Showing $f:=f_{1},…,f_{n}in L^{p}(mu)$ for $f_{i} in L^{p_{i}}$












0












$begingroup$


Let $f_{1},...,f_{n}:X to bar{mathbb R}$ measurable, while $f:=f_{1}times...times f_{n}$, and $p_{1},...,p_{n} in [1,infty]$ where $f_{i}in L^{p_{i}}(mu), forall iin {1,...,n}$.



Note $frac{1}{p}=sum_{i=1}^{n}frac{1}{p_{i}}$



Show:



i) $f_{1}times...times f_{n}=f in L^{p}$



ii) $||f||_{p} leq prod_{i}^{n}||f_{i}||_{p_{i}}$



My ideas:



ii) In class we have proven the Hölder inequality for two functions, i.e. $||fg||_{r}leq||f||_{p}||g||_{q}$, whereby $frac{1}{r}=frac{1}{p}+frac{1}{q}$. I think that the extension of this would be to merely use induction to show that Hölder is valid for any $n in mathbb N$, but this seems too easy.



i) I am stuck on $f_{1}times...times f_{n}in L^p$.



$(int_{mathbb R}|f|^p)^frac{1}{p}=(int_{mathbb R}|prod_{i=1}^{n}f_{i}|^p)^{sum_{i=1}^{n}frac{1}{p_{i}}}=prod_{j=1}^{n}(int_{mathbb R}prod_{i=1}^{n}|f_{i}|^p)^{frac{1}{p_{j}}}$



and from $frac{1}{p}=sum_{i=1}^{n}frac{1}{p_{i}}$, we glean that $p leq p_{i}$ , $i=1,...,n$



Therefore, can I say $prod_{j=1}^{n}(int_{mathbb R}prod_{i=1}^{n}|f_{i}|^p)^{frac{1}{p_{j}}}leq prod_{j=1}^{n}(int_{mathbb R}prod_{i=1}^{n}|f_{i}|^{p_{i}})^{frac{1}{p_{j}}}$ and that is $< infty$



Therefore $f in L^{p}$. I am not sure on this proof.










share|cite|improve this question









$endgroup$












  • $begingroup$
    "[...], but this seems too easy". It is easy.
    $endgroup$
    – Federico
    Dec 6 '18 at 17:47


















0












$begingroup$


Let $f_{1},...,f_{n}:X to bar{mathbb R}$ measurable, while $f:=f_{1}times...times f_{n}$, and $p_{1},...,p_{n} in [1,infty]$ where $f_{i}in L^{p_{i}}(mu), forall iin {1,...,n}$.



Note $frac{1}{p}=sum_{i=1}^{n}frac{1}{p_{i}}$



Show:



i) $f_{1}times...times f_{n}=f in L^{p}$



ii) $||f||_{p} leq prod_{i}^{n}||f_{i}||_{p_{i}}$



My ideas:



ii) In class we have proven the Hölder inequality for two functions, i.e. $||fg||_{r}leq||f||_{p}||g||_{q}$, whereby $frac{1}{r}=frac{1}{p}+frac{1}{q}$. I think that the extension of this would be to merely use induction to show that Hölder is valid for any $n in mathbb N$, but this seems too easy.



i) I am stuck on $f_{1}times...times f_{n}in L^p$.



$(int_{mathbb R}|f|^p)^frac{1}{p}=(int_{mathbb R}|prod_{i=1}^{n}f_{i}|^p)^{sum_{i=1}^{n}frac{1}{p_{i}}}=prod_{j=1}^{n}(int_{mathbb R}prod_{i=1}^{n}|f_{i}|^p)^{frac{1}{p_{j}}}$



and from $frac{1}{p}=sum_{i=1}^{n}frac{1}{p_{i}}$, we glean that $p leq p_{i}$ , $i=1,...,n$



Therefore, can I say $prod_{j=1}^{n}(int_{mathbb R}prod_{i=1}^{n}|f_{i}|^p)^{frac{1}{p_{j}}}leq prod_{j=1}^{n}(int_{mathbb R}prod_{i=1}^{n}|f_{i}|^{p_{i}})^{frac{1}{p_{j}}}$ and that is $< infty$



Therefore $f in L^{p}$. I am not sure on this proof.










share|cite|improve this question









$endgroup$












  • $begingroup$
    "[...], but this seems too easy". It is easy.
    $endgroup$
    – Federico
    Dec 6 '18 at 17:47
















0












0








0





$begingroup$


Let $f_{1},...,f_{n}:X to bar{mathbb R}$ measurable, while $f:=f_{1}times...times f_{n}$, and $p_{1},...,p_{n} in [1,infty]$ where $f_{i}in L^{p_{i}}(mu), forall iin {1,...,n}$.



Note $frac{1}{p}=sum_{i=1}^{n}frac{1}{p_{i}}$



Show:



i) $f_{1}times...times f_{n}=f in L^{p}$



ii) $||f||_{p} leq prod_{i}^{n}||f_{i}||_{p_{i}}$



My ideas:



ii) In class we have proven the Hölder inequality for two functions, i.e. $||fg||_{r}leq||f||_{p}||g||_{q}$, whereby $frac{1}{r}=frac{1}{p}+frac{1}{q}$. I think that the extension of this would be to merely use induction to show that Hölder is valid for any $n in mathbb N$, but this seems too easy.



i) I am stuck on $f_{1}times...times f_{n}in L^p$.



$(int_{mathbb R}|f|^p)^frac{1}{p}=(int_{mathbb R}|prod_{i=1}^{n}f_{i}|^p)^{sum_{i=1}^{n}frac{1}{p_{i}}}=prod_{j=1}^{n}(int_{mathbb R}prod_{i=1}^{n}|f_{i}|^p)^{frac{1}{p_{j}}}$



and from $frac{1}{p}=sum_{i=1}^{n}frac{1}{p_{i}}$, we glean that $p leq p_{i}$ , $i=1,...,n$



Therefore, can I say $prod_{j=1}^{n}(int_{mathbb R}prod_{i=1}^{n}|f_{i}|^p)^{frac{1}{p_{j}}}leq prod_{j=1}^{n}(int_{mathbb R}prod_{i=1}^{n}|f_{i}|^{p_{i}})^{frac{1}{p_{j}}}$ and that is $< infty$



Therefore $f in L^{p}$. I am not sure on this proof.










share|cite|improve this question









$endgroup$




Let $f_{1},...,f_{n}:X to bar{mathbb R}$ measurable, while $f:=f_{1}times...times f_{n}$, and $p_{1},...,p_{n} in [1,infty]$ where $f_{i}in L^{p_{i}}(mu), forall iin {1,...,n}$.



Note $frac{1}{p}=sum_{i=1}^{n}frac{1}{p_{i}}$



Show:



i) $f_{1}times...times f_{n}=f in L^{p}$



ii) $||f||_{p} leq prod_{i}^{n}||f_{i}||_{p_{i}}$



My ideas:



ii) In class we have proven the Hölder inequality for two functions, i.e. $||fg||_{r}leq||f||_{p}||g||_{q}$, whereby $frac{1}{r}=frac{1}{p}+frac{1}{q}$. I think that the extension of this would be to merely use induction to show that Hölder is valid for any $n in mathbb N$, but this seems too easy.



i) I am stuck on $f_{1}times...times f_{n}in L^p$.



$(int_{mathbb R}|f|^p)^frac{1}{p}=(int_{mathbb R}|prod_{i=1}^{n}f_{i}|^p)^{sum_{i=1}^{n}frac{1}{p_{i}}}=prod_{j=1}^{n}(int_{mathbb R}prod_{i=1}^{n}|f_{i}|^p)^{frac{1}{p_{j}}}$



and from $frac{1}{p}=sum_{i=1}^{n}frac{1}{p_{i}}$, we glean that $p leq p_{i}$ , $i=1,...,n$



Therefore, can I say $prod_{j=1}^{n}(int_{mathbb R}prod_{i=1}^{n}|f_{i}|^p)^{frac{1}{p_{j}}}leq prod_{j=1}^{n}(int_{mathbb R}prod_{i=1}^{n}|f_{i}|^{p_{i}})^{frac{1}{p_{j}}}$ and that is $< infty$



Therefore $f in L^{p}$. I am not sure on this proof.







real-analysis measure-theory norm holder-inequality






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 6 '18 at 17:29









SABOYSABOY

541311




541311












  • $begingroup$
    "[...], but this seems too easy". It is easy.
    $endgroup$
    – Federico
    Dec 6 '18 at 17:47




















  • $begingroup$
    "[...], but this seems too easy". It is easy.
    $endgroup$
    – Federico
    Dec 6 '18 at 17:47


















$begingroup$
"[...], but this seems too easy". It is easy.
$endgroup$
– Federico
Dec 6 '18 at 17:47






$begingroup$
"[...], but this seems too easy". It is easy.
$endgroup$
– Federico
Dec 6 '18 at 17:47












1 Answer
1






active

oldest

votes


















3












$begingroup$

To show how trivial this is, let me switch the notation, something that people should have already done probably.



I use $q=p^{-1}in[0,1]$ and $q_i=p_i^{-1}in[0,1]$ and introduce
$$
[![f]!]_q := |f|_{q^{-1}} = |f|_p.
$$



Then Holder inequality says that $[![f_1f_2]!]_{q_1+q_2}leq[![f_1]!]_{q_1}[![f_2]!]_{q_2}$ if $q_iin[0,1]$ and $q_1+q_2leq 1$.



Now, in our case, $q=q_1+dots+q_n = (q_1+dots+q_{n-1})+q_n$, so
$$
[![f_1dotsm f_n]!]_q leq [![f_1dotsm f_{n-1}]!]_{q_1+dots+q_{n-1}}[![f_n]!]_{q_n}
leq dots
leq [![f_1]!]_{q_1} dotsm [![f_n]!]_{q_n}
$$

by bringing outside one function at a time with Holder.





No more ugly $frac1{left(frac1{p_1}+dots+frac1{p_{n-1}}right)^{-1}}+frac1{p_n}=1$ expressions for the World.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Since you have not commented on i) can I assume it is correct?
    $endgroup$
    – SABOY
    Dec 6 '18 at 18:36






  • 1




    $begingroup$
    i) is a consequence of the inequality
    $endgroup$
    – Federico
    Dec 6 '18 at 18:38











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3028795%2fshowing-f-f-1-f-n-in-lp-mu-for-f-i-in-lp-i%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









3












$begingroup$

To show how trivial this is, let me switch the notation, something that people should have already done probably.



I use $q=p^{-1}in[0,1]$ and $q_i=p_i^{-1}in[0,1]$ and introduce
$$
[![f]!]_q := |f|_{q^{-1}} = |f|_p.
$$



Then Holder inequality says that $[![f_1f_2]!]_{q_1+q_2}leq[![f_1]!]_{q_1}[![f_2]!]_{q_2}$ if $q_iin[0,1]$ and $q_1+q_2leq 1$.



Now, in our case, $q=q_1+dots+q_n = (q_1+dots+q_{n-1})+q_n$, so
$$
[![f_1dotsm f_n]!]_q leq [![f_1dotsm f_{n-1}]!]_{q_1+dots+q_{n-1}}[![f_n]!]_{q_n}
leq dots
leq [![f_1]!]_{q_1} dotsm [![f_n]!]_{q_n}
$$

by bringing outside one function at a time with Holder.





No more ugly $frac1{left(frac1{p_1}+dots+frac1{p_{n-1}}right)^{-1}}+frac1{p_n}=1$ expressions for the World.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Since you have not commented on i) can I assume it is correct?
    $endgroup$
    – SABOY
    Dec 6 '18 at 18:36






  • 1




    $begingroup$
    i) is a consequence of the inequality
    $endgroup$
    – Federico
    Dec 6 '18 at 18:38
















3












$begingroup$

To show how trivial this is, let me switch the notation, something that people should have already done probably.



I use $q=p^{-1}in[0,1]$ and $q_i=p_i^{-1}in[0,1]$ and introduce
$$
[![f]!]_q := |f|_{q^{-1}} = |f|_p.
$$



Then Holder inequality says that $[![f_1f_2]!]_{q_1+q_2}leq[![f_1]!]_{q_1}[![f_2]!]_{q_2}$ if $q_iin[0,1]$ and $q_1+q_2leq 1$.



Now, in our case, $q=q_1+dots+q_n = (q_1+dots+q_{n-1})+q_n$, so
$$
[![f_1dotsm f_n]!]_q leq [![f_1dotsm f_{n-1}]!]_{q_1+dots+q_{n-1}}[![f_n]!]_{q_n}
leq dots
leq [![f_1]!]_{q_1} dotsm [![f_n]!]_{q_n}
$$

by bringing outside one function at a time with Holder.





No more ugly $frac1{left(frac1{p_1}+dots+frac1{p_{n-1}}right)^{-1}}+frac1{p_n}=1$ expressions for the World.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Since you have not commented on i) can I assume it is correct?
    $endgroup$
    – SABOY
    Dec 6 '18 at 18:36






  • 1




    $begingroup$
    i) is a consequence of the inequality
    $endgroup$
    – Federico
    Dec 6 '18 at 18:38














3












3








3





$begingroup$

To show how trivial this is, let me switch the notation, something that people should have already done probably.



I use $q=p^{-1}in[0,1]$ and $q_i=p_i^{-1}in[0,1]$ and introduce
$$
[![f]!]_q := |f|_{q^{-1}} = |f|_p.
$$



Then Holder inequality says that $[![f_1f_2]!]_{q_1+q_2}leq[![f_1]!]_{q_1}[![f_2]!]_{q_2}$ if $q_iin[0,1]$ and $q_1+q_2leq 1$.



Now, in our case, $q=q_1+dots+q_n = (q_1+dots+q_{n-1})+q_n$, so
$$
[![f_1dotsm f_n]!]_q leq [![f_1dotsm f_{n-1}]!]_{q_1+dots+q_{n-1}}[![f_n]!]_{q_n}
leq dots
leq [![f_1]!]_{q_1} dotsm [![f_n]!]_{q_n}
$$

by bringing outside one function at a time with Holder.





No more ugly $frac1{left(frac1{p_1}+dots+frac1{p_{n-1}}right)^{-1}}+frac1{p_n}=1$ expressions for the World.






share|cite|improve this answer











$endgroup$



To show how trivial this is, let me switch the notation, something that people should have already done probably.



I use $q=p^{-1}in[0,1]$ and $q_i=p_i^{-1}in[0,1]$ and introduce
$$
[![f]!]_q := |f|_{q^{-1}} = |f|_p.
$$



Then Holder inequality says that $[![f_1f_2]!]_{q_1+q_2}leq[![f_1]!]_{q_1}[![f_2]!]_{q_2}$ if $q_iin[0,1]$ and $q_1+q_2leq 1$.



Now, in our case, $q=q_1+dots+q_n = (q_1+dots+q_{n-1})+q_n$, so
$$
[![f_1dotsm f_n]!]_q leq [![f_1dotsm f_{n-1}]!]_{q_1+dots+q_{n-1}}[![f_n]!]_{q_n}
leq dots
leq [![f_1]!]_{q_1} dotsm [![f_n]!]_{q_n}
$$

by bringing outside one function at a time with Holder.





No more ugly $frac1{left(frac1{p_1}+dots+frac1{p_{n-1}}right)^{-1}}+frac1{p_n}=1$ expressions for the World.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Dec 6 '18 at 17:50

























answered Dec 6 '18 at 17:45









FedericoFederico

4,889514




4,889514












  • $begingroup$
    Since you have not commented on i) can I assume it is correct?
    $endgroup$
    – SABOY
    Dec 6 '18 at 18:36






  • 1




    $begingroup$
    i) is a consequence of the inequality
    $endgroup$
    – Federico
    Dec 6 '18 at 18:38


















  • $begingroup$
    Since you have not commented on i) can I assume it is correct?
    $endgroup$
    – SABOY
    Dec 6 '18 at 18:36






  • 1




    $begingroup$
    i) is a consequence of the inequality
    $endgroup$
    – Federico
    Dec 6 '18 at 18:38
















$begingroup$
Since you have not commented on i) can I assume it is correct?
$endgroup$
– SABOY
Dec 6 '18 at 18:36




$begingroup$
Since you have not commented on i) can I assume it is correct?
$endgroup$
– SABOY
Dec 6 '18 at 18:36




1




1




$begingroup$
i) is a consequence of the inequality
$endgroup$
– Federico
Dec 6 '18 at 18:38




$begingroup$
i) is a consequence of the inequality
$endgroup$
– Federico
Dec 6 '18 at 18:38


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3028795%2fshowing-f-f-1-f-n-in-lp-mu-for-f-i-in-lp-i%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Berounka

Sphinx de Gizeh

Fiat S.p.A.