Solution $y(x)$ for $sin(x) = int_0^{2pi} max(y(t), y(x+t)) dt$
$begingroup$
I've been banging my head against a wall for a few weeks to find a feasible solution for $y(x)$.
$$sin(x) = int_0^{2pi} max(y(t), y(x+t)) dt$$
I don't think there is an unique solution, but I will accept any solution. I've tried various numerical minimization methods, convolution, guess the solution, etc, but nothing seems to work.
Does anybody have any ideas?
integration analysis integral-equations
$endgroup$
add a comment |
$begingroup$
I've been banging my head against a wall for a few weeks to find a feasible solution for $y(x)$.
$$sin(x) = int_0^{2pi} max(y(t), y(x+t)) dt$$
I don't think there is an unique solution, but I will accept any solution. I've tried various numerical minimization methods, convolution, guess the solution, etc, but nothing seems to work.
Does anybody have any ideas?
integration analysis integral-equations
$endgroup$
$begingroup$
try to use the fact $max(y(t),y(x+t))=|frac{y(t)+y(x+t)}{2}|+|frac{y(t)-y(x+t)}{2}|$
$endgroup$
– vidyarthi
Dec 6 '18 at 17:22
add a comment |
$begingroup$
I've been banging my head against a wall for a few weeks to find a feasible solution for $y(x)$.
$$sin(x) = int_0^{2pi} max(y(t), y(x+t)) dt$$
I don't think there is an unique solution, but I will accept any solution. I've tried various numerical minimization methods, convolution, guess the solution, etc, but nothing seems to work.
Does anybody have any ideas?
integration analysis integral-equations
$endgroup$
I've been banging my head against a wall for a few weeks to find a feasible solution for $y(x)$.
$$sin(x) = int_0^{2pi} max(y(t), y(x+t)) dt$$
I don't think there is an unique solution, but I will accept any solution. I've tried various numerical minimization methods, convolution, guess the solution, etc, but nothing seems to work.
Does anybody have any ideas?
integration analysis integral-equations
integration analysis integral-equations
edited Dec 6 '18 at 21:25
Jeffery Stout
asked Dec 6 '18 at 16:49
Jeffery StoutJeffery Stout
343
343
$begingroup$
try to use the fact $max(y(t),y(x+t))=|frac{y(t)+y(x+t)}{2}|+|frac{y(t)-y(x+t)}{2}|$
$endgroup$
– vidyarthi
Dec 6 '18 at 17:22
add a comment |
$begingroup$
try to use the fact $max(y(t),y(x+t))=|frac{y(t)+y(x+t)}{2}|+|frac{y(t)-y(x+t)}{2}|$
$endgroup$
– vidyarthi
Dec 6 '18 at 17:22
$begingroup$
try to use the fact $max(y(t),y(x+t))=|frac{y(t)+y(x+t)}{2}|+|frac{y(t)-y(x+t)}{2}|$
$endgroup$
– vidyarthi
Dec 6 '18 at 17:22
$begingroup$
try to use the fact $max(y(t),y(x+t))=|frac{y(t)+y(x+t)}{2}|+|frac{y(t)-y(x+t)}{2}|$
$endgroup$
– vidyarthi
Dec 6 '18 at 17:22
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
If $x=0$ then
begin{equation*}
0= sin(0)=int_{0}^{2pi}max(y(t),y(t)), mathrm{d}t = int_{0}^{2pi}y(t), mathrm{d}t .
end{equation*}
If $x = frac{3pi}{2}$ then
begin{equation*}
-1 = sinleft(frac{3pi}{2}right) = int_{0}^{2pi}maxleft(y(t),yleft(frac{3pi}{2}+tright)right), mathrm{d}t ge int_{0}^{2pi}y(t), mathrm{d}t = 0.
end{equation*}
Consequently, it does not exist any solution $y(x)$.
$endgroup$
$begingroup$
How did you obtain that inequality?
$endgroup$
– Szeto
Dec 8 '18 at 11:50
$begingroup$
I used that $max(a,b) ge a$.
$endgroup$
– JanG
Dec 8 '18 at 14:11
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3028750%2fsolution-yx-for-sinx-int-02-pi-maxyt-yxt-dt%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If $x=0$ then
begin{equation*}
0= sin(0)=int_{0}^{2pi}max(y(t),y(t)), mathrm{d}t = int_{0}^{2pi}y(t), mathrm{d}t .
end{equation*}
If $x = frac{3pi}{2}$ then
begin{equation*}
-1 = sinleft(frac{3pi}{2}right) = int_{0}^{2pi}maxleft(y(t),yleft(frac{3pi}{2}+tright)right), mathrm{d}t ge int_{0}^{2pi}y(t), mathrm{d}t = 0.
end{equation*}
Consequently, it does not exist any solution $y(x)$.
$endgroup$
$begingroup$
How did you obtain that inequality?
$endgroup$
– Szeto
Dec 8 '18 at 11:50
$begingroup$
I used that $max(a,b) ge a$.
$endgroup$
– JanG
Dec 8 '18 at 14:11
add a comment |
$begingroup$
If $x=0$ then
begin{equation*}
0= sin(0)=int_{0}^{2pi}max(y(t),y(t)), mathrm{d}t = int_{0}^{2pi}y(t), mathrm{d}t .
end{equation*}
If $x = frac{3pi}{2}$ then
begin{equation*}
-1 = sinleft(frac{3pi}{2}right) = int_{0}^{2pi}maxleft(y(t),yleft(frac{3pi}{2}+tright)right), mathrm{d}t ge int_{0}^{2pi}y(t), mathrm{d}t = 0.
end{equation*}
Consequently, it does not exist any solution $y(x)$.
$endgroup$
$begingroup$
How did you obtain that inequality?
$endgroup$
– Szeto
Dec 8 '18 at 11:50
$begingroup$
I used that $max(a,b) ge a$.
$endgroup$
– JanG
Dec 8 '18 at 14:11
add a comment |
$begingroup$
If $x=0$ then
begin{equation*}
0= sin(0)=int_{0}^{2pi}max(y(t),y(t)), mathrm{d}t = int_{0}^{2pi}y(t), mathrm{d}t .
end{equation*}
If $x = frac{3pi}{2}$ then
begin{equation*}
-1 = sinleft(frac{3pi}{2}right) = int_{0}^{2pi}maxleft(y(t),yleft(frac{3pi}{2}+tright)right), mathrm{d}t ge int_{0}^{2pi}y(t), mathrm{d}t = 0.
end{equation*}
Consequently, it does not exist any solution $y(x)$.
$endgroup$
If $x=0$ then
begin{equation*}
0= sin(0)=int_{0}^{2pi}max(y(t),y(t)), mathrm{d}t = int_{0}^{2pi}y(t), mathrm{d}t .
end{equation*}
If $x = frac{3pi}{2}$ then
begin{equation*}
-1 = sinleft(frac{3pi}{2}right) = int_{0}^{2pi}maxleft(y(t),yleft(frac{3pi}{2}+tright)right), mathrm{d}t ge int_{0}^{2pi}y(t), mathrm{d}t = 0.
end{equation*}
Consequently, it does not exist any solution $y(x)$.
answered Dec 8 '18 at 9:33
JanGJanG
2,802514
2,802514
$begingroup$
How did you obtain that inequality?
$endgroup$
– Szeto
Dec 8 '18 at 11:50
$begingroup$
I used that $max(a,b) ge a$.
$endgroup$
– JanG
Dec 8 '18 at 14:11
add a comment |
$begingroup$
How did you obtain that inequality?
$endgroup$
– Szeto
Dec 8 '18 at 11:50
$begingroup$
I used that $max(a,b) ge a$.
$endgroup$
– JanG
Dec 8 '18 at 14:11
$begingroup$
How did you obtain that inequality?
$endgroup$
– Szeto
Dec 8 '18 at 11:50
$begingroup$
How did you obtain that inequality?
$endgroup$
– Szeto
Dec 8 '18 at 11:50
$begingroup$
I used that $max(a,b) ge a$.
$endgroup$
– JanG
Dec 8 '18 at 14:11
$begingroup$
I used that $max(a,b) ge a$.
$endgroup$
– JanG
Dec 8 '18 at 14:11
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3028750%2fsolution-yx-for-sinx-int-02-pi-maxyt-yxt-dt%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
try to use the fact $max(y(t),y(x+t))=|frac{y(t)+y(x+t)}{2}|+|frac{y(t)-y(x+t)}{2}|$
$endgroup$
– vidyarthi
Dec 6 '18 at 17:22