frac{xy}{2n^2}right)^n=lim_{ntoinfty}left(1+frac{2xy}{n^2}right)^n=1,
$$
and hence $(1)$ holds.
It suffices to show that
$$
lim_{ntoinfty}frac{left(1+frac{x+y}{n}+frac{xy}{n^2}right)^n}{left(1+frac{x+y}{n}right)^n}=1 tag{1}
$$
But
$$
frac{left(1+frac{x+y}{n}+frac{xy}{n^2}right)^n}{left(1+frac{x+y}{n}right)^n}=
left(1+frac{xy}{n^2(1+frac{x+y}{n})}right)^n
$$
and as, for suitably large $n$, say $nge n_0$, we have that
$$
frac{1}{2}<1+frac{x+y}{n}<2,
$$
then
$$
left(1+frac{xy}{2n^2}right)^n<frac{left(1+frac{x+y}{n}+frac{xy}{n^2}right)^n}{left(1+frac{x+y}{n}right)^n}=
left(1+frac{xy}{n^2(1+frac{x+y}{n})}right)^n<left(1+frac{2xy}{n^2}right)^n
$$
Now, for all $zinmathbb R$, we have
$$
left(1+frac{z}{n^2}right)^n=left(left(1+frac{z}{n^2}right)^{n^2}right)^{1/n}to 1,
$$
since $left(1+frac{z}{n^2}right)^{n^2}to e^z$.
Thus
$$
lim_{ntoinfty}left(1+frac{xy}{2n^2}right)^n=lim_{ntoinfty}left(1+frac{2xy}{n^2}right)^n=1,
$$
and hence $(1)$ holds.
answered Nov 27 at 19:10
Yiorgos S. Smyrlis
62.2k1383162
62.2k1383162
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3016162%2fproof-that-expxy-expx-expy-using-limit-definition-of-expx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
9
These should be the limit as $nrightarrowinfty$?
– gd1035
Nov 27 at 18:59
Thank you, yes. Fixed.
– TomRatTUM
Nov 27 at 19:16
See this answer math.stackexchange.com/a/3000717/72031
– Paramanand Singh
Nov 28 at 1:50