How can I find the exponent $n$ efficiently?












1












$begingroup$


Denote $$z=(2^{19}-1)cdot10^6+2^{18}-1$$ $$a=ord_2(z)$$ $$b=ord_{10}(z)$$




The object is to find a positive integer of the form $$n=ka+19$$ with positive integer $k$ such that $$m=f(n)=lceil(n-1)cdot log_2(10)rceil$$ is of the form $$m=lb+6$$




Motivation : An "ec-number" has the form $$ec(n)=(2^n-1)cdot 10^m+2^{n-1}-1$$ where $m$ is the number of decimal digits of $2^{n-1}$. I want to find an exponent $n>19$ , such that $$ec(19)mid ec(n)$$ If it helps, $z=ec(19)$ is a prime number.










share|cite|improve this question









$endgroup$












  • $begingroup$
    math.stackexchange.com/questions/2635516/…
    $endgroup$
    – Peter
    Dec 8 '18 at 12:06
















1












$begingroup$


Denote $$z=(2^{19}-1)cdot10^6+2^{18}-1$$ $$a=ord_2(z)$$ $$b=ord_{10}(z)$$




The object is to find a positive integer of the form $$n=ka+19$$ with positive integer $k$ such that $$m=f(n)=lceil(n-1)cdot log_2(10)rceil$$ is of the form $$m=lb+6$$




Motivation : An "ec-number" has the form $$ec(n)=(2^n-1)cdot 10^m+2^{n-1}-1$$ where $m$ is the number of decimal digits of $2^{n-1}$. I want to find an exponent $n>19$ , such that $$ec(19)mid ec(n)$$ If it helps, $z=ec(19)$ is a prime number.










share|cite|improve this question









$endgroup$












  • $begingroup$
    math.stackexchange.com/questions/2635516/…
    $endgroup$
    – Peter
    Dec 8 '18 at 12:06














1












1








1





$begingroup$


Denote $$z=(2^{19}-1)cdot10^6+2^{18}-1$$ $$a=ord_2(z)$$ $$b=ord_{10}(z)$$




The object is to find a positive integer of the form $$n=ka+19$$ with positive integer $k$ such that $$m=f(n)=lceil(n-1)cdot log_2(10)rceil$$ is of the form $$m=lb+6$$




Motivation : An "ec-number" has the form $$ec(n)=(2^n-1)cdot 10^m+2^{n-1}-1$$ where $m$ is the number of decimal digits of $2^{n-1}$. I want to find an exponent $n>19$ , such that $$ec(19)mid ec(n)$$ If it helps, $z=ec(19)$ is a prime number.










share|cite|improve this question









$endgroup$




Denote $$z=(2^{19}-1)cdot10^6+2^{18}-1$$ $$a=ord_2(z)$$ $$b=ord_{10}(z)$$




The object is to find a positive integer of the form $$n=ka+19$$ with positive integer $k$ such that $$m=f(n)=lceil(n-1)cdot log_2(10)rceil$$ is of the form $$m=lb+6$$




Motivation : An "ec-number" has the form $$ec(n)=(2^n-1)cdot 10^m+2^{n-1}-1$$ where $m$ is the number of decimal digits of $2^{n-1}$. I want to find an exponent $n>19$ , such that $$ec(19)mid ec(n)$$ If it helps, $z=ec(19)$ is a prime number.







number-theory elementary-number-theory prime-numbers






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 8 '18 at 12:01









PeterPeter

46.9k1039125




46.9k1039125












  • $begingroup$
    math.stackexchange.com/questions/2635516/…
    $endgroup$
    – Peter
    Dec 8 '18 at 12:06


















  • $begingroup$
    math.stackexchange.com/questions/2635516/…
    $endgroup$
    – Peter
    Dec 8 '18 at 12:06
















$begingroup$
math.stackexchange.com/questions/2635516/…
$endgroup$
– Peter
Dec 8 '18 at 12:06




$begingroup$
math.stackexchange.com/questions/2635516/…
$endgroup$
– Peter
Dec 8 '18 at 12:06










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3031026%2fhow-can-i-find-the-exponent-n-efficiently%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3031026%2fhow-can-i-find-the-exponent-n-efficiently%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Berounka

Different font size/position of beamer's navigation symbols template's content depending on regular/plain...

Sphinx de Gizeh