Discretization of an exponential variable












1












$begingroup$


Given $X=Exp(lambda)$, i have to define $Y=ceil(X)$ in order to prove the link between exponential and geometric variables.



By definition of ceiling $forall xin mathbb{R},exists nin mathbb{N}:xleq n< x+1$, so:



$mathbb{P}(Y=n)=mathbb{P}(n-1< Xleq n)=mathbb{P}(Xleq n)-mathbb{P}(X<n-1)=F_X(n)-F_X(n-1)=Exp(n)-Exp(n-1)=1-e^{-lambda n}-1+e^{-lambda (n-1)}=e^{-lambda n}(e^{lambda}-1)$.



Nevertheless, the result is $e^{-lambda n}(1-e^{-lambda})Rightarrow Ysim Geo(1-e^{-lambda})$.



1) Where i wrong in the passages?



2) Geometric variable has $n-1$ at the exponent, not $n$. So, why that result?



Thanks for any help!










share|cite|improve this question









$endgroup$

















    1












    $begingroup$


    Given $X=Exp(lambda)$, i have to define $Y=ceil(X)$ in order to prove the link between exponential and geometric variables.



    By definition of ceiling $forall xin mathbb{R},exists nin mathbb{N}:xleq n< x+1$, so:



    $mathbb{P}(Y=n)=mathbb{P}(n-1< Xleq n)=mathbb{P}(Xleq n)-mathbb{P}(X<n-1)=F_X(n)-F_X(n-1)=Exp(n)-Exp(n-1)=1-e^{-lambda n}-1+e^{-lambda (n-1)}=e^{-lambda n}(e^{lambda}-1)$.



    Nevertheless, the result is $e^{-lambda n}(1-e^{-lambda})Rightarrow Ysim Geo(1-e^{-lambda})$.



    1) Where i wrong in the passages?



    2) Geometric variable has $n-1$ at the exponent, not $n$. So, why that result?



    Thanks for any help!










    share|cite|improve this question









    $endgroup$















      1












      1








      1





      $begingroup$


      Given $X=Exp(lambda)$, i have to define $Y=ceil(X)$ in order to prove the link between exponential and geometric variables.



      By definition of ceiling $forall xin mathbb{R},exists nin mathbb{N}:xleq n< x+1$, so:



      $mathbb{P}(Y=n)=mathbb{P}(n-1< Xleq n)=mathbb{P}(Xleq n)-mathbb{P}(X<n-1)=F_X(n)-F_X(n-1)=Exp(n)-Exp(n-1)=1-e^{-lambda n}-1+e^{-lambda (n-1)}=e^{-lambda n}(e^{lambda}-1)$.



      Nevertheless, the result is $e^{-lambda n}(1-e^{-lambda})Rightarrow Ysim Geo(1-e^{-lambda})$.



      1) Where i wrong in the passages?



      2) Geometric variable has $n-1$ at the exponent, not $n$. So, why that result?



      Thanks for any help!










      share|cite|improve this question









      $endgroup$




      Given $X=Exp(lambda)$, i have to define $Y=ceil(X)$ in order to prove the link between exponential and geometric variables.



      By definition of ceiling $forall xin mathbb{R},exists nin mathbb{N}:xleq n< x+1$, so:



      $mathbb{P}(Y=n)=mathbb{P}(n-1< Xleq n)=mathbb{P}(Xleq n)-mathbb{P}(X<n-1)=F_X(n)-F_X(n-1)=Exp(n)-Exp(n-1)=1-e^{-lambda n}-1+e^{-lambda (n-1)}=e^{-lambda n}(e^{lambda}-1)$.



      Nevertheless, the result is $e^{-lambda n}(1-e^{-lambda})Rightarrow Ysim Geo(1-e^{-lambda})$.



      1) Where i wrong in the passages?



      2) Geometric variable has $n-1$ at the exponent, not $n$. So, why that result?



      Thanks for any help!







      probability probability-distributions exponential-function density-function






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 6 '18 at 17:19









      Marco PittellaMarco Pittella

      1288




      1288






















          2 Answers
          2






          active

          oldest

          votes


















          0












          $begingroup$

          You did nothing wrong but can represent it differently:



          $e^{-lambda (n-1)}-e^{-lambda n} = e^{-lambda (n-1)}-e^{-lambda (n-1) -lambda} =e^{-lambda (n-1)}(1-e^{-lambda})sim Geo(1-e^{-lambda}) $



          but



          $e^{−λn}(1−e^{−λ})neq e^{−λn}(e^{λ}-1)$.






          share|cite|improve this answer









          $endgroup$





















            0












            $begingroup$

            You have $e^{-lambda n}(e^{lambda}-1)$. This is equal to $e^{-lambda(n-1)}-e^{-lambda n}$. Now we can factor out $(e^{-lambda})^{n-1}$



            We have to add $lambda (n-1)$ to both exponents.




            • $-lambda(n-1)+lambda(n-1)=0$

            • $-lambda n+lambda (n-1)=lambda (-n+n-1)=-lambda$


            Therefore we get $(e^{-lambda})^{n-1}cdot (e^0-e^{-lambda})=(e^{-lambda})^{n-1}cdot (1-e^{-lambda})$



            This is a geometric distribution with $p=1-e^{-lambda}$






            share|cite|improve this answer











            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3028782%2fdiscretization-of-an-exponential-variable%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              0












              $begingroup$

              You did nothing wrong but can represent it differently:



              $e^{-lambda (n-1)}-e^{-lambda n} = e^{-lambda (n-1)}-e^{-lambda (n-1) -lambda} =e^{-lambda (n-1)}(1-e^{-lambda})sim Geo(1-e^{-lambda}) $



              but



              $e^{−λn}(1−e^{−λ})neq e^{−λn}(e^{λ}-1)$.






              share|cite|improve this answer









              $endgroup$


















                0












                $begingroup$

                You did nothing wrong but can represent it differently:



                $e^{-lambda (n-1)}-e^{-lambda n} = e^{-lambda (n-1)}-e^{-lambda (n-1) -lambda} =e^{-lambda (n-1)}(1-e^{-lambda})sim Geo(1-e^{-lambda}) $



                but



                $e^{−λn}(1−e^{−λ})neq e^{−λn}(e^{λ}-1)$.






                share|cite|improve this answer









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  You did nothing wrong but can represent it differently:



                  $e^{-lambda (n-1)}-e^{-lambda n} = e^{-lambda (n-1)}-e^{-lambda (n-1) -lambda} =e^{-lambda (n-1)}(1-e^{-lambda})sim Geo(1-e^{-lambda}) $



                  but



                  $e^{−λn}(1−e^{−λ})neq e^{−λn}(e^{λ}-1)$.






                  share|cite|improve this answer









                  $endgroup$



                  You did nothing wrong but can represent it differently:



                  $e^{-lambda (n-1)}-e^{-lambda n} = e^{-lambda (n-1)}-e^{-lambda (n-1) -lambda} =e^{-lambda (n-1)}(1-e^{-lambda})sim Geo(1-e^{-lambda}) $



                  but



                  $e^{−λn}(1−e^{−λ})neq e^{−λn}(e^{λ}-1)$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Dec 6 '18 at 17:35









                  sehiglesehigle

                  1565




                  1565























                      0












                      $begingroup$

                      You have $e^{-lambda n}(e^{lambda}-1)$. This is equal to $e^{-lambda(n-1)}-e^{-lambda n}$. Now we can factor out $(e^{-lambda})^{n-1}$



                      We have to add $lambda (n-1)$ to both exponents.




                      • $-lambda(n-1)+lambda(n-1)=0$

                      • $-lambda n+lambda (n-1)=lambda (-n+n-1)=-lambda$


                      Therefore we get $(e^{-lambda})^{n-1}cdot (e^0-e^{-lambda})=(e^{-lambda})^{n-1}cdot (1-e^{-lambda})$



                      This is a geometric distribution with $p=1-e^{-lambda}$






                      share|cite|improve this answer











                      $endgroup$


















                        0












                        $begingroup$

                        You have $e^{-lambda n}(e^{lambda}-1)$. This is equal to $e^{-lambda(n-1)}-e^{-lambda n}$. Now we can factor out $(e^{-lambda})^{n-1}$



                        We have to add $lambda (n-1)$ to both exponents.




                        • $-lambda(n-1)+lambda(n-1)=0$

                        • $-lambda n+lambda (n-1)=lambda (-n+n-1)=-lambda$


                        Therefore we get $(e^{-lambda})^{n-1}cdot (e^0-e^{-lambda})=(e^{-lambda})^{n-1}cdot (1-e^{-lambda})$



                        This is a geometric distribution with $p=1-e^{-lambda}$






                        share|cite|improve this answer











                        $endgroup$
















                          0












                          0








                          0





                          $begingroup$

                          You have $e^{-lambda n}(e^{lambda}-1)$. This is equal to $e^{-lambda(n-1)}-e^{-lambda n}$. Now we can factor out $(e^{-lambda})^{n-1}$



                          We have to add $lambda (n-1)$ to both exponents.




                          • $-lambda(n-1)+lambda(n-1)=0$

                          • $-lambda n+lambda (n-1)=lambda (-n+n-1)=-lambda$


                          Therefore we get $(e^{-lambda})^{n-1}cdot (e^0-e^{-lambda})=(e^{-lambda})^{n-1}cdot (1-e^{-lambda})$



                          This is a geometric distribution with $p=1-e^{-lambda}$






                          share|cite|improve this answer











                          $endgroup$



                          You have $e^{-lambda n}(e^{lambda}-1)$. This is equal to $e^{-lambda(n-1)}-e^{-lambda n}$. Now we can factor out $(e^{-lambda})^{n-1}$



                          We have to add $lambda (n-1)$ to both exponents.




                          • $-lambda(n-1)+lambda(n-1)=0$

                          • $-lambda n+lambda (n-1)=lambda (-n+n-1)=-lambda$


                          Therefore we get $(e^{-lambda})^{n-1}cdot (e^0-e^{-lambda})=(e^{-lambda})^{n-1}cdot (1-e^{-lambda})$



                          This is a geometric distribution with $p=1-e^{-lambda}$







                          share|cite|improve this answer














                          share|cite|improve this answer



                          share|cite|improve this answer








                          edited Dec 6 '18 at 17:58

























                          answered Dec 6 '18 at 17:51









                          callculuscallculus

                          17.9k31427




                          17.9k31427






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3028782%2fdiscretization-of-an-exponential-variable%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Berounka

                              Different font size/position of beamer's navigation symbols template's content depending on regular/plain...

                              Sphinx de Gizeh