Discretization of an exponential variable
$begingroup$
Given $X=Exp(lambda)$, i have to define $Y=ceil(X)$ in order to prove the link between exponential and geometric variables.
By definition of ceiling $forall xin mathbb{R},exists nin mathbb{N}:xleq n< x+1$, so:
$mathbb{P}(Y=n)=mathbb{P}(n-1< Xleq n)=mathbb{P}(Xleq n)-mathbb{P}(X<n-1)=F_X(n)-F_X(n-1)=Exp(n)-Exp(n-1)=1-e^{-lambda n}-1+e^{-lambda (n-1)}=e^{-lambda n}(e^{lambda}-1)$.
Nevertheless, the result is $e^{-lambda n}(1-e^{-lambda})Rightarrow Ysim Geo(1-e^{-lambda})$.
1) Where i wrong in the passages?
2) Geometric variable has $n-1$ at the exponent, not $n$. So, why that result?
Thanks for any help!
probability probability-distributions exponential-function density-function
$endgroup$
add a comment |
$begingroup$
Given $X=Exp(lambda)$, i have to define $Y=ceil(X)$ in order to prove the link between exponential and geometric variables.
By definition of ceiling $forall xin mathbb{R},exists nin mathbb{N}:xleq n< x+1$, so:
$mathbb{P}(Y=n)=mathbb{P}(n-1< Xleq n)=mathbb{P}(Xleq n)-mathbb{P}(X<n-1)=F_X(n)-F_X(n-1)=Exp(n)-Exp(n-1)=1-e^{-lambda n}-1+e^{-lambda (n-1)}=e^{-lambda n}(e^{lambda}-1)$.
Nevertheless, the result is $e^{-lambda n}(1-e^{-lambda})Rightarrow Ysim Geo(1-e^{-lambda})$.
1) Where i wrong in the passages?
2) Geometric variable has $n-1$ at the exponent, not $n$. So, why that result?
Thanks for any help!
probability probability-distributions exponential-function density-function
$endgroup$
add a comment |
$begingroup$
Given $X=Exp(lambda)$, i have to define $Y=ceil(X)$ in order to prove the link between exponential and geometric variables.
By definition of ceiling $forall xin mathbb{R},exists nin mathbb{N}:xleq n< x+1$, so:
$mathbb{P}(Y=n)=mathbb{P}(n-1< Xleq n)=mathbb{P}(Xleq n)-mathbb{P}(X<n-1)=F_X(n)-F_X(n-1)=Exp(n)-Exp(n-1)=1-e^{-lambda n}-1+e^{-lambda (n-1)}=e^{-lambda n}(e^{lambda}-1)$.
Nevertheless, the result is $e^{-lambda n}(1-e^{-lambda})Rightarrow Ysim Geo(1-e^{-lambda})$.
1) Where i wrong in the passages?
2) Geometric variable has $n-1$ at the exponent, not $n$. So, why that result?
Thanks for any help!
probability probability-distributions exponential-function density-function
$endgroup$
Given $X=Exp(lambda)$, i have to define $Y=ceil(X)$ in order to prove the link between exponential and geometric variables.
By definition of ceiling $forall xin mathbb{R},exists nin mathbb{N}:xleq n< x+1$, so:
$mathbb{P}(Y=n)=mathbb{P}(n-1< Xleq n)=mathbb{P}(Xleq n)-mathbb{P}(X<n-1)=F_X(n)-F_X(n-1)=Exp(n)-Exp(n-1)=1-e^{-lambda n}-1+e^{-lambda (n-1)}=e^{-lambda n}(e^{lambda}-1)$.
Nevertheless, the result is $e^{-lambda n}(1-e^{-lambda})Rightarrow Ysim Geo(1-e^{-lambda})$.
1) Where i wrong in the passages?
2) Geometric variable has $n-1$ at the exponent, not $n$. So, why that result?
Thanks for any help!
probability probability-distributions exponential-function density-function
probability probability-distributions exponential-function density-function
asked Dec 6 '18 at 17:19
Marco PittellaMarco Pittella
1288
1288
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
You did nothing wrong but can represent it differently:
$e^{-lambda (n-1)}-e^{-lambda n} = e^{-lambda (n-1)}-e^{-lambda (n-1) -lambda} =e^{-lambda (n-1)}(1-e^{-lambda})sim Geo(1-e^{-lambda}) $
but
$e^{−λn}(1−e^{−λ})neq e^{−λn}(e^{λ}-1)$.
$endgroup$
add a comment |
$begingroup$
You have $e^{-lambda n}(e^{lambda}-1)$. This is equal to $e^{-lambda(n-1)}-e^{-lambda n}$. Now we can factor out $(e^{-lambda})^{n-1}$
We have to add $lambda (n-1)$ to both exponents.
- $-lambda(n-1)+lambda(n-1)=0$
- $-lambda n+lambda (n-1)=lambda (-n+n-1)=-lambda$
Therefore we get $(e^{-lambda})^{n-1}cdot (e^0-e^{-lambda})=(e^{-lambda})^{n-1}cdot (1-e^{-lambda})$
This is a geometric distribution with $p=1-e^{-lambda}$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3028782%2fdiscretization-of-an-exponential-variable%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You did nothing wrong but can represent it differently:
$e^{-lambda (n-1)}-e^{-lambda n} = e^{-lambda (n-1)}-e^{-lambda (n-1) -lambda} =e^{-lambda (n-1)}(1-e^{-lambda})sim Geo(1-e^{-lambda}) $
but
$e^{−λn}(1−e^{−λ})neq e^{−λn}(e^{λ}-1)$.
$endgroup$
add a comment |
$begingroup$
You did nothing wrong but can represent it differently:
$e^{-lambda (n-1)}-e^{-lambda n} = e^{-lambda (n-1)}-e^{-lambda (n-1) -lambda} =e^{-lambda (n-1)}(1-e^{-lambda})sim Geo(1-e^{-lambda}) $
but
$e^{−λn}(1−e^{−λ})neq e^{−λn}(e^{λ}-1)$.
$endgroup$
add a comment |
$begingroup$
You did nothing wrong but can represent it differently:
$e^{-lambda (n-1)}-e^{-lambda n} = e^{-lambda (n-1)}-e^{-lambda (n-1) -lambda} =e^{-lambda (n-1)}(1-e^{-lambda})sim Geo(1-e^{-lambda}) $
but
$e^{−λn}(1−e^{−λ})neq e^{−λn}(e^{λ}-1)$.
$endgroup$
You did nothing wrong but can represent it differently:
$e^{-lambda (n-1)}-e^{-lambda n} = e^{-lambda (n-1)}-e^{-lambda (n-1) -lambda} =e^{-lambda (n-1)}(1-e^{-lambda})sim Geo(1-e^{-lambda}) $
but
$e^{−λn}(1−e^{−λ})neq e^{−λn}(e^{λ}-1)$.
answered Dec 6 '18 at 17:35
sehiglesehigle
1565
1565
add a comment |
add a comment |
$begingroup$
You have $e^{-lambda n}(e^{lambda}-1)$. This is equal to $e^{-lambda(n-1)}-e^{-lambda n}$. Now we can factor out $(e^{-lambda})^{n-1}$
We have to add $lambda (n-1)$ to both exponents.
- $-lambda(n-1)+lambda(n-1)=0$
- $-lambda n+lambda (n-1)=lambda (-n+n-1)=-lambda$
Therefore we get $(e^{-lambda})^{n-1}cdot (e^0-e^{-lambda})=(e^{-lambda})^{n-1}cdot (1-e^{-lambda})$
This is a geometric distribution with $p=1-e^{-lambda}$
$endgroup$
add a comment |
$begingroup$
You have $e^{-lambda n}(e^{lambda}-1)$. This is equal to $e^{-lambda(n-1)}-e^{-lambda n}$. Now we can factor out $(e^{-lambda})^{n-1}$
We have to add $lambda (n-1)$ to both exponents.
- $-lambda(n-1)+lambda(n-1)=0$
- $-lambda n+lambda (n-1)=lambda (-n+n-1)=-lambda$
Therefore we get $(e^{-lambda})^{n-1}cdot (e^0-e^{-lambda})=(e^{-lambda})^{n-1}cdot (1-e^{-lambda})$
This is a geometric distribution with $p=1-e^{-lambda}$
$endgroup$
add a comment |
$begingroup$
You have $e^{-lambda n}(e^{lambda}-1)$. This is equal to $e^{-lambda(n-1)}-e^{-lambda n}$. Now we can factor out $(e^{-lambda})^{n-1}$
We have to add $lambda (n-1)$ to both exponents.
- $-lambda(n-1)+lambda(n-1)=0$
- $-lambda n+lambda (n-1)=lambda (-n+n-1)=-lambda$
Therefore we get $(e^{-lambda})^{n-1}cdot (e^0-e^{-lambda})=(e^{-lambda})^{n-1}cdot (1-e^{-lambda})$
This is a geometric distribution with $p=1-e^{-lambda}$
$endgroup$
You have $e^{-lambda n}(e^{lambda}-1)$. This is equal to $e^{-lambda(n-1)}-e^{-lambda n}$. Now we can factor out $(e^{-lambda})^{n-1}$
We have to add $lambda (n-1)$ to both exponents.
- $-lambda(n-1)+lambda(n-1)=0$
- $-lambda n+lambda (n-1)=lambda (-n+n-1)=-lambda$
Therefore we get $(e^{-lambda})^{n-1}cdot (e^0-e^{-lambda})=(e^{-lambda})^{n-1}cdot (1-e^{-lambda})$
This is a geometric distribution with $p=1-e^{-lambda}$
edited Dec 6 '18 at 17:58
answered Dec 6 '18 at 17:51
callculuscallculus
17.9k31427
17.9k31427
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3028782%2fdiscretization-of-an-exponential-variable%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown