Showing $f:=f_{1},…,f_{n}in L^{p}(mu)$ for $f_{i} in L^{p_{i}}$
$begingroup$
Let $f_{1},...,f_{n}:X to bar{mathbb R}$ measurable, while $f:=f_{1}times...times f_{n}$, and $p_{1},...,p_{n} in [1,infty]$ where $f_{i}in L^{p_{i}}(mu), forall iin {1,...,n}$.
Note $frac{1}{p}=sum_{i=1}^{n}frac{1}{p_{i}}$
Show:
i) $f_{1}times...times f_{n}=f in L^{p}$
ii) $||f||_{p} leq prod_{i}^{n}||f_{i}||_{p_{i}}$
My ideas:
ii) In class we have proven the Hölder inequality for two functions, i.e. $||fg||_{r}leq||f||_{p}||g||_{q}$, whereby $frac{1}{r}=frac{1}{p}+frac{1}{q}$. I think that the extension of this would be to merely use induction to show that Hölder is valid for any $n in mathbb N$, but this seems too easy.
i) I am stuck on $f_{1}times...times f_{n}in L^p$.
$(int_{mathbb R}|f|^p)^frac{1}{p}=(int_{mathbb R}|prod_{i=1}^{n}f_{i}|^p)^{sum_{i=1}^{n}frac{1}{p_{i}}}=prod_{j=1}^{n}(int_{mathbb R}prod_{i=1}^{n}|f_{i}|^p)^{frac{1}{p_{j}}}$
and from $frac{1}{p}=sum_{i=1}^{n}frac{1}{p_{i}}$, we glean that $p leq p_{i}$ , $i=1,...,n$
Therefore, can I say $prod_{j=1}^{n}(int_{mathbb R}prod_{i=1}^{n}|f_{i}|^p)^{frac{1}{p_{j}}}leq prod_{j=1}^{n}(int_{mathbb R}prod_{i=1}^{n}|f_{i}|^{p_{i}})^{frac{1}{p_{j}}}$ and that is $< infty$
Therefore $f in L^{p}$. I am not sure on this proof.
real-analysis measure-theory norm holder-inequality
$endgroup$
add a comment |
$begingroup$
Let $f_{1},...,f_{n}:X to bar{mathbb R}$ measurable, while $f:=f_{1}times...times f_{n}$, and $p_{1},...,p_{n} in [1,infty]$ where $f_{i}in L^{p_{i}}(mu), forall iin {1,...,n}$.
Note $frac{1}{p}=sum_{i=1}^{n}frac{1}{p_{i}}$
Show:
i) $f_{1}times...times f_{n}=f in L^{p}$
ii) $||f||_{p} leq prod_{i}^{n}||f_{i}||_{p_{i}}$
My ideas:
ii) In class we have proven the Hölder inequality for two functions, i.e. $||fg||_{r}leq||f||_{p}||g||_{q}$, whereby $frac{1}{r}=frac{1}{p}+frac{1}{q}$. I think that the extension of this would be to merely use induction to show that Hölder is valid for any $n in mathbb N$, but this seems too easy.
i) I am stuck on $f_{1}times...times f_{n}in L^p$.
$(int_{mathbb R}|f|^p)^frac{1}{p}=(int_{mathbb R}|prod_{i=1}^{n}f_{i}|^p)^{sum_{i=1}^{n}frac{1}{p_{i}}}=prod_{j=1}^{n}(int_{mathbb R}prod_{i=1}^{n}|f_{i}|^p)^{frac{1}{p_{j}}}$
and from $frac{1}{p}=sum_{i=1}^{n}frac{1}{p_{i}}$, we glean that $p leq p_{i}$ , $i=1,...,n$
Therefore, can I say $prod_{j=1}^{n}(int_{mathbb R}prod_{i=1}^{n}|f_{i}|^p)^{frac{1}{p_{j}}}leq prod_{j=1}^{n}(int_{mathbb R}prod_{i=1}^{n}|f_{i}|^{p_{i}})^{frac{1}{p_{j}}}$ and that is $< infty$
Therefore $f in L^{p}$. I am not sure on this proof.
real-analysis measure-theory norm holder-inequality
$endgroup$
$begingroup$
"[...], but this seems too easy". It is easy.
$endgroup$
– Federico
Dec 6 '18 at 17:47
add a comment |
$begingroup$
Let $f_{1},...,f_{n}:X to bar{mathbb R}$ measurable, while $f:=f_{1}times...times f_{n}$, and $p_{1},...,p_{n} in [1,infty]$ where $f_{i}in L^{p_{i}}(mu), forall iin {1,...,n}$.
Note $frac{1}{p}=sum_{i=1}^{n}frac{1}{p_{i}}$
Show:
i) $f_{1}times...times f_{n}=f in L^{p}$
ii) $||f||_{p} leq prod_{i}^{n}||f_{i}||_{p_{i}}$
My ideas:
ii) In class we have proven the Hölder inequality for two functions, i.e. $||fg||_{r}leq||f||_{p}||g||_{q}$, whereby $frac{1}{r}=frac{1}{p}+frac{1}{q}$. I think that the extension of this would be to merely use induction to show that Hölder is valid for any $n in mathbb N$, but this seems too easy.
i) I am stuck on $f_{1}times...times f_{n}in L^p$.
$(int_{mathbb R}|f|^p)^frac{1}{p}=(int_{mathbb R}|prod_{i=1}^{n}f_{i}|^p)^{sum_{i=1}^{n}frac{1}{p_{i}}}=prod_{j=1}^{n}(int_{mathbb R}prod_{i=1}^{n}|f_{i}|^p)^{frac{1}{p_{j}}}$
and from $frac{1}{p}=sum_{i=1}^{n}frac{1}{p_{i}}$, we glean that $p leq p_{i}$ , $i=1,...,n$
Therefore, can I say $prod_{j=1}^{n}(int_{mathbb R}prod_{i=1}^{n}|f_{i}|^p)^{frac{1}{p_{j}}}leq prod_{j=1}^{n}(int_{mathbb R}prod_{i=1}^{n}|f_{i}|^{p_{i}})^{frac{1}{p_{j}}}$ and that is $< infty$
Therefore $f in L^{p}$. I am not sure on this proof.
real-analysis measure-theory norm holder-inequality
$endgroup$
Let $f_{1},...,f_{n}:X to bar{mathbb R}$ measurable, while $f:=f_{1}times...times f_{n}$, and $p_{1},...,p_{n} in [1,infty]$ where $f_{i}in L^{p_{i}}(mu), forall iin {1,...,n}$.
Note $frac{1}{p}=sum_{i=1}^{n}frac{1}{p_{i}}$
Show:
i) $f_{1}times...times f_{n}=f in L^{p}$
ii) $||f||_{p} leq prod_{i}^{n}||f_{i}||_{p_{i}}$
My ideas:
ii) In class we have proven the Hölder inequality for two functions, i.e. $||fg||_{r}leq||f||_{p}||g||_{q}$, whereby $frac{1}{r}=frac{1}{p}+frac{1}{q}$. I think that the extension of this would be to merely use induction to show that Hölder is valid for any $n in mathbb N$, but this seems too easy.
i) I am stuck on $f_{1}times...times f_{n}in L^p$.
$(int_{mathbb R}|f|^p)^frac{1}{p}=(int_{mathbb R}|prod_{i=1}^{n}f_{i}|^p)^{sum_{i=1}^{n}frac{1}{p_{i}}}=prod_{j=1}^{n}(int_{mathbb R}prod_{i=1}^{n}|f_{i}|^p)^{frac{1}{p_{j}}}$
and from $frac{1}{p}=sum_{i=1}^{n}frac{1}{p_{i}}$, we glean that $p leq p_{i}$ , $i=1,...,n$
Therefore, can I say $prod_{j=1}^{n}(int_{mathbb R}prod_{i=1}^{n}|f_{i}|^p)^{frac{1}{p_{j}}}leq prod_{j=1}^{n}(int_{mathbb R}prod_{i=1}^{n}|f_{i}|^{p_{i}})^{frac{1}{p_{j}}}$ and that is $< infty$
Therefore $f in L^{p}$. I am not sure on this proof.
real-analysis measure-theory norm holder-inequality
real-analysis measure-theory norm holder-inequality
asked Dec 6 '18 at 17:29
SABOYSABOY
541311
541311
$begingroup$
"[...], but this seems too easy". It is easy.
$endgroup$
– Federico
Dec 6 '18 at 17:47
add a comment |
$begingroup$
"[...], but this seems too easy". It is easy.
$endgroup$
– Federico
Dec 6 '18 at 17:47
$begingroup$
"[...], but this seems too easy". It is easy.
$endgroup$
– Federico
Dec 6 '18 at 17:47
$begingroup$
"[...], but this seems too easy". It is easy.
$endgroup$
– Federico
Dec 6 '18 at 17:47
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
To show how trivial this is, let me switch the notation, something that people should have already done probably.
I use $q=p^{-1}in[0,1]$ and $q_i=p_i^{-1}in[0,1]$ and introduce
$$
[![f]!]_q := |f|_{q^{-1}} = |f|_p.
$$
Then Holder inequality says that $[![f_1f_2]!]_{q_1+q_2}leq[![f_1]!]_{q_1}[![f_2]!]_{q_2}$ if $q_iin[0,1]$ and $q_1+q_2leq 1$.
Now, in our case, $q=q_1+dots+q_n = (q_1+dots+q_{n-1})+q_n$, so
$$
[![f_1dotsm f_n]!]_q leq [![f_1dotsm f_{n-1}]!]_{q_1+dots+q_{n-1}}[![f_n]!]_{q_n}
leq dots
leq [![f_1]!]_{q_1} dotsm [![f_n]!]_{q_n}
$$
by bringing outside one function at a time with Holder.
No more ugly $frac1{left(frac1{p_1}+dots+frac1{p_{n-1}}right)^{-1}}+frac1{p_n}=1$ expressions for the World.
$endgroup$
$begingroup$
Since you have not commented on i) can I assume it is correct?
$endgroup$
– SABOY
Dec 6 '18 at 18:36
1
$begingroup$
i) is a consequence of the inequality
$endgroup$
– Federico
Dec 6 '18 at 18:38
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3028795%2fshowing-f-f-1-f-n-in-lp-mu-for-f-i-in-lp-i%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
To show how trivial this is, let me switch the notation, something that people should have already done probably.
I use $q=p^{-1}in[0,1]$ and $q_i=p_i^{-1}in[0,1]$ and introduce
$$
[![f]!]_q := |f|_{q^{-1}} = |f|_p.
$$
Then Holder inequality says that $[![f_1f_2]!]_{q_1+q_2}leq[![f_1]!]_{q_1}[![f_2]!]_{q_2}$ if $q_iin[0,1]$ and $q_1+q_2leq 1$.
Now, in our case, $q=q_1+dots+q_n = (q_1+dots+q_{n-1})+q_n$, so
$$
[![f_1dotsm f_n]!]_q leq [![f_1dotsm f_{n-1}]!]_{q_1+dots+q_{n-1}}[![f_n]!]_{q_n}
leq dots
leq [![f_1]!]_{q_1} dotsm [![f_n]!]_{q_n}
$$
by bringing outside one function at a time with Holder.
No more ugly $frac1{left(frac1{p_1}+dots+frac1{p_{n-1}}right)^{-1}}+frac1{p_n}=1$ expressions for the World.
$endgroup$
$begingroup$
Since you have not commented on i) can I assume it is correct?
$endgroup$
– SABOY
Dec 6 '18 at 18:36
1
$begingroup$
i) is a consequence of the inequality
$endgroup$
– Federico
Dec 6 '18 at 18:38
add a comment |
$begingroup$
To show how trivial this is, let me switch the notation, something that people should have already done probably.
I use $q=p^{-1}in[0,1]$ and $q_i=p_i^{-1}in[0,1]$ and introduce
$$
[![f]!]_q := |f|_{q^{-1}} = |f|_p.
$$
Then Holder inequality says that $[![f_1f_2]!]_{q_1+q_2}leq[![f_1]!]_{q_1}[![f_2]!]_{q_2}$ if $q_iin[0,1]$ and $q_1+q_2leq 1$.
Now, in our case, $q=q_1+dots+q_n = (q_1+dots+q_{n-1})+q_n$, so
$$
[![f_1dotsm f_n]!]_q leq [![f_1dotsm f_{n-1}]!]_{q_1+dots+q_{n-1}}[![f_n]!]_{q_n}
leq dots
leq [![f_1]!]_{q_1} dotsm [![f_n]!]_{q_n}
$$
by bringing outside one function at a time with Holder.
No more ugly $frac1{left(frac1{p_1}+dots+frac1{p_{n-1}}right)^{-1}}+frac1{p_n}=1$ expressions for the World.
$endgroup$
$begingroup$
Since you have not commented on i) can I assume it is correct?
$endgroup$
– SABOY
Dec 6 '18 at 18:36
1
$begingroup$
i) is a consequence of the inequality
$endgroup$
– Federico
Dec 6 '18 at 18:38
add a comment |
$begingroup$
To show how trivial this is, let me switch the notation, something that people should have already done probably.
I use $q=p^{-1}in[0,1]$ and $q_i=p_i^{-1}in[0,1]$ and introduce
$$
[![f]!]_q := |f|_{q^{-1}} = |f|_p.
$$
Then Holder inequality says that $[![f_1f_2]!]_{q_1+q_2}leq[![f_1]!]_{q_1}[![f_2]!]_{q_2}$ if $q_iin[0,1]$ and $q_1+q_2leq 1$.
Now, in our case, $q=q_1+dots+q_n = (q_1+dots+q_{n-1})+q_n$, so
$$
[![f_1dotsm f_n]!]_q leq [![f_1dotsm f_{n-1}]!]_{q_1+dots+q_{n-1}}[![f_n]!]_{q_n}
leq dots
leq [![f_1]!]_{q_1} dotsm [![f_n]!]_{q_n}
$$
by bringing outside one function at a time with Holder.
No more ugly $frac1{left(frac1{p_1}+dots+frac1{p_{n-1}}right)^{-1}}+frac1{p_n}=1$ expressions for the World.
$endgroup$
To show how trivial this is, let me switch the notation, something that people should have already done probably.
I use $q=p^{-1}in[0,1]$ and $q_i=p_i^{-1}in[0,1]$ and introduce
$$
[![f]!]_q := |f|_{q^{-1}} = |f|_p.
$$
Then Holder inequality says that $[![f_1f_2]!]_{q_1+q_2}leq[![f_1]!]_{q_1}[![f_2]!]_{q_2}$ if $q_iin[0,1]$ and $q_1+q_2leq 1$.
Now, in our case, $q=q_1+dots+q_n = (q_1+dots+q_{n-1})+q_n$, so
$$
[![f_1dotsm f_n]!]_q leq [![f_1dotsm f_{n-1}]!]_{q_1+dots+q_{n-1}}[![f_n]!]_{q_n}
leq dots
leq [![f_1]!]_{q_1} dotsm [![f_n]!]_{q_n}
$$
by bringing outside one function at a time with Holder.
No more ugly $frac1{left(frac1{p_1}+dots+frac1{p_{n-1}}right)^{-1}}+frac1{p_n}=1$ expressions for the World.
edited Dec 6 '18 at 17:50
answered Dec 6 '18 at 17:45
FedericoFederico
4,889514
4,889514
$begingroup$
Since you have not commented on i) can I assume it is correct?
$endgroup$
– SABOY
Dec 6 '18 at 18:36
1
$begingroup$
i) is a consequence of the inequality
$endgroup$
– Federico
Dec 6 '18 at 18:38
add a comment |
$begingroup$
Since you have not commented on i) can I assume it is correct?
$endgroup$
– SABOY
Dec 6 '18 at 18:36
1
$begingroup$
i) is a consequence of the inequality
$endgroup$
– Federico
Dec 6 '18 at 18:38
$begingroup$
Since you have not commented on i) can I assume it is correct?
$endgroup$
– SABOY
Dec 6 '18 at 18:36
$begingroup$
Since you have not commented on i) can I assume it is correct?
$endgroup$
– SABOY
Dec 6 '18 at 18:36
1
1
$begingroup$
i) is a consequence of the inequality
$endgroup$
– Federico
Dec 6 '18 at 18:38
$begingroup$
i) is a consequence of the inequality
$endgroup$
– Federico
Dec 6 '18 at 18:38
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3028795%2fshowing-f-f-1-f-n-in-lp-mu-for-f-i-in-lp-i%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
"[...], but this seems too easy". It is easy.
$endgroup$
– Federico
Dec 6 '18 at 17:47