Integration over Sphere
$begingroup$
I have a question to a pretty basic integration problem. I was pretty sure about my solution but my tutor had a different one such that I am confused now. The integral is the following:
$$int_{S_r(0)} z^2 d S_r(0)$$
Using the standard parameterization, I obtain:
$$d S = r^2 sin(theta) d theta d phi$$
$$int_{S_r(0)} z^2 d S_r(0) = int_{0}^{2 pi} int_{0}^{pi} r^2 cos^2(theta) r^2 sin(theta) d theta d phi = dots = frac{4 r^4pi}{3}$$
I would be very glad if someone could verify or falsify the result!
Thanks much in advance
Andreas
integration proof-verification spheres
$endgroup$
add a comment |
$begingroup$
I have a question to a pretty basic integration problem. I was pretty sure about my solution but my tutor had a different one such that I am confused now. The integral is the following:
$$int_{S_r(0)} z^2 d S_r(0)$$
Using the standard parameterization, I obtain:
$$d S = r^2 sin(theta) d theta d phi$$
$$int_{S_r(0)} z^2 d S_r(0) = int_{0}^{2 pi} int_{0}^{pi} r^2 cos^2(theta) r^2 sin(theta) d theta d phi = dots = frac{4 r^4pi}{3}$$
I would be very glad if someone could verify or falsify the result!
Thanks much in advance
Andreas
integration proof-verification spheres
$endgroup$
$begingroup$
Can you encase your tex syntax in dollar and double dollar cases?
$endgroup$
– Kevin
Mar 15 '18 at 15:42
add a comment |
$begingroup$
I have a question to a pretty basic integration problem. I was pretty sure about my solution but my tutor had a different one such that I am confused now. The integral is the following:
$$int_{S_r(0)} z^2 d S_r(0)$$
Using the standard parameterization, I obtain:
$$d S = r^2 sin(theta) d theta d phi$$
$$int_{S_r(0)} z^2 d S_r(0) = int_{0}^{2 pi} int_{0}^{pi} r^2 cos^2(theta) r^2 sin(theta) d theta d phi = dots = frac{4 r^4pi}{3}$$
I would be very glad if someone could verify or falsify the result!
Thanks much in advance
Andreas
integration proof-verification spheres
$endgroup$
I have a question to a pretty basic integration problem. I was pretty sure about my solution but my tutor had a different one such that I am confused now. The integral is the following:
$$int_{S_r(0)} z^2 d S_r(0)$$
Using the standard parameterization, I obtain:
$$d S = r^2 sin(theta) d theta d phi$$
$$int_{S_r(0)} z^2 d S_r(0) = int_{0}^{2 pi} int_{0}^{pi} r^2 cos^2(theta) r^2 sin(theta) d theta d phi = dots = frac{4 r^4pi}{3}$$
I would be very glad if someone could verify or falsify the result!
Thanks much in advance
Andreas
integration proof-verification spheres
integration proof-verification spheres
edited Dec 8 '18 at 11:20
J.G.
24.2k22539
24.2k22539
asked Mar 15 '18 at 15:39
Andreas MuellerAndreas Mueller
11
11
$begingroup$
Can you encase your tex syntax in dollar and double dollar cases?
$endgroup$
– Kevin
Mar 15 '18 at 15:42
add a comment |
$begingroup$
Can you encase your tex syntax in dollar and double dollar cases?
$endgroup$
– Kevin
Mar 15 '18 at 15:42
$begingroup$
Can you encase your tex syntax in dollar and double dollar cases?
$endgroup$
– Kevin
Mar 15 '18 at 15:42
$begingroup$
Can you encase your tex syntax in dollar and double dollar cases?
$endgroup$
– Kevin
Mar 15 '18 at 15:42
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$I=r^4displaystyle int_{0}^{2pi} dphi .left(-displaystyle int_{0}^{pi}cos^2theta
d(costheta)right)$
$I=dfrac{1}{3}r^4displaystyle int_{0}^{2pi} dphi .left[cos^3thetaright]_{pi}^{0}$
$I=dfrac{2}{3}r^4displaystyle int_{0}^{2pi} dphi $
$I=left(dfrac{2}{3}r^4.2piright)=dfrac{4pi}{3}r^4 $
$endgroup$
$begingroup$
Thank you!.. As I stated, that’s exactly my result as well. Does it make a difference when I write $int_{S_r(0)} z^2 dvol_{S_r(0)}$ ?
$endgroup$
– Andreas Mueller
Mar 15 '18 at 21:45
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2692451%2fintegration-over-sphere%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$I=r^4displaystyle int_{0}^{2pi} dphi .left(-displaystyle int_{0}^{pi}cos^2theta
d(costheta)right)$
$I=dfrac{1}{3}r^4displaystyle int_{0}^{2pi} dphi .left[cos^3thetaright]_{pi}^{0}$
$I=dfrac{2}{3}r^4displaystyle int_{0}^{2pi} dphi $
$I=left(dfrac{2}{3}r^4.2piright)=dfrac{4pi}{3}r^4 $
$endgroup$
$begingroup$
Thank you!.. As I stated, that’s exactly my result as well. Does it make a difference when I write $int_{S_r(0)} z^2 dvol_{S_r(0)}$ ?
$endgroup$
– Andreas Mueller
Mar 15 '18 at 21:45
add a comment |
$begingroup$
$I=r^4displaystyle int_{0}^{2pi} dphi .left(-displaystyle int_{0}^{pi}cos^2theta
d(costheta)right)$
$I=dfrac{1}{3}r^4displaystyle int_{0}^{2pi} dphi .left[cos^3thetaright]_{pi}^{0}$
$I=dfrac{2}{3}r^4displaystyle int_{0}^{2pi} dphi $
$I=left(dfrac{2}{3}r^4.2piright)=dfrac{4pi}{3}r^4 $
$endgroup$
$begingroup$
Thank you!.. As I stated, that’s exactly my result as well. Does it make a difference when I write $int_{S_r(0)} z^2 dvol_{S_r(0)}$ ?
$endgroup$
– Andreas Mueller
Mar 15 '18 at 21:45
add a comment |
$begingroup$
$I=r^4displaystyle int_{0}^{2pi} dphi .left(-displaystyle int_{0}^{pi}cos^2theta
d(costheta)right)$
$I=dfrac{1}{3}r^4displaystyle int_{0}^{2pi} dphi .left[cos^3thetaright]_{pi}^{0}$
$I=dfrac{2}{3}r^4displaystyle int_{0}^{2pi} dphi $
$I=left(dfrac{2}{3}r^4.2piright)=dfrac{4pi}{3}r^4 $
$endgroup$
$I=r^4displaystyle int_{0}^{2pi} dphi .left(-displaystyle int_{0}^{pi}cos^2theta
d(costheta)right)$
$I=dfrac{1}{3}r^4displaystyle int_{0}^{2pi} dphi .left[cos^3thetaright]_{pi}^{0}$
$I=dfrac{2}{3}r^4displaystyle int_{0}^{2pi} dphi $
$I=left(dfrac{2}{3}r^4.2piright)=dfrac{4pi}{3}r^4 $
answered Mar 15 '18 at 19:35
deleteprofiledeleteprofile
1,153316
1,153316
$begingroup$
Thank you!.. As I stated, that’s exactly my result as well. Does it make a difference when I write $int_{S_r(0)} z^2 dvol_{S_r(0)}$ ?
$endgroup$
– Andreas Mueller
Mar 15 '18 at 21:45
add a comment |
$begingroup$
Thank you!.. As I stated, that’s exactly my result as well. Does it make a difference when I write $int_{S_r(0)} z^2 dvol_{S_r(0)}$ ?
$endgroup$
– Andreas Mueller
Mar 15 '18 at 21:45
$begingroup$
Thank you!.. As I stated, that’s exactly my result as well. Does it make a difference when I write $int_{S_r(0)} z^2 dvol_{S_r(0)}$ ?
$endgroup$
– Andreas Mueller
Mar 15 '18 at 21:45
$begingroup$
Thank you!.. As I stated, that’s exactly my result as well. Does it make a difference when I write $int_{S_r(0)} z^2 dvol_{S_r(0)}$ ?
$endgroup$
– Andreas Mueller
Mar 15 '18 at 21:45
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2692451%2fintegration-over-sphere%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Can you encase your tex syntax in dollar and double dollar cases?
$endgroup$
– Kevin
Mar 15 '18 at 15:42